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Abstract The Strang–Fix conditions are necessary and sufficient to repro-
duce spaces of algebraic polynomials up to some degree by integer shifts of
compactly supported functions. W. Dahmen and Ch. Micchelli (Linear Al-
gebra Appl. 52/3:217–234,1983) introduced a generalization of the Strang–
Fix conditions to affinely invariant subspaces of higher degree polynomials.
C. de Boor (Constr. Approx. 3:199-208,1987) raised a question on the neces-
sity of scale-invariance of polynomial space for an arbitrary function; and he
omitted the scale-invariance restriction on the space. In the paper, we present
a matrix approach to determine (not necessarily scale-invariant) polynomial
space contained in the span of integer shifts of a compactly supported func-
tion. Also, in the paper, we consider scaling functions that we call the elliptic
scaling functions (Int. J. Wavelets Multiresolut. Inf. Process.To appear); and,
using the matrix approach, we prove that the elliptic scaling functions satisfy
the generalized Strang–Fix conditions and reproduce only affinely invariant
polynomial spaces. Namely we prove that any algebraic polynomial contained
in the span of integer shifts of a compactly supported elliptic scaling func-
tion belongs to the null-space of a homogeneous elliptic differential operator.
However, in the paper, we present nonstationary elliptic scaling functions such
that the scaling functions reproduce not scale-invariant (only shift-invariant)
polynomial spaces.

Keywords: Elliptic scaling functions, Strang–Fix conditions, Affinely invariant
polynomial spaces, Isotropic dilation matrices, Polynomial solutions of elliptic
differential equations
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1 Introduction

In the paper [6], W. Dahmen and Ch. Micchelli introduced a space of polyno-
mials

V :=
{

P : P ∈ Π,
(

P (D)f̂
)

(2πk) = 0, k ∈ Zd \ {0}
}

, (1.1)
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where Π is the space of all polynomials on Rd, P (D) is the differential operator
induced by P , and f is a compactly supported function (that, for example,
belongs to the space of tempered distributions). And, see Proposition 2.1 in
the paper [6], it was proved that if there exists an affinely, i. e., shift- and scale-,

invariant subspace Vaff ⊆ V , where V is given by (1.1), and f̂(0) 6= 0; then the
span of integer shifts of f contains the space Vaff .

The conditions on a function f :

(

P (D)f̂
)

(2πk) = 0, k ∈ Zd \ {0}, ∀P ∈ V ⊂ Π (1.2)

can be considered as a generalization of the Strang–Fix conditions [8, 11]. Un-
like the classical Strang–Fix conditions, the derivatives of the Fourier transform
of the function f do not necessarily vanish to satisfy (1.2). The well-known
functions that satisfy conditions (1.2) in the nontrivial case, i. e., if not all the
derivatives up to some order vanish, are the box-splines.

In the paper [9], R.-Q. Jia proved that if a multivariate scaling function
that satisfies a refinement relation with an isotropic dilation matrix belongs to
the Sobolev space W k

1 (R
d); then the scaling function satisfies the (classical)

Strang–Fix conditions of order k, i. e, the scaling function reproduces all the
polynomials up to degree k. In the present paper, we consider the so-called
elliptic scaling functions [13]. The elliptic scaling functions satisfy refinement
relations with real isotropic dilation matrices. In the paper, we prove that any
real isotropic matrix is similar to an orthogonal matrix and the similarity trans-
formation matrix defines a positive definite quadratic form. The quadratic
form determines homogeneous elliptic differential operators and the form (and
operators) is invariant under coordinate transformation by the dilation matrix.
The elliptic scaling functions also satisfy nontrivial conditions (1.2). In fact,
the algebraic polynomials reproduced by compactly supported elliptic scaling
functions belong to the null-spaces of homogeneous elliptic differential opera-
tors. Note that many essential properties of the elliptic scaling functions are
similar to the properties of the (univariate and multivariate) B-splines. We
refer the reader to [13] for details.

The affine invariance of the polynomial spaces seems rather strong restric-
tion and, in the paper [2, Proposition 2.2] of C. de Boor, a generalization
to not scale-invariant (only shift-invariant) polynomial spaces was considered.
Namely it was proved that if a compactly supported function f satisfies con-
ditions (1.2) (and f̂(0) 6= 0); then the span of integer shifts of the function f
contains the largest shift-invariant subspace of the space V . However, in the
paper [4], it was shown that the box-splines reproduce only affinely invariant
polynomial spaces. In the case of the elliptic scaling functions, we also have
affinely invariant spaces only. Nevertheless a nonstationary generalization, i. e.,
if the scaling functions (and the corresponding masks) do not coincide for dif-
ferent scales, of the elliptic scaling functions allows satisfying properties (1.2) in
the not scale-invariant case. And we construct nonstationary scaling functions
that reproduce not affinely invariant polynomial spaces.

Note that, generally, the determination of a shift-invariant subspace of
space (1.1) is a nontrivial problem. In the paper, we present an approach
to determine the largest shift-invariant subspace of the space V . In fact, we
introduce a matrix of (non-zero) derivatives of the function f̂ at the points
2πZd \ {0}; and the null-space of the matrix defines completely the largest
shift-invariant subspace of the space V . (In the framework of this approach,
the affinely invariant subspaces also can be obtained.)
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The paper is organized as follows. Basing on the papers of C. de Boor [2]
and W. Dahmen & Ch. Micchelli [6], Section 2 is devoted to a generalization of
the Strang–Fix conditions. In particular, in the section, we introduce notations
and definitions. In Section 3, we consider the so-called elliptic scaling functions.
The section is based on the paper [13] and contains a definition of the elliptic
scaling functions and presents some properties of the elliptic scaling functions.
In particular, the positive definite quadratic forms that correspond to the
dilation matrices and determine the homogeneous elliptic differential operators
are defined. Section 4 is devoted to the polynomial spaces reproduced by
compactly supported elliptic scaling functions. In Subsection 4.3, we consider a
nonstationary generalization of the elliptic scaling functions and prove that the
polynomial spaces contained in the spans of integer shifts of the nonstationary
elliptic scaling functions can be not scale-invariant.

1.1 Notations

Here we introduce some general notation.
A multi-index α is a d-tuple (α1, . . . , αd) with its components being non-

negative integers, i. e., α ∈ Zd
≥0. The length of the multi-index α is |α| :=

α1 + · · · + αd. For α = (α1, . . . , αd), β = (β1, . . . , βd), we write β ≤ α if
βj ≤ αj for all j = 1, . . . , d. The factorial of α is α! := α1! · · ·αd!. The
binomial coefficient for multi-indices is

(

α

β

)

:=

(

α1

β1

)

· · ·

(

αd

βd

)

=
α!

β!(α− β)!
;

note that, by definition,

(

α

β

)

= 0 if β � α.

By xα, where x = (x1, . . . , xd) ∈ Rd, α = (α1, . . . , αd) ∈ Zd
≥0, denote

the monomial xα1
1 · · ·xαd

d . Note that the total degree of xα is |α|. The multi-
dimensional version of the binomial formula is

(x+ y)α =
∑

β∈Z
d
≥0

β≤α

(

α

β

)

xβyα−β , α ∈ Zd
≥0, x, y ∈ Rd.

By PL denote a polynomial of total degree L; and by P≤L denote a poly-
nomial the total degree of which is less than or equal to L. Denote by Π
the space of all polynomials on Rd. Also denote by Π≤L, L ∈ Z≥0, the
space of polynomials with total degree less than or equal to L: Π≤L :=
span

{

xα : x ∈ Rd, α ∈ Zd
≥0, |α| ≤ L

}

; and by ΠL the space of polynomials

whose total degree is equal to L: ΠL := span
{

xα : x ∈ Rd, α ∈ Zd
≥0, |α| = L

}

(here and in the sequel, the ‘span’ means the linear span over R).
By R(x) denote a power series R(x) :=

∑

k∈Z
d
≥0

akx
k, x ∈ Rd, ak ∈ R. The

order of the power series R is the least value |k| such that ak 6= 0. By RL(x),
L ≥ 0, we denote a power series of order L and by R>L(x) denote a power
series of order greater than L.

Let Dα stand for the differential operator Dα1
1 · · ·Dαd

d , where Dn, n =
1, . . . , d, is the partial derivative with respect to the nth coordinate. Note that
D(0,...,0) is the identity operator.
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By x · y denote the inner product of two vectors x, y ∈ Rd: x · y := x1y1 +
· · ·+ xdyd. The Fourier transform of a function f ∈ L1

(

Rd
)

is defined by

F (f)(ξ) := (2π)−d/2

∫

Rd

f(x)e−iξ·x dx =: f̂(ξ), ξ ∈ Rd.

Note that the Fourier transform can be extended to compactly supported func-
tions (distributions) from the space S ′ (Rd

)

, where S ′ denotes the space of
tempered distributions. So we have the following useful formula

F (xα)(ξ) = i|α|Dαδ(ξ), ξ ∈ Rd, α ∈ Zd
≥0,

where δ is the Dirac delta-distribution.

2 Strang–Fix conditions

Actually this section is an auxiliary section and, for more details, we refer the
reader to the forthcoming paper.

2.1 Definition of matrices

2.1.1 Notations

First we recall some block matrix notions. We say that a block matrix is a
matrix broken into sections called blocks or submatrices. A block diagonal
matrix is a block matrix that is a square matrix such that the main diagonal
square submatrices can be nonzero and the off-diagonal submatrices are zero
matrices. The (block) diagonals can be specified by an index k measured
relative to the main diagonal, thus the main diagonal has k = 0 and the k-
diagonal consists of the entries on the kth diagonal above the main diagonal.
Note that all the k-diagonal submatrices, except the submatrices on the main
diagonal, can be not square matrices.

By symbol ‘<lex’ we denote the lexicographical order and by AL, L ∈ Z≥0,
denote the lexicographically ordered set of all the multi-indices of length L

AL :=
(

1α, 2α, . . . , d(L)α
)

,

jα ∈ Zd
≥0, |jα| = L, j = 1, . . . , d(L),

jα <lex
j′α ⇐⇒ j < j′,

where

d(L) :=

(

d+ L− 1

L

)

=
(d+ L− 1)!

L!(d− 1)!

is the number of L-combinations with repetition from the d elements.
By AL we denote a concatenated set of multi-indices:

AL := (A0,A1, . . . ,AL) ,

where the comma symbol must be considered as the concatenation operator
to join 2 sets. Actually the order of the set AL is the graded lexicographical
order. By d(L) denote the length of the concatenated set like AL

d(L) := d(0) + d(1) + · · ·+ d(L) =
(d+ L)!

L!d!
.
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By PL, L ∈ Z≥0, denote the lexicographically ordered set of the monomials
of total degree L

PL(x) :=
(

x
1α, . . . , x

d(L)α
)

, x ∈ Rd,
(

1α, . . . , d(L)α
)

= AL.

For β ∈ Zd
≥0, let P

β
L denote the following set of the monomials

Pβ
L(x) :=

((

1α

β

)

x
1α−β , . . . ,

(

d(L)α

β

)

x
d(L)α−β

)

,
(

1α, . . . , d(L)α
)

= AL.

(2.1)
Similarly, define ordered sets of the differential operators as

DL :=
(

(−i)LD
1α, . . . , (−i)LD

d(L)α
)

,

Dβ
L :=

(

(−i)L−|β|
(

1α

β

)

D
1α−β, . . . , (−i)L−|β|

(

d(L)α

β

)

D
d(L)α−β

)

, (2.2)

where
(

1α, . . . , d(L)α
)

= AL. Note that if β 6≤ jα, then the jth entries of (2.1)
and (2.2) are zero. Moreover, if |β| > L, sets (2.1), (2.2) are zero sets.

By PL and P
β

L denote concatenated sets of the monomials

PL := (P0,P1, . . . ,PL) , P
β

L :=
(

Pβ
0 ,P

β
1 , . . . ,P

β
L

)

. (2.3)

The concatenated sets of the derivatives DL, D
β

L are defined similarly to (2.3).
In the sequel, we shall frequently enclose the symbols of matrices in the

square brackets. In particular, we shall interpret ordered sets (for example, the
sets PL, DL) as row-matrices and enclose their symbols in the square brackets.

For some L, l ∈ Z≥0, define d(l)× d(L) matrices P l
L, D

l
L as follows

P
l
L :=



















[

P
1β
L

]

[

P
2β
L

]

...
[

P
d(l)β
L

]



















, D
l
L :=



















[

D
1β
L

]

[

D
2β
L

]

...
[

D
d(l)β
L

]



















,

where
(

1β, . . . , d(l)β
)

= Al and P
jβ
L , D

jβ
L are given by (2.1) and (2.2), respec-

tively. Note that, by definition, if l > L, then P
l
L, D

l
L are zero matrices.

Define d(L)× d(L) matrices P l, Dl, l = 0, 1, . . . L, as follows

P l :=



























P
0
l

P
1
l
...

P
l
l

0
...
0



























, Dl :=



























D
0
l

D
1
l
...

D
l
l

0
...
0



























. (2.4)
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Also define concatenated d(L)× d(L) matrices PL, DL as

PL :=
[

P 0 P 1 . . . PL−1 PL

]

=















P
0
0 P

0
1 . . . P

0
L−1 P

0
L

0 P
1
1 . . . P

1
L−1 P

1
L

...
...

. . .
...

...

0 0 . . . P
L−1
L−1 P

L−1
L

0 0 . . . 0 P
L
L















,

(2.5)

DL :=
[

D0 D1 . . . DL−1 DL

]

=















D
0
0 D

0
1 . . . D

0
L−1 D

0
L

0 D
1
1 . . . D

1
L−1 D

1
L

...
...

. . .
...

...

0 0 . . . D
L−1
L−1 D

L−1
L

0 0 . . . 0 D
L
L















.

(2.6)

Note that, in formulas (2.4)–(2.6), the ‘0’ symbols must be considered as zero
matrices of the corresponding sizes.

Remark 2.1. The component-wise form of the matrix PL is

[

PL(x)
]

jk
=











(

kα
jβ

)

x
kα−jβ , jβ ≤ kα ,

0, otherwise,

j, k = 1, 2, . . . , d(L),
(

1α, . . . , d(L)α,
)

=
(

1β, . . . , d(L)β,
)

= AL;

(2.7)
and similarly for the matrix DL.

Note that the relations between the matrices of monomials and derivatives
are

DL = PL(−iD), Dβ
L = Pβ

L(−iD), D
l
L = P

l
L(−iD),

DL = PL(−iD), DL = PL(−iD).

Finally define infinite-rows matrices:

∆Lf̂ :=

















...

DLf̂(2π
j−1n)

DLf̂(2π
jn)

DLf̂(2π
j+1n)

...

















, ∆Lf̂ :=

















...

DLf̂(2π
j−1n)

DLf̂(2π
jn)

DLf̂(2π
j+1n)

...

















, (2.8)

where the d-tuples jn ∈ Zd \ {0} are arbitrarily ordered.

2.1.2 Ranks of the matrices D
l
L

In this subsection, we investigate the ranks of the matrices Dl
L, l = 0, . . . , L.

First consider the matrix D
L
L. D

L
L is a square d(L)× d(L) matrix. It easy

to see that the jth row of the matrix D
L
Lf̂ contains only one nonzero element

f̂ , which is situated on the jth position. Thus D
L
Lf̂ = I f̂ , where I is the

corresponding identity matrix.
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SecondlyD0
Lf̂ is a row-matrix

[

D
1αf̂ · · · D

d(L)αf̂
]

, where
(

1α, . . . , d(L)α
)

=

AL. Consequently the matrixD
0
Lf̂ has the nonzero rank iff there exists at least

one multi-index jα ∈ AL such that D
jαf̂ 6= 0.

Now consider the matrices Dl
L, l = 1, . . . , L− 1. Note that Dl

L is a d(l)×
d(L) matrix.

Theorem 2.1. Let L ∈ N. The d(l)× d(L) matrix D
l
Lf̂ , l = 1, . . . , L− 1, has

the full rank, i. e., the rank of Dl
Lf̂ is equal to d(l), if and only if there exists

at least one nonzero derivative Dγ f̂ , |γ| = L− l.

To prove this theorem, we refer the reader to the forthcoming paper.
Hence we see that each of the matrices D

l
Lf̂ , l = 0, . . . , L, is either a full

rank matrix or zero matrix.

2.2 Definitions and Theorems

2.2.1 General case

We begin with definitions. Following to C. de Boor, see [2], we change slightly
the definition of space (1.1).

Definition 2.1. By definition, put

V :=
{

P : P ∈ Π,
(

P (−iD)f̂
)

(2πk) = 0, k ∈ Zd \ {0}
}

, (2.9)

where Π is the space of all polynomials on Rd and f ∈ S′(Rd) is a compactly
supported function. By Vsh we denote the largest shift-invariant subspace of
the space V given by (2.9).

Let us recall the C. de Boor statement on a polynomial space in the span
of integer shifts of a compactly supported function.

Theorem 2.2 (C. de Boor [2, Proposition 2.2]). Suppose a function f ∈
S′(Rd) is compactly supported, then

Π ∩ span
{

f(· − k), k ∈ Zd
}

= Vsh.

Definition 2.2. Suppose A is an n×m matrix. Put

kerA := {v ∈ Rm : Av = 0} .

We say that the linear space kerA is the (right) null-space of the matrix A.

Here and in the sequel, we shall always consider the vector in the matrix-
vector multiplication as a column-matrix. Moreover, we shall also suppose
that the matrix-vector multiplication is distributive over a (countable or even
uncountable) set of vectors (points) of an Euclidian space: A

{

s : s ∈ Rd
}

:=
{

As : s ∈ Rd
}

, where A is a d× d matrix.

Definition 2.3. Let a function f ∈ S′(Rd) be compactly supported. Let ma-

trices ∆lf̂ , l ∈ Z≥0, be given by (2.8). By definition, put

L := min
{

l ∈ Z≥0 : dimker∆lf̂ = max
{

dimker∆mf̂ : m ∈ Z≥0

}}

, (2.10)

i. e., L is the minimal l ∈ Z≥0 such that dimker∆lf̂ is maximal; then we say
that L is the order of the Strang–Fix conditions.
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Definition 2.4. By V denote the null-space of the matrix ∆Lf̂ :

V := ker∆Lf̂ , (2.11)

where L is the order of the Strang–Fix conditions defined by (2.10).

Let L ≥ 0. Suppose V ⊆ Rd(L) is a linear space (for example, given
by (2.11)); then V always can be decomposed as follows

V = V 0 ⊕ V 1 ⊕ · · · ⊕ V L, (2.12)

where the subspace V l, l = 0, . . . , L, corresponds to the subset Dl of the set
DL; i. e., if a vector v ∈ V belongs to V l, then v is necessarily of the form

v =
(

0, . . . , 0, vd(l−1)+1, . . . , vd(l), 0, . . . , 0
)

(where d(−1) := 0).

Now we can reformulate the definition of the Strang–Fix conditions order,
see (2.10).

Definition 2.5. Let a function f ∈ S′(Rd) be compactly supported. Let L ≥ 0

and let V := ker∆Lf̂ . Suppose V is decomposed like (2.12); then L is the
order of the Strang–Fix conditions iff all the subspaces V l, l = 0, 1, . . . , L, are
nonzero and V L+1 is the zero space.

To proof the fact that this definition coincides with Definition 2.3, we refer
the reader to the forthcoming paper.

Definition 2.6. Let L be the order of the Strang–Fix conditions. Let a linear
space V be given by (2.11) and the set PL be given by (2.3); then by Ṽ we
denote the following polynomial space

Ṽ :=
{[

PL

]

v : v ∈ V
}

. (2.13)

Below we present the main theorem of this section.

Theorem 2.3. Let a function f ∈ S′(Rd) be compactly supported. Let L be
the order of the Strang–Fix conditions, let the polynomial spaces V and Ṽ be
given by (2.9) and (2.13), respectively; then we have

Ṽ = Vsh.

Lemma 2.4. Let L ≥ 0 and let the set PL be given by (2.3), then we have

[

PL(x + y)
]

=
[

PL(x)
] [

PL(y)
]

, (2.14)

where x, y ∈ Rd and the matrix PL is given by (2.5).

We omit the proof of the lemma and note only that formula (2.14) is the
direct consequence of the binomial formula and formula (2.7).

Proof of the theorem. Suppose a polynomial P belongs to Ṽ ; then, by (2.13),
P (x) =

[

PL(x)
]

v for some v ∈ V . Thus, for any n ∈ Zd \ {0}, we have
(

P (−iD)f̂
)

(2πn) =
[

DLf̂(2πn)
]

v. Since, for any n ∈ Zd \ {0}, the row-

matrix
[

DLf̂(2πn)
]

is the first row of the corresponding matrix DLf̂(2πn)

(see (2.6)) and v ∈ V ; we have
[

DLf̂(2πn)
]

v = 0. Hence
(

P (−iD)f̂
)

(2πn) =

0, ∀n ∈ Zd \ {0}; consequently P ∈ V .
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For an arbitrary shift h ∈ Rd, consider the polynomial P (x + h). Using
Lemma 2.4, we have P (x + h) =

[

PL(x + h)
]

v =
[

PL(h)
] [

PL(x)
]

v, where

PL is matrix (2.5). Thus, for any n ∈ Zd\{0}, we obtain P (−iD+h)f̂(2πn) =
[

PL(h)
]

[

DLf̂(2πn)
]

v = 0. Consequently Ṽ ⊆ Vsh.

Now we prove the contrary sentence: Vsh ⊆ Ṽ. Let P ∈ Vsh ⊆ V , then

there exists a vector v ∈ Rd(L) such that P (x) =
[

PL(x)
]

v.

Assume the converse: P 6∈ Ṽ ; then v 6∈ V . Consequently there are ex-
ist at least one point n ∈ Zd \ {0} and multi-index β ∈ Zd

≥0, |β| ≤ L,

such that
[

D
β

Lf̂(2πn)
]

v 6= 0. Suppose β 6= (0, . . . , 0), then there exists a

shift h ∈ Rd such that
(

P (−iD + h)f̂
)

(2πn) 6= 0. Thus P 6∈ Vsh. (If

β = (0, . . . , 0), then
[

DLf̂(2πn)
]

v 6= 0 for some n ∈ Zd \ {0)}; and conse-

quently
(

P (−iD)f̂
)

(2πn) 6= 0. Hence P 6∈ V .) This contradiction proves that

Vsh ⊆ Ṽ . This completes the proof.

Finally we state and prove an auxiliary theorem, which will be useful later.

Theorem 2.5. Let P (x), x ∈ Rd, be an algebraic polynomial of total degree
L ≥ 0. Let the matrix DL be given by (2.6). Then an algebraic polynomial
[

PL

]

v, v ∈ Rd(L), belongs to kerP (−iD) iff v ∈ kerDLP (0).

Proof. Suppose v ∈ kerDLP (0) and consider an expression

P (−iD)
[

PL(ξ)
]

v, ξ ∈ Rd.

Taking the inverse Fourier transform of the previous expression, we obtain
the following expression P (x)

[

DLδ(x)
]

v, which is equivalent to
[

DLP (0)
]

v.

Since
[

DLP (0)
]

is the first row of the matrixDLP (0), we have
[

DLP (0)
]

v = 0.

Thus the algebraic polynomial
[

PL

]

v belongs to kerP (−iD).

Contrary, suppose that, for a vector v ∈ Rd(L), the polynomial
[

PL

]

v

belongs to kerP (−iD). Consequently we have P (−iD)
[

PL

]

v = 0. Since
the differentiation commutes with the translation, it follows that the previous
relation is valid for any shift of the argument. Thus P (−iD)

[

PL(·+ h)
]

v = 0,
∀h ∈ Rd. Taking the inverse Fourier transform of the previous relation and
using Lemma 2.4, we have P (x)

[

PL(h)
] [

PL(−iD)δ(x)
]

v = 0 or

[

PL(h)
] [

DLP (0)
]

v = 0.

Since the previous relation is valid for an arbitrary h ∈ Rd, we have v ∈
kerDLP (0).

Remark 2.2. Theorem 2.5 is valid for any total degree L ≥ 0 of the polyno-
mials; and the theorem supplies all the algebraic polynomials up to degree L
from the kernel of a given differential operator with a polynomial symbol. Note
also that the matrix DLP (0) has a non-zero null-space iff the constant term
of the polynomial P (the identity term of the operator P (−iD)) vanishes.

2.2.2 Affinely invariant case

First we present some obvious statement about scale-invariant polynomial
spaces.
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Statement 2.6. Any polynomial space V is scale-invariant iff the space can
be decomposed as

V =
⊕

k

(V ∩Πk) .

Using Statement 2.6, we can formulate the following theorem.

Theorem 2.7. Let a function f ∈ S′(Rd) be compactly supported. Let L
be the order of the Strang–Fix conditions. Let a linear space V be the null-
space of the matrix ∆Lf̂ , and let a polynomial space Ṽ be given by (2.13).
Then the polynomial space Ṽ is affinely invariant iff, for any v ∈ V , we have
(

vd(l−1)+1, . . . , vd(l)

)

∈ ker∆lf̂ , l = 0, 1, . . . , L, ( d(−1) := 0).

The proof is trivial.

Remark 2.3. If the null-space V := ker∆Lf̂ is not scale-invariant; then it is
always possible to consider an affinely invariant subspace of V and to define the
corresponding affinely invariant polynomial subspace. Note also that the order
of the Strang–Fix conditions defined by the largest affinely invariant subspace
of V can be less than the order corresponding to the initial space V .

Remark 2.4. In the paper, we consider the polynomial spaces (and the spans
that contain the polynomial spaces) only over R. Nevertheless it is possible to
extend our consideration to the field C, but the corresponding generalization is
left to the reader.

3 Elliptic scaling functions

3.1 Preliminaries and notations

Let us recall here some notation and formulas on scaling functions, see, for
example, [7, 10].

In general, a scaling function φ satisfies a refinement relation

φ(x) =
∑

k∈Z
d

hk| detA|
1
2φ(Ax − k), x ∈ Rd, (3.1)

where A is a d× d matrix and the matrix is called the dilation matrix. In the
paper, we shall suppose that the dilation matrices are real integer matrices
whose eigenvalues are greater than 1 in absolute value. Then, for any dilation
matrix A, we have

lim
j→∞

∣

∣Ajx
∣

∣ → ∞, ∀x ∈ Rd, x 6= 0. (3.2)

Scaling relation (3.1) can be rewritten in the Fourier domain as

φ̂(ξ) = m0

(

(

AT
)−1

ξ
)

φ̂
(

(

AT
)−1

ξ
)

, ξ ∈ Rd,

where m0(ξ), ξ ∈ Rd, is a 2π-periodic function, which is called the mask. The
Fourier transform of the scaling function φ can be defined by the mask m0 as
follows

φ̂(ξ) =

∞
∏

j=1

m0

(

(

A−T
)j

ξ
)

. (3.3)
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To simplify the notations, by A−T we denote the matrix (AT )−1 ≡ (A−1)T .
In this paper, we shall also use the so-called nonstationary scaling func-

tions, see [1, 3, 10, 12]. In the nonstationary case, the scaling functions of
different scales are not the scaled versions of a single function; and the masks
are also different for different scales. Now the refinement relation (in the
Fourier domain) is of the form

nφ̂(ξ) = n+1m0

(

A−T ξ
)

n+1φ̂
(

A−T ξ
)

,

and formula (3.3) becomes

nφ̂(ξ) =

∞
∏

j=1

n+jm0

(

(

A−T
)j

ξ
)

,

where the superscripts denote the types of the scaling functions (and the cor-
responding masks).

Below we present some well-known statement concerning the dilation ma-
trices.

Statement 3.1. Let A be a non-singular d × d matrix with integer entries.
Then the number of the cosets of Zd by modulo A is equal to | detA| and the
set Zd ∩A[0, 1)d is a set of representatives of the quotient Zd/AZd.

Definition 3.1. Let S(A) ⊂ [0, 1)d be a set of points such that AS(A) ⊂ Zd,
i. e., AS(A) is a set of representatives of the quotient Zd/AZd.

Present also an auxiliary but very useful theorem.

Theorem 3.2. Let A be a d× d dilation matrix with integer entries, then we
have

∞
⋃

j=1

⋃

s∈S(A)\{0}
Aj

{

k + s : k ∈ Zd
}

= Zd \ {0},

Aj
{

k + s : k ∈ Zd
}

∩ Aj′
{

k + s′ : k ∈ Zd
}

= ∅
if

j, j′ ∈ N, j 6= j′ or

s, s′ ∈ S(A) \ {0}, s 6= s′.

Proof. Denote
{

k + s : k ∈ Zd
}

, where s ∈ S(A), by Ξs. Note that Ξ(0,...,0) =

Zd. For all J ∈ N, we shall prove the following relations





J
⋃

j=1

⋃

s∈S(A)\{0}
AjΞs



 ∪ AJZd = Zd,

AjΞs ∩ Aj′Ξs′ = ∅ if

j, j′ = 1, . . . , J, j 6= j′

or s, s′ ∈ S(A) \ {0}, s 6= s′
and





J
⋃

j=1

⋃

s∈S(A)\{0}
AjΞs



 ∩ AJZd = ∅.

(3.4)
The proof is by induction over J . For J = 1, since {AΞs : s ∈ S(A)} are
disjoint cosets of Zd, we have





⋃

s∈S(A)\{0}
AΞs



 ∪AZd = Zd, AΞs ∩ AΞs′ = ∅ if s, s′ ∈ S(A), s 6= s′.
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By the inductive assumption, we have the validity of relations (3.4). Since
{

AJ+1Ξs : s ∈ S(A)
}

are disjoint cosets of AJZd; it follows that

AJZd =





⋃

s∈S(A)\{0}
AJ+1Ξs



 ∪AJ+1Zd,
AJ+1Ξs ∩ AJ+1Ξs′ = ∅

if s, s′ ∈ S(A), s 6= s′.

Thus we obtain the relations




J+1
⋃

j=1

⋃

s∈S(A)\{0}
AjΞs



 ∪ AJ+1Zd = Zd,

AjΞs ∩ Aj′Ξs′ = ∅ if

j, j′ = 1, . . . , J + 1, j 6= j′

or s, s′ ∈ S(A) \ {0}, s 6= s′
and





J+1
⋃

j=1

⋃

s∈S(A)\{0}
AjΞs



 ∩ AJ+1Zd = ∅.

By induction, expressions (3.4) are valid for all J ∈ N.
Now we must consider the limit of AjZd as j → ∞. Denote by Cr the circle

of radius r with the center at the origin; then, using (3.2), we see that, for an
arbitrary large r ∈ R, there exists a number J ∈ N such that for all j′ > J we

have
∣

∣

∣Aj′k
∣

∣

∣ > r, k ∈ Zd \{0}, and consequently Cr∩
(

⋃

s∈S(A)\{0} A
j′Ξs

)

= ∅.

Thus Cr ∩ Zd \ {0} ⊂
(

⋃J
j=1

⋃

s∈S(A)\{0} A
jΞs

)

. Tending the radius r to the

infinity, we extend the relation was to be proved to all Zd \ {0}.

3.2 Isotropic matrices decomposition

Let us recall the definition of an isotropic matrix.

Definition 3.2. Any square matrix is called isotropic if the matrix is diag-
onalizable over C and all its eigenvalues are equal in absolute value, see, for
example, [9].

Theorem 3.3. Let Ã be a d×d real isotropic matrix and let | det Ã| = 1, then

Ã = QUQ−1, (3.5)

where U is an orthogonal matrix and Q is a positive definite symmetric matrix.

Proof. Since the matrix Ã is isotropic, the matrix is diagonalizable:

Ã = TΛT−1,

where Λ is a diagonal matrix. Using the polar decomposition, we can always
present T as follows

T = QF, (3.6)

where F is a unitary matrix and Q is a positive definite Hermitian matrix:
Q2 = TT ∗ (where the matrix T ∗ is the Hermitian conjugate of the matrix T ).

Now we shall prove that Q is a real matrix. Since the matrix Ã is real;
it follows that if the dimension d is even, then the eigenvalues of Ã are en-
countered as pairs {λj , λj} (here and in the sequel, the overline stands for the
complex conjugation), j = 1, . . . , d/2 (taking into account the multiplicities
of the eigenvalues); else, if d is odd, in addition to the pairs of eigenvalues,
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there is an eigenvalue ±1. Note also that, among the eigenvalues λj , λj , the
real eigenvalues ±1 can be. Since the eigenvectors corresponding to the real
eigenvalues are real, these eigenvectors do not influence on the matrix to be
complex. Thus without loss of generality we shall consider the case of an even
d only and suppose that there are not real eigenvalues.

Let jx :=
(

jx1,
jx2, . . . ,

jxd

)

be an eigenvector of Ã corresponding to an
eigenvalue λj , j = 1, . . . , d/2; then without loss of generality the matrix T can
be of the form

T :=













1x1
1x1

2x1
2x1 . . . d/2x1

d/2x1
1x2

1x2
2x2

2x2 . . . d/2x2
d/2x2

...
...

...
...

. . .
...

...
1xd

1xd
2xd

2xd . . . d/2xd
d/2xd













.

Consequently the matrix T can be presented as follows

T = TC, C :=











c 0 . . . 0
0 c . . . 0
...

...
. . .

...
0 0 . . . c











, (3.7)

where c :=

[

0 1
1 0

]

is a permutation matrix and the ‘0’ symbol must be inter-

preted as the 2× 2 zero matrix. Using (3.7), and since c2 is the 2× 2 identity

matrix, we have Q2 = T
(

T
)∗

= TC2T ∗ = TT ∗ = Q2. Consequently Q2 is a
real matrix, hence the “square root” Q is also a real matrix.

Using (3.6), the matrix Ã can be written as follows

Ã = QFΛF−1Q−1 = QUQ−1,

where U := FΛF−1 = FΛF ∗. The matrix U is a unitary matrix. Indeed,

UU∗ = FΛF ∗FΛ∗F ∗ = F















|λ1|
2 0 . . . 0 0

0 |λ1|2 . . . 0 0
...

...
. . .

...
...

0 0 . . . |λd/2|
2 0

0 0 . . . 0 |λd/2|
2















F ∗

= FIF ∗ = I,

where I is the identity matrix.
Finally since the matrices Ã and Q in decomposition (3.5) are real, the

matrix U must be real (consequently orthogonal) also.

The following corollary of Theorem 3.3 will play an important role in the
sequel.

Corollary 3.4. Under the conditions of Theorem 3.3, we have

ÃQ2ÃT = Ã−1Q2Ã−T = Q2, (3.8)

ÃTQ−2Ã = Ã−TQ−2Ã−1 = Q−2. (3.9)

The proof is straightforward.
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3.3 Quadratic form definition

Consider a real dilation matrix A. Suppose that A is isotropic; then, using
Theorem 3.3, A−T can be factored as follows

A−T =
1

q1/d
Q−1UQ, (3.10)

where q := | detA|, U is an orthogonal matrix, and Q is a symmetric positive
definite matrix.

Now we can define a quadratic form

W (x) := xTQ2x, x ∈ Rd. (3.11)

Since Q2 is positive definite; therefore, quadratic form (3.11) is also positive
definite. By Corollary 3.4, we see that the quadratic form W (x) is invariant
(up to a constant factor) under the variable transformation by the matrix A−T :
x 7→ x′ := A−Tx. Indeed, using (3.8), we have

W (x′) = W (A−Tx) = xTA−1Q2A−Tx =
1

q2/d
xTQ2x =

1

q2/d
W (x). (3.12)

(Similarly, the quadratic form xTQ−2x will be invariant under the transfor-
mation by the matrix A, see (3.9).)

Remark 3.1. The matrix Q in formulas (3.5), (3.10) (consequently, quadratic
form (3.11)) is defined within a constant factor.

3.4 Construction of the mask

LetA be an isotropic dilation matrix and let A−T be factored by formula (3.10).
Let G(ξ) be a trigonometric polynomial such that its Taylor series about zero
begins with quadratic form (3.11), i. e.,

G(ξ) := W (ξ) + higher order terms, ξ ∈ Rd. (3.13)

Define a mask m0 as follows

m0(ξ) :=

∏

s∈S(AT )\{0}
G(ξ + 2πs)

∏

s∈S(AT )\{0}
G(2πs)

. (3.14)

In formula (3.14), we suppose that

G(2πs) 6= 0, ∀s ∈ S(AT ) \ {0}. (3.15)

Definition 3.3. The scaling function corresponding to an isotropic dilation
matrix A and mask (3.14), where G is given by (3.13) and the quadratic form
W is given by (3.11), is called the elliptic scaling function (see [13]).

Let the matrix Q2 be presented in component-wise form as follows

Q2 := [qij ]i,j=1,...,d , qij ∈ Rd, qij = qji.

Then quadratic form (3.11) is

W (ξ) :=
∑

1≤i≤d

qiiξ
2
i + 2

∑

1≤i,j≤d

i<j

qijξiξj , ξ := (ξ1, . . . , ξd) ∈ Rd. (3.16)
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The following trigonometric polynomial has the required Taylor expansion
about zero, see (3.13),

G(ξ1, . . . , ξd) := 4
∑

1≤i≤d

qii sin
2 ξi
2
+ 2

∑

1≤i,j≤d

i<j

qij sin ξi sin ξj . (3.17)

Thus, using (3.17), the mask m0 defined by (3.14) is a trigonometric polyno-
mial.

In the next lemma, we investigate zeros of trigonometric polynomial (3.17).

Lemma 3.5. For any quadratic positive definite form (3.16), trigonometric
polynomial (3.17) is not negative on Rd and vanishes only at the points 2πk,
k ∈ Zd.

Proof. Rewrite formula (3.17) as follows

G(ξ1, . . . , ξd) = 4
∑

1≤i≤d

qii sin
2 ξi
2
+ 8

∑

1≤i,j≤d

i<j

qij sin
ξi
2
sin

ξj
2
cos

ξi
2
cos

ξj
2
.

Since the quadratic form W (ξ) is positive definite; we have

∑

1≤i≤d

qii sin
2 ξi
2
+ 2

∑

1≤i,j≤d

i<j

qij sin
ξi
2
sin

ξj
2

≡ W

(

sin
ξ1
2
, . . . , sin

ξd
2

)

≥ 0, ∀ξ ∈ Rd,

and the trigonometric polynomial W

(

sin
ξ1
2
, . . . , sin

ξd
2

)

vanishes iff sin
ξj
2

=

0, j = 1, . . . , d. Since 0 ≤ cos ξj/2 ≤ 1, ξj ∈ [−π, π], j = 1, . . . , d, and G(ξ) is
2π-periodic; it follows that G(ξ) ≥ 0 for all ξ ∈ Rd and G(ξ) vanishes only at
the points 2πk, k ∈ Zd.

Thus, for trigonometric polynomial (3.17), conditions (3.15) are satisfied
automatically.

Remark 3.2. Any elliptic scaling function corresponding to trigonometric
polynomial (3.17) is compactly supported, see [5].

Here we shall not discus other properties of the elliptic scaling functions
and we refer the reader to [13].

3.5 Higher order scaling functions

Taking an elliptic scaling function φ (of the first order) defined above, the
elliptic scaling function of order m = 2, 3, . . . , denoted by φm, is given (in the
Fourier domain) as follows

φ̂m(ξ) :=
(

φ̂(ξ)
)m

, (3.18)

and the corresponding mask mm
0 (ξ) is given as: mm

0 (ξ) := (m0(ξ))
m
, where

m0 is the mask corresponding to φ.
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4 Reproducing of polynomials

4.1 Main theorem

Lemma 4.1. Let A be an isotropic dilation matrix. Let the matrix A−T be
factored by (3.10) and a mask m0 be given by (3.14), where the trigonometric
polynomial G is given by (3.17) and the quadratic form W is given by (3.11).
Suppose that φ is the (elliptic) scaling function corresponding to the dilation

matrix A and the mask m0; then φ̂(2πn) = 0 for all n ∈ Zd \ {0}. Moreover,

the Taylor series of φ̂ about the points 2πn, n ∈ Zd \ {0}, are of the form

φ̂(ξ − 2πn) ∝ W (ξ) +R4(ξ).

Proof. Since the mask m0 is 2π-periodic; therefore, m0 vanishes at the points
2πs + 2πn, s ∈ S(AT ) \ {0}, n ∈ Zd, and the function m0((A

T )−j ·), j =
1, 2, . . . , vanishes at the points 2π(AT )j(s + n), s ∈ S(AT ) \ {0}, n ∈ Zd. By
Theorem 3.2, we have

{

2π(AT )j(s+ n) : s ∈ S(AT ) \ {0}, n ∈ Zd, j ∈ N
}

=

2πZd \ {0}, thus φ̂ vanishes at 2πZd \ {0}.
Moreover, since the sets

{

2π(AT )j(s+ n) : n ∈ Zd
}

, s ∈ S(AT )\{0}, j ∈ N,
do not intersect for different j and s; the zeros of m0((A

T )−j ·), j ∈ N, do not
superimpose and have the multiplicity coincided with the multiplicity of the
zeros of m0(·). Hence, by invariance property (3.12), the terms of the second

degree of the Taylor series for φ̂ at the points 2πZd\{0} are proportional to the
second degree terms of the Maclaurin series of trigonometric polynomial (3.17).
And the terms of the third degree are zero.

Now we can state and prove the main theorem of this section.

Theorem 4.2. Let A be an isotropic dilation matrix and let a mask m0 be
given by (3.14), (3.17), where the quadratic form W is given by (3.11). Suppose
the mth-order, m = 1, 2, . . . , elliptic scaling function φm, defined by (3.18),
corresponds to the dilation matrix A and the mask m0; then any algebraic
polynomial P reproduced by integer shifts of the scaling function φm belongs
to kerW (−iD)m. Moreover, the polynomial space contained in the span of
integer shifts of φm is affinely invariant.

Proof. By Lemma 4.1, it follows that ker∆2m+1φ̂
m = kerD2m+1W (0)m; and

the matrix D2m+1W (0)m is of the form

D2m+1W (0)m =















0 . . . 0 D
0
2mW (0)m 0

0 . . . 0 0 D
1
2m+1W (0)m

0 . . . 0 0 0
...

. . .
...

...
...

0 . . . 0 0 0















. (4.1)

Suppose V := kerD2m+1W (0)m and take a vector v ∈ V ; then, by Theo-
rem 2.5, the algebraic polynomial

[

P2m+1

]

v belongs to kerW (−iD)m. Since
v is an arbitrary vector from V ; it follows that any polynomial contained in
span

{

φm(· − k), k ∈ Zd
}

belongs to kerW (−iD)m.
Since the nonzero submatrices are situated on a diagonal of matrix (4.1);

by Theorem 2.7, we see that the polynomial space contained in the span of
integer shifts of φm is affinely invariant. This concludes the proof.
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4.1.1 Examples

Quincunx dilation matrix. Here we consider a quincunx dilation matrix

A :=

[

1 1
1 −1

]

. (4.2)

The matrix A is isotropic; then the matrix A−T can be presented of the

form (3.10), where U :=

[

1√
2

1√
2

1√
2

− 1√
2

]

and Q is the identity matrix. Hence

the quadratic form W (ξ) is |ξ|2, ξ ∈ R2; and the corresponding differential
operator is the Laplace operator ∆ := ∂xx + ∂yy, (x, y) ∈ R2. Trigonometric
polynomial (3.17) is given as G(ξ1, ξ2) := 4

(

sin2(ξ1/2) + sin2(ξ2/2)
)

; and, for
matrix (4.2), S(AT ) := {(0, 0), (1/2, 1/2)}, consequently the mask is of the
form

m0(ξ1, ξ2) :=
1

2
+

1

4
cos ξ1 +

1

4
cos ξ2. (4.3)

Then it is easily seen that the elliptic scaling function φ corresponding to
dilation matrix (4.2) and mask (4.3) satisfies Theorem 4.2. So the polynomials
reproduced by the integer shifts of the scaling function belong to the null-space
of the Laplace operator. Indeed, in accordance with Lemma 4.1, the order of
the Strang–Fix conditions is 3 and there are two nonzero submatrices of the

matrix D3W (0): D
0
2W (0) = −

[

2 0 2
]

and D
1
3W (0) = −

[

6 0 2 0
0 2 0 6

]

.

Consequently,

V := Π ∩ span
{

φ(· − k) : k ∈ Z2
}

= Π≤1 ⊕ span
{

x2 − y2, xy
}

⊕ span
{

x3 − 3xy2, y3 − 3x2y
}

.

Thus we have V ⊂ ker∆ and the space V is affinely invariant.

Remark 4.1. The elliptic scaling function corresponding to matrix (4.2) and
mask (4.3) has been considered in detail in the paper [13]. Note also that,
in the context of the construction of biorthogonal masks, mask (4.3) has been
proposed in the book [10].

Another dilation matrix. Now we consider the following dilation matrix

A :=

[

1 −2
1 0

]

. (4.4)

Matrix (4.4) is isotropic; and S(AT ) = {(0, 0), (1/2, 1/2)}. The matrix A−T

can be presented of the form (3.10), where the orthogonal matrix is of the form

U :=

[

1
2
√
2

−
√
7

2
√
2√

7
2
√
2

1
2
√
2

]

. (4.5)

and the square of the corresponding similarity transformation matrix is

Q2 :=

[

2 1
2

1
2 1

]

.

Thus we have W (ξ1, ξ2) := 2ξ21 + ξ1ξ2 + ξ22 and G(ξ1, ξ2) := 8 sin2(ξ1/2) +
4 sin2(ξ2/2) + sin ξ1 sin ξ2. Therefore the mask is

m0(ξ1, ξ2) :=
1

2
+

1

3
cos ξ1 +

1

6
cos ξ2 +

1

12
sin ξ1 sin ξ2. (4.6)
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Similarly to the previous dilation matrix we can define a polynomial space
contained in the span of integer shifts of the scaling function corresponding to
dilation matrix (4.4) and mask (4.6):

Π≤1 ⊕ span
{

x2 − 4xy, y2 − 2xy
}

⊕ span
{

x3 + 6x2y − 12xy2, y3 − 3x2y + 3xy2
}

. (4.7)

It is easy to see that polynomial space (4.7) belongs to the null-space of the
operator 2∂xx + ∂xy + ∂yy and is affinely invariant.

Remark 4.2. Note that orthogonal matrix (4.5) realizes the rotation by an
angle such that the angle is incommensurate with π. The rotation properties
of isotropic dilation matrices will be the object of another paper.

Diagonal dilation matrix. Finally we consider a diagonal dilation matrix

A :=

[

2 0
0 2

]

. (4.8)

Formally, the orthogonal matrix for this matrix is the identity matrix and the
similarity transformation matrix is also the identity matrix. It is surprising
that, for matrix (4.8), it is also possible to construct an elliptic scaling function.
Indeed, the quadratic form corresponding to matrix (4.8) is W (ξ1, ξ2) := ξ21 +
ξ22 , (ξ1, ξ2) ∈ R2, the set S(AT )\ {(0, 0)} := {(1/2, 1/2), (0, 1/2), (1/2, 0)}, and
the mask is of the form

m0(ξ1, ξ2)

:=
1

16
(2 + cos ξ1 + cos ξ2) (2 + cos ξ1 − cos ξ2) (2− cos ξ1 + cos ξ2) . (4.9)

Consequently the elliptic scaling function corresponding to mask (4.9) and
matrix (4.8) must reproduce polynomials from the null-space of the Laplace
operator.

Note that any homogeneous polynomial is invariant (within a constant
factor) under the coordinate transformation by matrix (4.8). This invariance
property will be used under the construction of the scaling functions that
reproduce not scale-invariant polynomial spaces, see the second example in
Subsection 4.3.3.

4.2 Higher degree polynomials

It is possible to generalize the elliptic scaling functions in such a way that the
scaling functions will reproduce polynomials of a higher degree. Namely we
can state the following theorem.

Theorem 4.3. Let A be an isotropic dilation matrix and let a mask m0 be
given by (3.14), where the quadratic form W is given by (3.11) and the Maclau-
rin series of the trigonometric polynomial G is of the form

G(ξ) := W (ξ) +Rr(ξ), r ≥ 6. (4.10)

Suppose the elliptic scaling function φ corresponds to the dilation matrix A
and the mask m0; then the scaling function φm, m = 1, 2, . . . , reproduces poly-
nomials up to degree 2m+ r− 3 and the polynomials belong to kerW (−iD)m.
Moreover, the polynomial space contained in the span of integer shifts of φm

is affinely invariant.
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The proof is left to the reader.

Remark 4.3. Here we shall not present any explicit method to construct
trigonometric polynomial (4.10). Note only that, subtracting appropriate trigono-
metric polynomials

∑

k=4,6,...,r−2

Pk (sin ξ1, . . . , sin ξd), where Pk ∈ Πk, from trigono-

metric polynomial (3.17); we always can obtain the required trigonometric poly-
nomial.

4.2.1 Examples

Here we consider generalizations of the scaling function corresponding to quin-
cunx dilation matrix (4.2).

First we present the following trigonometric polynomial corresponding to
the quadratic form W (ξ1, ξ2) := ξ21 + ξ22 :

G(ξ1, ξ2) := 4

(

sin2(ξ1/2) + sin2(ξ2/2) +
1

3
sin4(ξ1/2) +

1

3
sin4(ξ2/2)

)

.

It is easy to see that the Taylor series of G at zero point is of the form
G(ξ1, ξ2) := W (ξ1, ξ2) +R6(ξ1, ξ2); and the corresponding mask is

m0(ξ1, ξ1) :=
1

32

(

15 + 8 cos ξ1 + 8 cos ξ2 +
1

2
cos 2ξ1 +

1

2
cos 2ξ2

)

. (4.11)

Now, by Theorem 4.3, we see that the span of integer shifts of the scaling
function corresponding to matrix (4.2) and mask (4.11) contains polynomials
up to degree 5 and the polynomials belong to the null-space of the Laplace
operator.

Similarly, the following mask

m0(ξ1, ξ1) :=
1

544

(

245 + 135 cos ξ1 + 135 cos ξ2

+
27

2
cos 2ξ1 +

27

2
cos 2ξ2 + cos 3ξ1 + cos 3ξ2

)

(4.12)

gives the scaling function that reproduces polynomials up to degree 7 and the
polynomials belong to the null-space of the Laplace operator.

The polynomial spaces reproduced by the scaling functions corresponding
to masks (4.11), (4.12) can be obtained by, for example, Theorem 2.5.

Remark 4.4. It is interesting to note that the polynomial spaces reproduced
by the elliptic scaling functions (and contained in the null-spaces of the cor-
responding differential operators) are invariant under the coordinate transfor-
mation by the isotropic dilation matrices (that define the corresponding elliptic
scaling functions and operators). This will be discussed elsewhere.

4.3 Not affinely invariant case

4.3.1 Not scale-invariant differential operators

As it has been noted, all the elliptic scaling functions discussed above cannot
reproduce not affinely invariant polynomial spaces. However we can conjecture
that, in the case of not scale-invariant differential operators, the corresponding
elliptic scaling functions reproduce not scale-invariant polynomial spaces.
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Consider a sum of homogeneous elliptic differential operators of the form

W̃ (−iD) :=

k2
∑

k=k1

CkW (−iD)k, Ck ∈ R, k2 > k1 ≥ 1,

where W is quadratic form (3.11). Obviously, the operator W̃ (−iD) is not
homogeneous and consequently not scale-invariant; and the symbol of the op-
erator

W̃ (ξ) :=

k2
∑

k=k1

CkW (ξ)k, ξ ∈ Rd, (4.13)

is also not scale-invariant. Thus the corresponding elliptic scaling function
must be nonstationary. In the context of nonstationary masks construction,
we are interested in the transformation of polynomial (4.13) by the matrix AT

corresponding to the quadratic form W :

W̃
(

(

A−T
)j

ξ
)

=

k2
∑

k=k1

Ck

q2kj/d
W (ξ)k =

1

q2k1j/d

k2
∑

k=k1

Ck

q2(k−k1)j/d
W (ξ)k,

where q = | detA|. Suppose the Maclaurin series of a trigonometric polynomial
0G is of the form

0G(ξ) := W̃ (ξ) + 0R>2k2(ξ). (4.14)

Since polynomial (4.13) is not scale-invariant; for any scale number j ∈ Z, we
define a trigonometric polynomial jG such that its Maclaurin series is

jG(ξ) :=

k2
∑

k=k1

Ckq
2(k−k1)j/dW (ξ)k + jR>2k2(ξ). (4.15)

Now, for any scale j, the terms in the Maclaurin series of jG
(

(

A−T
)j

·
)

, the

degree of which is less than or equal to 2k2, are proportional to the similar
terms of Maclaurin’s series of 0G. Indeed, we have

jG
(

(

A−T
)j

ξ
)

=

k2
∑

k=k1

Ckq
2(k−k1)j/d

q2kj/d
W (ξ)k + jR∗

>2k2
(ξ)

=
1

q2k1j/d

k2
∑

k=k1

CkW (ξ)k + jR∗
>2k2

(ξ) =
1

q2k1j/d
W̃ (ξ) + jR∗

>2k2
(ξ),

where jR∗
>2k2

(ξ) := jR>2k2

(

(

A−T
)j

ξ
)

.

Remark 4.5. Trigonometric polynomials (4.15) can be obtained similarly to
the trigonometric polynomials from the previous subsection, see Remark 4.3.

Unfortunately we have the following statement.

Statement 4.4. The polynomial spaces reproduced by the nonstationary el-
liptic scaling functions corresponding to trigonometric polynomials (4.15) are
scale-invariant as before.

Lemma 4.5. Let L ≥ 0, m ≥ 2. Let a homogeneous polynomial P belong to
Πk, k ≥ 1. Suppose L−mk ≥ 0; then kerDL−k

L P (0) ⊆ kerDL−mk
L P (0)m.
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Proof of the lemma. Since the matrices DLP (0) and DLP (0)m are block k-
and mk-diagonal matrices, respectively; it follows that without loss of gener-
ality we can consider only the matrices DLP (0) and DLP (0)m. Obviously,
the nonzero submatrices contained in the previous matrices are D

L−k
L P (0)

and D
L−mk
L P (0)m, respectively. Suppose v ∈ kerDL−k

L P (0); then, by Theo-
rem 2.5, we have [PL] v ∈ kerP (−iD). Since kerP (−iD) ⊆ kerP (−iD)m, we
have v ∈ kerDL−mk

L P (0)m.

Proof of the statement. Suppose that L is the order of the Strang–Fix condi-
tions; then L ≥ 2k2 and the degree of the higher order terms is greater than
L. Similarly to Theorem 4.2, we must consider a matrix DLW̃ (0). The ma-
trix DLW̃ (0) contains the k2 − k1 +1 block diagonals of nonzero submatrices.
Without loss of generality consider the matrix DLW̃ (0), which is the right-
most column-submatrix of the matrix DLW̃ (0). By Lemma 4.5, and since
kerDL−2k1

L W̃ (0) ⊆ kerDL−2k1−1
L W̃ (0) ⊆ · · · ⊆ kerDL−2k2

L W̃ (0); we have

kerDLW̃ (0) =

k2
⋂

k=k1

kerDL−2k
L W̃ (0) = kerDL−2k1

L W̃ (0).

The analogous relations are valid for all the matrices DlW̃ (0), l = 2k1, . . . , L.
Thus we have the same situation as in Subsections 4.1, 4.2. Hence the poly-
nomial subspace corresponding to the matrix DLW̃ (0) is affinely invariant,
and the corresponding nonstationary elliptic scaling function can reproduce
an affinely invariant polynomial space only.

Also we have the following corollary.

Corollary 4.6. The polynomial subspace of the null-space of a differential
operator

∑k2

k=k1
CkW (−iD)k, Ck ∈ R, where W is a homogeneous polynomial,

is affinely invariant and coincides with the polynomial subspace of the null-
space of the lowest order operator W (−iD)k1 . Note that the lowest degree k1
must be nonzero.

4.3.2 Not scale-invariant spaces after all!

However we can offer an approach to construct nonstationary elliptic scaling
functions that reproduce not scale-invariant (only shift-invariant) polynomial
spaces.

Theorem 4.7. Let m ∈ N. Let a homogeneous polynomial X belong to Πk,
1 ≤ k ≤ 2m − 1. Let A be an isotropic dilation matrix, and let the quadratic
form W be given by (3.11). Let masks jm0, j ∈ Z, be given by (3.14), where the

Maclaurin series of trigonometric polynomials jG
(

(

A−T
)j

·
)

are of the form

jG
(

(

A−T
)j

ξ
)

:= Cj

(

X(ξ) +W (ξ)m
)

+ jR>2m

(

(

A−T
)j

ξ
)

, (4.16)

where Cj is a constant factor that depends on scale j. Moreover, suppose that

Π ∩
(

kerX(−iD) \ kerW (−iD)m
)

6= ∅; (4.17)

then the nonstationary elliptic scaling function φ corresponding to the dila-
tion matrix A and the mask m0 can reproduce not scale-invariant (only shift-
invariant) polynomial spaces. (Here and in the sequel, by φ, m0, and G we
denote the scaling function, mask, and trigonometric polynomial, respectively,
of zero number (= zero scale).)
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Lemma 4.8. Under the conditions of Theorem 4.7, we see that the following
conditions are equivalent:

(i) Π ∩
(

kerX(−iD) \ kerW (−iD)m
)

6= ∅;

(ii) kerDL−k
L X(0) \ kerDL−2m

L W (0)m 6= ∅;

where L is the order of the Strang–Fix conditions.

We omit the proof of the lemma and note only that the proof is based on
Theorem 2.5 and is similar to the proof of Lemma 4.5.

Proof of the theorem. Let L be the order of the Strang–Fix conditions and let

L− 2m+ k < 2m ⇐⇒ L < 4m− k. (4.18)

By Lemma 4.1, it follows that ker∆Lφ̂ = kerDLG(0). The matrix DLG(0)
has k- and 2m-diagonals of nonzero submatrices: Dj

j+kX(0), j = 0, . . . , L− k,

and D
j
j+2mW (0)m, j = 0, . . . , L− 2m, respectively. Since the matrix DLG(0)

is upper triangular and singular, there exists a nonzero linear space V :=
kerDLG(0). Consider the rightmost column-submatrix:

DLG(0) =
[

0 · · · D
L−2m
L W (0)m · · · 0 · · · D

L−k
L X(0) · · · 0

]T
.

First we prove that the subspace V L ⊆ V , see (2.12), cannot be the zero
space. Assume the converse: V L = {(0, . . . , 0)}. Since the submatrices on
the block k-diagonal of the matrix DLG(0) are full-rank matrices, we have
dimkerDLG(0) = d(L)− d(L− k). Thus,

dimkerDLG(0)

= dimker
[

D0G(0) D1G(0) · · · DL−1G(0) 0
]

= dimkerDL−1G(0) = d(L − 1)− d(L− k − 1) < d(L)− d(L− k),

1 ≤ k < 2m ≤ L.

This contradiction proves that V L 6= {(0, . . . , 0)}.
By condition (4.17) and Lemma 4.8, there exists a vector vL ∈ Rd(L) such

that vL ∈ kerDL−k
L X(0) and vL 6∈ kerDL−2m

L W (0)m. Hence we have vL 6∈
kerDLG(0).

Consider the block (L− 2m)-row of the matrix DLG(0):

[

DLG(0)
]

L−2m
:=

[

0 · · · D
L−2m
L−2m+kX(0) · · · 0 · · · D

L−2m
L W (0)m

]

,

where DL−2m
L−2m+kX(0) is a submatrix situated at the intersection of k-diagonal

and (L−2m)-row. Since the matrixD
L−2m
L−2m+kX(0) has the full-rank, it follows

that there exists a non-zero subvector vL−2m+k ∈ Rd(L−2m+k) such that the
following vector

v :=
(

0, . . . , 0, vL−2m+k, 0, . . . , 0, vL
)

∈ Rd(L)

belongs to ker
(

[

DLG(0)
]

L−2m

)

. By (4.18), we see that L − 2m + k block

column-matrix contains only one nonzero submatrix D
L−2m
L−2m+kX(0), and since

vL ∈ kerDL−k
L X(0), it follows that the vector v belongs to the null-space of
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DLG(0). Thus, by Theorem 2.7, we see that the polynomial space correspond-
ing to kerDLG(0) is not scale-invariant.

(If inequality (4.18) is not valid; then, for some l ∈ N, 2m ≤ l < L,
such that l < 4m − k, me can consider a submatrix DlG(0) of the matrix
DLG(0).)

Since the polynomialX+Wm, from expansions (4.16), is not scale-invariant,
we can use the approach discussed in the previous subsection, see (4.15). How-
ever we have another complication. Since the polynomial X is not invariant
under coordinate transformation by the isotropic dilation matrix and the di-
lation matrix (actually the corresponding orthogonal matrix) forms a cyclic
group of some order n (infinite cyclic groups also included); it follows that
we must construct n appropriate trigonometric polynomials jG such that their
Maclaurin series begin with X . The trigonometric polynomials jG can be
obtained similarly to the polynomials from the previous subsections, see Re-
mark 4.3.

Remark 4.6. Of course, we considered in Theorem 4.7 the simplest case of
the polynomials that supply not scale-invariant polynomial spaces in the spans
of integer shifts of the corresponding elliptic scaling functions. In particular,
the polynomial X can be not necessarily homogeneous. Also the degree of X
can be greater than the degree of the polynomial Wm. Then condition (4.17)
must be rewritten as

Π ∩
(

kerW (−iD)m \ kerX(−iD)
)

6= ∅.

4.3.3 Examples

Quincunx dilation matrix. For the matrix A given by (4.2), we have

Aj =







2j/2I if j is even;

2(j+1)/2A if j is odd,

where I is the 2× 2 identity matrix. Thus the order of the cyclic group corre-

sponding to matrix (4.2) is 2 and the group consists of the elements:
{

1√
2
A, I

}

.

As it was considered above the homogeneous polynomial W corresponding to
isotropic matrix (4.2) is the quadratic form W (ξ1, ξ2) := ξ21 +ξ22 . Take another
polynomial asX(ξ1, ξ2) := 2iξ1; then the polynomial ξ22 belongs to kerX(−iD)
and does not belong to kerW (−iD). Now the trigonometric polynomials

jG(ξ1, ξ2)

:=











4
(

sin2(ξ1/2) + sin2(ξ2/2)
)

+
2i

2j/2
sin ξ1 if j is even;

4
(

sin2(ξ1/2) + sin2(ξ2/2)
)

+
2i

2(j+1)/2
(sin ξ1 + sin ξ2) if j is odd

have the following Maclaurin series of the functions jG
(

(

AT
)−j

·
)

:

jG

(

(

AT
)−j

[

ξ1
ξ2

])

= 2iξ1 + ξ21 + ξ22 +
jR3(ξ1, ξ2);
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and the masks are of the form

jm0(ξ1, ξ2) :=











m0(ξ1, ξ2)−
i

4

1

2j/2
sin ξ1 if j is even;

m0(ξ1, ξ2)−
i

4

1

2(j+1)/2
(sin ξ1 + sin ξ2) if j is odd,

(4.19)
where m0(ξ1, ξ2) is given by (4.3).

Suppose that the scaling function of zero scale, denoted by φ, corresponds
to dilation matrix (4.2) and masks (4.19); then the matrix ∆3φ̂ and its null-
space are of the form

∆2φ̂ ∝













0 2 0 −2 0 −2
0 0 0 4 0 0
0 0 0 0 2 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0













, ker∆2φ̂ =





0 1 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0



 ,

respectively. Consequently the corresponding polynomial space is

span
{

1, y, x+ y2
}

;

and the space belongs to the null-space of the differential operator 2∂x−∂xx−
∂yy.

Diagonal dilation matrix. Here we consider diagonal matrix (4.8) again.
As it has been noted, any homogeneous algebraic polynomial is invariant un-
der transformations by matrix (4.8), consequently we must define only one
trigonometric polynomial such that its Maclaurin series begins with a polyno-
mial X .

Suppose X(ξ1, ξ2) := i
(

ξ31 + ξ32
)

and W (ξ1, ξ2) := ξ21+ξ22 ; then the trigono-
metric polynomials are of the form

jG(ξ1, ξ2) := 4 2−j
(

sin2(ξ1/2) + sin2(ξ/2)
)

+ 8i
(

sin3(ξ1/2) + sin3(ξ2/2)
)

= 2−jW (ξ1, ξ2) +X(ξ1, ξ2) +
jR4(ξ1, ξ2).

(4.20)

The (nonstationary) masks corresponding to trigonometric polynomials (4.20)
are obtained by formula (3.14). Let φ be the corresponding scaling function

(of zero scale) and, determining the null-space of the matrix ∆3φ̂, we get that
the scaling function φ reproduces the following not scale-invariant polynomial
space

V := Π≤1 ⊕ span
{

x2 − y2, xy
}

⊕ span
{

3x2 − x3 + 3xy2, 3y2 − y3 + 3x2y
}

.

Note that V ⊂ ker (∂xx + ∂yy + ∂xxx + ∂yyy).
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