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Abstract

This paper has three main contributions. The first is the construction of
wavelet transforms from B-spline scaling functions definedon a grid of non-
equispaced knots. The new construction extends the equispaced, biorthog-
onal, compactly supported Cohen-Daubechies-Feauveau wavelets. The new
construction is based on the factorisation of wavelet transforms into lifting
steps. The second and third contributions are new insights on how to use
these and other wavelets in statistical applications. The second contribution
is related to the bias of a wavelet representation. It is investigated how the
fine scaling coefficients should be derived from the observations. In the con-
text of equispaced data, it is common practice to simply takethe observations
as fine scale coefficients. It is argued in this paper that thisis not acceptable
for non-interpolating wavelets on non-equidistant data. Finally, the third con-
tribution is the study of the variance in a non-orthogonal wavelet transform
in a new framework, replacing the numerical condition as a measure for non-
orthogonality. By controlling the variances of the reconstruction from the
wavelet coefficients, the new framework allows us to design wavelet trans-
forms on irregular point sets with a focus on their use for smoothing or other
applications in statistics.
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1 Introduction

Ever since the early days of wavelet research, spline wavelets have enjoyed special
attention in the community. Spline wavelets combine the benefits from a sparse
multiscale approach using wavelets and the well known properties of splines, in-
cluding the closed form expressions, the numerous recursion relations, the polyno-
mial based regularity of the basis functions (Unser, 1997).

Splines (de Boor, 2001), formally defined by the recursion asin (2) below,
are piecewise polynomials of a certain degree, with continuity constraints in the
knots that connect the polynomial pieces. The position of these knots and the de-
grees of the polynomial pieces are key parameters in the numerous methods in
computer aided geometric design and computer graphics thatare based on splines.
Splines are also a popular tool in numerical analysis, for instance in interpolation.
Compared to full polynomial interpolation, spline interpolation is far less sensitive
to numerical instabilities that lead to oscillations. The good numerical condition
is linked to the fact that any spline function can be decomposed into a basis of
compactly supported piecewise polynomials, so-called B-splines. In statistics, the
coefficients of the B-spline decomposition can be estimatedin a nonparametric re-
gression context. The estimator typically minimizes the residual sum of squares,
penalized by the roughness of the regression curve (Green and Silverman, 1994;
Eubank, 1999). The spline wavelet smoothing, as discussed in Section 5 of this
paper, can be considered as an extension of these smoothing splines towards spar-
sity oriented penalties and corresponding nonlinear smoothing based on threshold-
ing. While smoothing splines have their knots on the locations of the observations,
P-splines (Ruppert et al., 2003) allow a flexible choice of knots. An important ad-
vantage of any spline, whether it be an interpolating, smoothing or P-spline, is that
it is known by an explicit expression. The main merit of a closed-form expression
is that all information about the smoothness of the function, typically expressed
by the Lipschitz regularity, is readily available for use insmoothing algorithms.
The spline wavelets on irregular knots constructed in this paper are splines, and
thus share this benefit. This is in contrast to most other wavelets, especially those
on irregular point sets. The smoothness of these wavelets depends on the limit of
an infinitely iterated refinement or subdivision scheme (Daubechies et al., 1999b),
which can be hard to analyse, even for straightforward refinement schemes such as
for Deslauries-Dubuc interpolating wavelets (Deslauriers and Dubuc, 1987, 1989;
Donoho and Yu, 1999; Sweldens and Schröder, 1996).

The combination of splines and wavelets is, however, not trivial. One of the
problems is that splines do not provide a naturally orthogonal basis. On the other
hand, orthogonality is much appreciated in wavelet theory,because wavelet trans-
forms operate scale after scale. In the inverse transform, i.e., in the reconstruction
of a function from its wavelet coefficients, this scale to scale process amounts to
the refinement or subdivision, mentioned above. Although the smoothness of the
reconstruction in a spline basis does not depend on this refinement scheme, other
properties do. These properties include the numerical condition of the transform
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as well as the bias and the variance in statistical estimation. The assumption of
orthogonality facilitates the analysis of these properties throughout the subdivi-
sion scheme. Initial spline wavelet constructions were orthogonal (Battle, 1987;
Lemarié, 1988). The price to pay for the orthogonality was that the basis functions
did not have a compact support, and related to this, that transformation matrices
were full, not sparse, matrices.

The condition of orthogonality can be relaxed if the basis functions within one
scale are allowed to be non-orthogonal, while the wavelets at different scales are
still kept orthogonal (Chui and Wang, 1992; Unser et al., 1992, 1993). This con-
struction leads to a semi-orthogonal spline basis. Since the non-orthogonality oc-
curs only within each scale, this has little impact on the asymptotic analysis of the
refinement process. Moreover, semi-orthogonal wavelet bases can be constructed
from non-orthogonal spline bases, such as B-splines. The B-splines and the re-
sulting wavelets have compact support. As a consequence, the reconstruction of
data from a decomposition in these bases uses a sparse matrix. Sparse matrices
and compact supports lead to faster algorithms, but also contribute to better control
over manipulations on the wavelet coefficients. A manipulation of a coefficient,
such as a thresholding or shrinkage operation, has only a local effect.

Unfortunately, the forward transform of observations intothe semi-orthogonal
wavelet basis still requires the application of a full, non-sparse, matrix. This is
because in general the inverse of a sparse matrix is not sparse. Sparse inverses
are possible in a wide range of fast wavelet transforms, but the combination of the
semi-orthogonality and the spline properties cannot be obtained within a sparse for-
ward transform. As a consequence, every fine scale observation has at least some
contribution to each wavelet coefficient. It would be betterif not only a wavelet co-
efficient had local impact on the reconstruction of the observations but also, at the
same time, the coefficient got its value from a limited numberof observations. The
latter, dual, form of compact support is possible in the framework of bi-orthogonal
spline wavelets. The construction by Cohen, Daubechies, and Feauveau (1992)
of a multiresolution analysis starting from B-splines has led to non-orthogonal
wavelets with sparse decomposition and reconstruction matrices.

The Cohen-Daubechies-Feauveau wavelets are defined on equispaced knots.
This is because the classical multiresolution theory starts from scaling bases whose
basis functions are all dilations and translations of a single father function. This
construction is not possible on irregular knots. B-splines, on the other hand, are
easily defined on non-equispaced knots. This paper extends the construction by
Cohen, Daubechies and Feauveau towards these non-equispaced B-splines. For
the construction of wavelet transforms on non-equispaced knots, sometimes termed
second generation wavelets (Daubechies et al., 1999a; Sweldens, 1998), this paper
adopts the lifting scheme (Sweldens, 1996). The lifting scheme provides for every
refinement operation in a wavelet transform a factorisationinto simple steps within
the scale of that refinement. The key contribution of this paper is to identify the
lifting steps that are necessary in the factorisation of a B-spline refinement on non-
equidistant knots.
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Section 2 summarizes results from the literature that are necessary for the main
contribution in Section 3.1. First, Section 2.1 defines the notion of multiscale grids.
Then, Section 2.2 gives a definition of B-splines together with their properties for
further use. Section 2.3 proposes to use a refinement equation as a definition for
B-splines. In order to fill in coefficients in the equation, itneeds to be factored into
elementary operations. The result is a slight generalisation of the well known fac-
torisation of equidistant wavelet transforms (Daubechiesand Sweldens, 1998). Fi-
nally, Section 3.3 further investigates the role of the factorisation in wavelet trans-
forms. The main contribution in Section 3.1 fills in the lifting steps that constitute
a B-spline refinement. Section 3.4 gives an expression for all possible wavelets
that fit within the B-spline refinement scheme. The first part of this paper, about
the construction of non-equispaced B-spline wavelets is concluded by the short
Section 3.5 on the non-decimated B-spline wavelet transform.

Other work on lifting for spline or B-spline wavelets, such as (Bertram, 2004;
Chern, 1999; Fahmy, 2008; Li et al., 2005; Prestin and Quak, 2005; Xiang et al.,
2007) is situated on equidistant knots or is focused on specific cases, such as
Powell-Sabin spline wavelets (Vanraes et al., 2004). B-spline wavelets on non-
equispaced knots have been studied for specific applications and with particular
lifting schemes (Pan and Yao, 2009; Lyche et al., 2001). It should be noted that
B-splines on non-equispaced knots are often termed non-uniform B-splines. This
term is avoided in this paper, as in statistical sense, a uniform set of knots could
be interpreted as a set of random, uniformly distributed knots, which are of course
almost surely non-equidistant.

The second part of the paper consists of the Sections 4 and 5. It concentrates
on the use of the B-spline wavelets from the first part in statistics. In statistical
applications, B-spline wavelets are used, for instance, ina soft threshold scheme
for noise reduction. Given that a soft threshold comes from an ℓ1 regularised least
squares approximation of the input, this application is an example of a penalised
spline method. The discussions in Sections 4 and 5 are quite general, and therefore
applicable to other non-equispaced wavelets as well.

The discussion in Section 4 is related to the bias in a B-spline wavelet smooth-
ing. It investigates how to proceed from observations to finescaling coefficients.
It is argued that in a situation with non-equispaced data, this step should be taken
with care, in order to avoid to commit what some authors call the “wavelet crime”
(Strang and Nguyen, 1996).

While Section 4 deals with bias, Section 5 is about the variance in a second
generation wavelet transform. Assuming that the observations are independent, the
variance of the transformed data is best understood if the transform is orthogonal.
As the construction by Cohen, Daubechies and Feauveau, extended in this paper
towards non-equidistant knots, has somehow less attentionfor orthogonality, this
may cause major problems with estimators suffering from large variance effects
(Vanraes et al., 2002; Van Aerschot et al., 2006; Jansen et al., 2009). Although the
large variance is due to the transform being non-orthogonal, the classical numeri-
cal condition number is not a satisfactory quantification ofthe statistical problem.
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Therefore this paper proposes a multiscale variance propagation number, based on
the singular values of the linear projection onto the coarsescale B-spline basis.
From there, an alternative B-spline wavelet transform is developed. The alterna-
tive is closely related to the Cohen-Daubechies-Feauveau construction, but it keeps
the variance propagation under control.

2 B-splines and multiresolution

This section reviews definitions and well established results on B-splines, multi-
scale representations and the lifting scheme.

2.1 Multilevel grids

Let Kn = {xk|k = 0, . . . , n − 1} be a set of knots on which we will define B-
splines. B-splines of order̃p are basis functions spanning all piecewise polynomials
of degreep̃ − 1 with continuousp̃ − 2 derivatives in the knots. In this paper,
the B-spline basis will be constructed through a process known as refinement or
subdivision. For this process to work, we first have to define coarse scale versions
of the grid of knots. We thus identify the input set of knots asthe fine scale grid,
formalised asxJ,k = xk. The indexJ refers to the highest or finest scale. From
there, we define grids{xj,k|k = 0, . . . , nj − 1} at coarser scalesj, wherej =
L,L + 1, . . . , J − 1, L being the lowest or coarsest scale. Obviouslynj < n
stands for the number of points at scalej. Denoting∆j,k = xj,k+1 − xj,k, and
∆j = supk=0,...,nj−2∆j,k, we call the grid at scalej regular if ∆j,k does not
depend onk, i.e.,∆j,k = ∆j. The focus in this paper lies on irregular grids.

Definition 1 (multilevel grid) The sequence of grids constitutes amultilevel grid
if the following conditions are met:

1. The sequencenj is strictly increasing.

2. There exist constantsR ∈ R andβ > 0 so that maximum gap at scalej is
bounded as follows

∆j ≤ Rn−β
j . (1)

Condition (1) is a slightly stricter version of the definition adopted in (Daubechies et al.,
2001), where in the context of binary or dyadic refinement, i.e.,nj = 2j , it is im-
posed that

∑
∞
j=L∆j < ∞. The condition can be understood by considering a se-

quence of functionsxj : [0, 1] → R : u 7→ xj(u) for whichxj,k = xj(k/(nj−1)).
The divided differences ofxj(u) in the knotsk/(nj−1) are then∆j,k(nj−1). The
divided differences must not or at most very slowly convergeto a locally infinite
derivative, in order not to leave any coarse scale gaps in a grid at fine scale.

A multilevel grid isnestedif xj+1,k ∈ {xj,k|k = 0, . . . , nj − 1}. In particular,
the multilevel grid is two-nested if at each level, the grid is a binary refinement
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of the previous, coarser level, that is, ifxj+1,2k = xj,k. This paper works with
two-nested multilevel grids only.

2.2 B-splines at a fixed scale

Throughout this paper,ϕ
[p̃]
j,k(x) will stand for the B-spline of order̃p defined on

the knotsxj,i. There exist several recursion expressions for the construction of
B-splines. This paper will use the following formula (Qu andGregory, 1992;
Daubechies et al., 2001, page 497) as definition.

Definition 2 (B-splines) The B-splines of order 1 defined on the knotsxj,i are

the characteristic functionsϕ[0]
j,k(x) = χj,k(x), whereχj,k(x) = 1 ⇔ x ∈

[xj,k, xj,k+1) and χj,k(x) = 0 otherwise. B-splines of order 1 are also known
as B-splines of degree 0.

B-splines of order̃p, i.e., degreẽp− 1, for p̃ > 0, are defined recursively as

ϕ
[p̃]
j,k(x) =

x− xj,k−⌊p̃/2⌋
xj,k+⌈p̃/2⌉−1 − xj,k−⌊p̃/2⌋

ϕ
[p̃−1]
j,k−1+rem(p̃/2)

(x)

+
xj,k+⌈p̃/2⌉ − x

xj,k+⌈p̃/2⌉ − xj,k−⌊p̃/2⌋+1

ϕ
[p̃−1]
j,k+rem(p̃/2)

(x). (2)

In this equationrem(p/q) = p − q ⌊p/q⌋ denotes the remainder from an integer
division.

Later on in this paper, the construction through recursion will be replaced by a con-
struction through refinement. On a finite set of knots, i.e., whenk ∈ {0, . . . , nj −
1}, both constructions are equivalent if we follow the convention in (2) that the left
and right end points are multiple knots. More precisely, whenever a knot index in
(2) is outside{0, . . . , nj−1}, then we takexj,l = xj,0 for l < 0 andxj,r = xj,nj−1

for r > nj − 1. Definition 2 associates with every knotxj,k a B-spline function

ϕ
[p̃]
j,k(x). The function turns out to be centered around the corresponding knot, as

can be seen from the following result.

Theorem 1 (piecewise polynomials on bounded intervals) Fork ∈ {⌊p̃/2⌋ , . . . , n−
1 − ⌈p̃/2⌉} the functionϕ

[p̃]
j,k(x) is zero outside the interval[xj,lk , xj,rk), where

lk = k − ⌊p̃/2⌋ andrk = k + ⌈p̃/2⌉. Inside this interval,ϕ
[p̃]
j,k(x) is a polynomial

of degreẽp− 1 between two knotsxj,k andxj,k+1, while in the knots, the function
and its firstp̃− 2 derivatives are continuous.

The proof follows by induction, using Definition 2.

Theorem 1 should be amended for functionsϕ
[p̃]
j,k near the boundaries, i.e.,

for k close to 0 ornj − 1. The specification is postponed to the moment where
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the functions have been redefined using refinement instead ofrecursion. We first
concentrate on the interior interval, defined by

Ij = {x ∈ [xj,0, xj,nj−1)|∀k = 0, . . . , nj−1 : ϕ
[p̃]
j,k(x) 6= 0 ⇒ lk ≥ 0 andrk ≤ nj−1},

(3)
with lk andrk as defined in Theorem 1. It is straightforward to check that

Ij =
[
xj,p̃−1, xj,nj−p̃

]
. (4)

From Theorem 1, it is obvious that the set of B-splines
{
ϕ
[p̃]
j,k

}
generates piece-

wise polynomials. Conversely, it can be verified that any piecewise polynomial on
the interior intervalIj can be decomposed as a linear combination of B-splines.

Theorem 2 (B-spline basis) Letfj(x) be a function which is polynomial on each
interval [xj,k, xj,k+1) for which{xj,k, xj,k+1} ⊂ Ij and which hasp−2 continuous
derivatives in the knotsxj,k ∈ Ij . Then there exist constantsaj,k so that for all
x ∈ Ij ,

fj(x) =

nj−1−⌈p̃/2⌉∑

k=⌊p̃/2⌋
aj,k ϕ

[p̃]
j,k(x) (5)

Proof. See Appendix B.1.

Remark 1 Most references in literature would adopt the symbolN
[p̃]
j,k (x) for a

shifted version of this basis, namely

ϕ
[p̃]
j,k(x) = N

[p̃]
j,k−⌊p̃/2⌋(x).

The notation withN
[p̃]
j,k (x) leads to more elegant expressions for the recursion of

B-splines, but it does not correspond to the common practicein wavelet literature
where a basis functionϕj,k(x) is centered around the pointxj,k.

The forthcoming discussions will use expressions for the derivatives of spline
functions.

Lemma 1 The derivative of a B-spline is given by

d

dx
ϕ
[p̃]
j,k(x) = (p̃−1)




ϕ
[p̃−1]
j,k−1+rem(p̃/2)

(x)

xj,k+⌈p̃/2⌉−1 − xj,k−⌊p̃/2⌋
−

ϕ
[p̃−1]
j,k+rem(p̃/2)

(x)

xj,k+⌈p̃/2⌉ − xj,k−⌊p̃/2⌋+1


 .

(6)
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Lemma 1 can be proven by induction oñp. The computations are facilitated by

working on the shifted index inN
[p̃]
j,k (x).

As a consequence of Lemma 1, a linear combination of the B-splines

fj(x) =
∑

k∈Z

s
[p̃]
j,kϕ

[p̃]
j,k(x), (7)

has a derivative equal to

f ′j(x) = (p̃ − 1)
∑

k∈Z

s
[p̃]
j,k − s

[p̃]
j,k−1

xj,k+⌈p̃/2⌉−1 − xj,k−⌊p̃/2⌋
ϕ
[p̃−1]
j,k−r̃′

(x), (8)

wherer̃′ = 1− rem(p̃/2).
In the search for a refinement relation for B-splines, an important role will be

played by the decomposition of the power functionsxq of degreesq = 0, . . . , p̃ −
1. For q = 0, Definition 2 allows us to conclude that the basis functions are
normalised so that

∀x ∈ Ij :

nj−1∑

k=0

ϕ
[p̃]
j,k(x) = 1, (9)

for any orderp̃. This property is referred to as thepartition of unity. For general
q < p̃, the expansion ofxq in a B-spline basis can be established according to the
following result, which is closely related to Marsden’s identity (Lee, 1996).

Theorem 3 (power coefficients) Forq = 0, 1, . . . , p̃ − 1, there exist coefficients

x̃
[p̃,q]
j,k , so that forx ∈ Ij,

xq =
∑

k∈Z

x̃
[p̃,q]
j,k ϕ

[p̃]
j,k(x). (10)

1. For q = 0, these coefficients are one, according to the partition of unity.

2. For q = 1, . . . , p̃− 1, the coefficients can be found by the recursion

x̃
[p̃,q]
j,k = x̃

[p̃,q]
j,k−1 +

q

p̃− 1
x̃
[p̃−1,q−1]
j,k−r̃′

(
xj,k+⌈p̃/2⌉−1 − xj,k−⌊p̃/2⌋

)
, (11)

wherer̃′ = 1− rem(p̃/2), as in (8).

3. In particular, forq = 1, these coefficients satisfy

x̃
[p̃,1]
j,k =

1

p̃− 1

⌈p̃/2⌉−1∑

i=1−⌊p̃/2⌋
xj,k+i. (12)
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4. For q = p̃− 1, this becomes

x̃
[p̃,p̃−1]
j,k =

⌈p̃/2⌉−1∏

i=1−⌊p̃/2⌋
xj,k+i. (13)

Proof. See Appendix B.2.

Remark 2 Section 3.1 will be based on a general reading of (11), which describes

the transition fromx̃
[p̃,q]
j,k−1 to x̃

[p̃,q]
j,k . Since the results in Theorem 3 do not depend

on the ordering of the knots, the same formula as in (11) can also be used to

recompute the coefficients̃x
[p̃,q]
j,k−1 when one knot is taken out from the grid and

replaced by another. In (11) the knotxj,k−⌊p̃/2⌋ is replaced byxj,k+⌈p̃/2⌉−1, while

the factorx̃
[p̃−1,q−1]
j,k−r̃′

depends only on knots that are left untouched.
Expression (11) is an example of a formula that is simplified by working in the

shifted basisN
[p̃]
j,k (x). Puttingtj,k = xj,k+⌊p̃/2⌋, and t̃

[p̃,q]
j,k = x̃

[p̃,q]
j,k+⌊p̃/2⌋, we get

t̃
[p̃,q]
j,k = t̃

[p̃,q]
j,k−1 +

q

p̃− 1
t̃
[p̃−1,q−1]
j,k

(
tj,k+p̃−1 − tj,k

)
. (14)

The following theorem states that no other basis reproducespolynomials with
functions that have a support betweenp̃+ 1 knots.

Theorem 4 (uniqueness by power coefficients) Letxj,k for k = 0, . . . , nj − 1 be

the knotsxj,k at levelj, and letϕ
[p̃]
j,k(x) be a set of basis functions associated to

these knots. If the support ofϕ
[p̃]
j,k(x) equalsSj,k = [xj,lk , xj,rk), with lk and rk

as in Theorem 1, and if the coefficientsx̃
[p̃,q]
j,k in the decompositions (10), for all

x ∈ Ij and for allq ∈ {0, 1, . . . , p̃−1}, are given by the values in Theorem 3, then

ϕ
[p̃]
j,k(x) must be the B-splines of orderp̃ defined on the given knots.

Proof. See Appendix B.3. Theorem 4 motivates the use of the power function

coefficientsx̃
[p̃,q]
j,m as a defining property in the design of a refinement scheme for

B-splines.

2.3 B-spline refinement schemes

In this section, we consider B-spline functions at different scales, i.e., with
different indicesj. The first result states that a construction through refinement
must exist, see Qu and Gregory (1992); Daubechies et al. (2001, (26), page 497).
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Theorem 5 (existence of B-spline refinement) On a nested multilevel grid, B-spline

basis functions at scalej are refinable, i.e., there exists a refinement matrixH
[p̃]
j

so that, for allx ∈ Ij ,

ϕ
[p̃]
j,k(x) =

nj+1∑

ℓ=0

H
[p̃]
j,ℓ,k ϕ

[p̃]
j+1,ℓ(x). (15)

Proof. This is an immediate consequence of Theorems 1 and 2. A B-spline on
a grid at levelj is a piecewise polynomial with knots inxj,k. Since these knots are
also knots at scalej+1, the B-spline is also a piecewise polynomial at scalej+1,
and so it can be written as a linear combination of the B-spline basis at that scale.
✷

Equation (15) is an instance of a two-scale equation, also known as a refinement
equation. The general form of the refinement equation, without superscripts for the
order of the B-splines, is

ϕj,k(x) =

nj+1∑

ℓ=0

Hj,ℓ,kϕj+1,ℓ(x). (16)

The refinement equation can also be condensed into a matrix form

Φj(x) = Φj+1(x)Hj , (17)

where
Φj(x) = [ϕj,0(x)ϕj,1(x) . . . ϕj,nj−1(x)] (18)

is a row of scaling basis functions.
In the first instance, a refinement equation should be read as the definition of

the scaling functions from the refinement matricesHj. A numerical solution of the
equation thus allows us to evaluate the scaling functions, in particular the B-spline
functions. Secondly, the refinement equation will be the basis for the construction
of B-spline wavelets, as explained in Section 3.4. This motivates the search for the

spline refinement matrixH
[p̃]
j .

A refinement matrixHj is often band-limited, as follows from the next lemma,
valid for general refinable scaling functions.

Lemma 2 (band-limited refinement matrices) Letϕj,k(x), for j = 0, . . . , nj − 1
be a set of scaling functions, with refinement equation (16).Let Sj,k denote the
support ofϕj,k(x), then an entryHj,ℓ,k may be different from zero only ifSj+1,ℓ ⊂
Sj,k.

Proof. SupposeHj,ℓ,k would be nonzero for a fine scaling function outside the
support of the coarse scaling function, then obviously, that coarse scaling function
would take a nonzero value outside its support. ✷

For the B-spline basis, Theorem 2 translates as follows.
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Corollary 1 The columns of the matrixH
[p̃]
j in (15) can have at most̃p+1 nonzero

elements. In particular

H
[p̃]
j,ℓ,k 6= 0 ⇒ 2k − ⌊p̃/2⌋ ≤ ℓ ≤ 2k + ⌈p̃/2⌉ . (19)

Proof. The support of a B-splineϕ
[p̃]
j,k(x) is Sj,k = [xj,k−⌊p̃/2⌋, xj,k+⌈p̃/2⌉]. We

have

Sj+1,ℓ ⊂ Sj,k ⇔ [xj+1,ℓ−⌊p̃/2⌋, xj+1,ℓ+⌈p̃/2⌉] ⊂ [xj,k−⌊p̃/2⌋, xj,k+⌈p̃/2⌉]
⇔ [xj+1,ℓ−⌊p̃/2⌋, xj+1,ℓ+⌈p̃/2⌉] ⊂ [xj+1,2k−2⌊p̃/2⌋, xj+1,2k+2⌈p̃/2⌉]

⇔
{
ℓ− ⌊p̃/2⌋ ≥ 2k − 2 ⌊p̃/2⌋ and
ℓ+ ⌈p̃/2⌉ ≤ 2k + 2 ⌈p̃/2⌉

⇔ ℓ ∈ {2k − ⌊p̃/2⌋ , . . . , 2k + ⌈p̃/2⌉}.
As #{2k − ⌊p̃/2⌋ , . . . , 2k + ⌈p̃/2⌉} = ⌈p̃/2⌉ + ⌊p̃/2⌋ + 1 = p̃ + 1, the number
of nonzero elements in columnk is bounded bỹp+ 1. ✷

The maximum number of nonzero elements in each column is known as the band-
width of the matrix, see Definition 3 below.

2.4 Factorisation of the refinement matrix

The objective is of course to identify the nonzero entries ofH
[p̃]
j . The strategy

followed in this paper is based on a factorisation that can beapplied to any band-
limited refinement matrixHj. The factorisation starts from a partition of the rows
of the matrix into an even and an odd subset, leading to submatricesHj,e andHj,o

and so that the refinement equation (17) can be written as

Φj(x) = Φj+1,e(x)Hj,e +Φj+1,o(x)Hj,o. (20)

Remark 3 The matrixHj,e is a squared matrix, because in the nested refinement,
the even subset of knots at scalej + 1 are exactly the knots at scalej.

These submatrices can then be factored in an iterative way, alternating between
two sorts of factorisation steps. The alternation is the matrix equivalent of Euclid’s
algorithm for finding the greatest common divider (Daubechies and Sweldens, 1998).
The superscript[s] in the theorem refers to the factorisation step. It should not be
confused with the superscript[p̃] referring to the order of a B-spline. In Section
3.1, boths andp̃ will appear in single superscripts. The subsequent result uses the
following definition for bandwidth of a rectangular matrix.

Definition 3 (bandwidth of a refinement matrix) LetA be anm×n matrix, where
in each columnj = 1, . . . , n, there exists a rowi1(j) so that

Ai,j 6= 0 ⇒ i1(j) ≤ i ≤ i1(j) + b− 1, (21)

with b independent fromj, then the bandwidth of this matrix isb.
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Theorem 6 (factorisation into lifting steps) Given a refinement matrix H [s]
j and

the submatricesH [s]
j,e andH [s]

j,o containing its even and odd rows respectively. If

H
[s]
j,e has a larger bandwidth thanH [s]

j,o, then we can always find a lowerbidiagonal

matrixU [s+1]
j and a matrixH [s+1]

j,e with smaller bandwidth than that ofH [s]
j,o so that

H
[s]
j,e = H

[s+1]
j,e − U

[s+1]
j H

[s]
j,o, (22)

If H [s]
j,o has a larger bandwidth thanH [s]

j,e, then we can always find an upperbidiag-

onalmatrixP [s+1]
j and a matrixH [s+1]

j,o with smaller bandwidth than that ofH [s]
j,e

so that
H

[s]
j,o = H

[s+1]
j,o + P

[s+1]
j H

[s]
j,e, (23)

If H [s]
j,e andH [s]

j,o have the same bandwidth, then both (22) and (23) are possible.

Proof. See Appendix C.
The matricesP [s+1]

j are known as dual lifting steps or prediction steps, where
both terms refer to an interpretation beyond the scope of this paper (Sweldens,
1998). As a matter of fact, the interpretation as a prediction is even not applicable
in the context of this paper. The matricesU [s+1]

j are primal lifting steps or update
steps.

The next sections explain how the factorisation into lifting steps can be used in
the design of a multiscale decomposition of a B-spline basison irregular knots.

3 Non-equispaced B-spline wavelet transforms

3.1 Main contribution: the design of B-spline lifting steps

Theorem 4 allows us to develop a lifting scheme for B-splinesresting on an analysis

of power function coefficients only. We will impose that ifsj+1,k = x̃
[p̃,q]
j+1,k,

thendj,k must be zero, whilesj,k = x̃
[p̃,q]
j,k . In principle, the development of this

condition can proceed directly on the band matrixH
[p̃]
j , without having to use the

lifting factorisation. Solving the corresponding linear system seems, however, not
to yield a simple formula.

The lifting factorisation ofH
[p̃]
j is found in a relatively straightforward way,

because all lifting steps are essentially the same sort of operation, described in
the following proposition. The successive lifting steps differ from each other only
in the subsets of knots that are involved in the operation. Asa consequence, we
formulate the operation for an arbitrary subset of knots. The elements of the subsets
are denoted bytj,i. Obviously, alltj,i coincide with a knot from thexk, but thetj,i
may be unordered and the subset may contain coinciding values tj,i′ = tj,i. The
proposition constructs a recursion (14) on the selected knots tj,i. The recursion
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(14) has originally been stated fortj,i that are shifted sorted knots, but nothing
prevents us from using it for more general sets oftj,i.

Proposition 1 (lifting step for B-spline power coefficients) Given an order p̃, let

Kj,k = {tj,k, . . . , tj,k+p̃} an unsorted set of knots. Define the coefficientt̃
[p̃,q]
j,k

by the recursion in (14), using the knots{tj,k+1, . . . , tj,k+p̃−1}. Define the coeffi-

cientst̃
[p̃,q]
j,k−1 and t̃

[p̃,q]
j,k+1 by the same recursion, but using{tj,k, . . . , tj,k+p̃−2} and

{tj,k+2, . . . , tj,k+p̃} respectively.
Define the lifting parameters

Lj,k,k−1 =
tj,k+p̃ − tj,k+p̃−1

tj,k+p̃ − tj,k
and Lj,k,k+1 =

tj,k+1 − tj,k
tj,k+p̃ − tj,k

. (24)

Then the lifted coefficient̃t
[p̃,q,L1]
j,k = t̃

[p̃,q]
j,k −Lj,k,k−1t̃

[p̃,q]
j,k−1−Lj,k,k+1t̃

[p̃,q]
j,k+1 equals,

for all values ofq = 0, . . . , p̃− 1,

t̃
[p̃,q,L1]
j,k =

tj,k+p̃−1 − tj,k+1

tj,k+p̃ − tj,k
t̃
[p̃,q,L1b]
j,k , (25)

wheret̃
[p̃,q,L1b]
j,k is the coefficient defined by the recursion in (14), using the knots

{tj,k, tj,k+2, . . . , tj,k+p̃−2, tj,k+p̃}.

In other words, a lifting step with only two parameters, has acommon effect on all̃p
power coefficients: it takes out the knotstj,k+1 andtj,k+p̃−1 to replace them bytj,k
andtj,k+p̃. The lifting step has thus a similar effect as the recursive formula (14).
The difference between lifting and recursion is that the recursion uses coefficients
of different power functions in B-splines of different degree, while lifting is based
on coefficients of a single function in a single basis. Moreover, the lifting formula
is the same for all power functions in that basis.

The proof of this theorem is based on the recursion of (14). Asit is rather
technical, it can be found in Appendix D.

The lifting operation presented in Theorem 1 lies at the heart of the linear

transform that maps fine scale power coefficientsx̃
[p̃,q]
j+1,k onto coarse scale ver-

sions x̃
[p̃,q]
j,k along with zero detail coefficients . We adopt the symbolx̃

[p̃,q]
j,k in

contrast tõt
[p̃,q]
j,k to emphasise that we are working now on the sorted knotsxj,k.

The update lifting stepsU [s]
j take care of coarse scaling coefficients, starting from

the even fine scale coefficients. Each update step takes out two odd indexed, fine
scale knotsxj+1,2k±(2m+1) from the intermediate scaling coefficients and adds two
coarse scale knotsxj,k±t = xj+1,2k±2t that are outside the fine scale range. The
indicesm and t depend on the lifting steps, as developed in Proposition 2. In
a similar way, the prediction lifting stepsP [s]

j take care of the detail coefficients,
operating on the odd fine scaling coefficients. A prediction step takes out two odd
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indexed, fine scale knotsxj+1,2k±2m+1 from the definition of the intermediate co-
efficient, replacing it by two new coarse scale knots.

The final prediction step has a special role. It is supposed totake out the last
remaining odd knot twice. That is,m = 0, so thatxj+1,2k+2m+1 = xj+1,2k−2m+1.
In terms of the unsorted knotstj,k in Proposition 1, the knots are numbered so that
tj,k+p̃−1 = tj,k+1. The outcome of the lifted power coefficient in (1) is then zero,
as requested. The preceeding prediction steps should therefore be such that one odd
knot is left over for the final step. Depending on the number ofodd knots in the
beginning, this may imply that the first prediction step takes out only one odd knot.
In that case, the first prediction step is a diagonal instead of a bidiagonal matrix.
Whether a prediction matrix has one or two nonzero (off-)diagonals is controlled
by the variablẽt, defined in Proposition 2. Similar considerations hold for the
update steps, for which the variableũ controls the number of nonzero diagonals.
All together, we arrive at the following lifting scheme for B-splines.

Proposition 2 (Main result: lifting scheme for B-splines) Suppose thatsj+1,k are
scaling coefficients at scalej + 1 defined on the knotsxj+1,k. Then consider a
lifting scheme withu update steps andu+ r prediction steps, where integeru and
boolean valuer are given byu = ⌊(p̃+ 1)/4⌋ , andr = ⌈p̃/2⌉ − 2u, for a given
integer p̃. Furthermore, let̃r = p̃ − 2 ⌊p̃/2⌋ be a boolean indicating the parity of
p̃. For everys ∈ {1 − r, . . . , u}, define the valuesm = u − s, t = r + 2s − 1,
ũ = r̃ ·min(r + s, 2), t̃ = r̃ ·min(1 + s, 2).

Then construct the following lifting scheme. First, define the even and odd
factors, fors ∈ {1, . . . , u}, and fors ∈ {1− r, . . . , u}, respectively,

c
[0]
j+1,k = 1 (26)

c
[s]
j+1,2k = c

[s−1]
j+1,2k ·

xj+1,2k+2m+1 − xj+1,2k−2m−1

xj+1,2k+2m+2t − xj+1,2k−2m−2t+ũ

(27)

c
[r+s]
j+1,2k+1 = c

[r+s−1]
j+1,2k+1 ·

xj+1,2k+2m+1 − xj+1,2k−2m+1

xj+1,2k+2m+2t+2 − xj+1,2k−2m−2t+t̃

. (28)

Second, fors ∈ {1, . . . , u}, define an update matrixU [s]
j as a lower bidiagonal

matrix with entries

U
[s]
j,k,k = −

c
[s−1]
j+1,2k

c
[r+s−1]
j+1,2k+1

·
xj+1,2k−2m−1 − xj+1,2k−2m−2t+ũ

xj+1,2k+2m+2t − xj+1,2k−2m−2t+ũ

(29)

U
[s]
j,k,k−1 = −

c
[s−1]
j+1,2k

c
[r+s−1]
j+1,2k−1

· xj+1,2k+2m+2t − xj+1,2k+2m+1

xj+1,2k+2m+2t − xj+1,2k−2m−2t+ũ

. (30)

Set the corresponding lifted even coefficients

s
[s]
j+1,2k = s

[s−1]
j+1,2k + U

[s]
j,k,k−1s

[r+s−1]
j+1,2k−1 + U

[s]
j,k,ks

[r+s−1]
j+1,2k+1. (31)
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Third, for s ∈ {1 − r, . . . , u}, define a prediction matrixP [r+s]
j as an upper bidi-

agonal matrix with entries

P
[r+s]
j,k,k =

c
[r+s−1]
j+1,2k+1

c
[s]
j+1,2k

· xj+1,2k+2m+2t+2 − xj+1,2k+2m+1

xj+1,2k+2m+2t+2 − xj+1,2k−2m−2t+t̃

(32)

P
[r+s]
j,k,k+1 =

c
[r+s−1]
j+1,2k+1

c
[s]
j+1,2k+2

·
xj+1,2k−2m+1 − x

j+1,2k−2m−2t+t̃

xj+1,2k+2m+2t+2 − xj+1,2k−2m−2t+t̃

. (33)

Set the corresponding lifted odd coefficients

s
[r+s]
j+1,2k+1 = s

[r+s−1]
j+1,2k+1 − P

[r+s]
j,k,k s

[s]
j+1,2k − P

[r+s]
j,k,k+1s

[s]
j+1,2k+2. (34)

Finally, define the diagonal rescaling matrixDj as

Dj,k,k = c
[u]
j+1,2k, (35)

and the scaling and detail coefficients at scalej as

sj,k = D−1
j,k,ks

[u]
j+1,2k (36)

dj,k = s
[r+u]
j+1,2k+1. (37)

Then, the power coefficients in a B-spline basis at scalej+1, defined in Theorem 3,

and denoted assj+1,k = x̃
[p̃,q]
j+1,k, are transformed by this lifting schemes into coarse

scaling coefficientssj,k = x̃
[p̃,q]
j,k plus detail coefficientsdj,k = 0. Consequently,

by Theorem 4, the refinement equation associated to this lifting scheme has the
B-splines of order̃p on the non-equidistant knotsxj,k as its solution.

Remark 4 The lifting scheme for B-splines should thus be understood as a gradual
coarsening of fine scale representation of polynomials. This is unlike some other
lifting constructions, where lifting steps are designed asa way to improve, i.e.,
“lift higher” existing wavelet transforms, by gradually adding more properties. In
the B-spline case, one could for instance, try to lift a linear B-spline into a cubic
B-spline. Such a construction is, however, impossible witha single lifting step.

3.2 Examples of B-spline lifting schemes

This section develops concrete examples of Proposition 2.

3.2.1 The Haar scaling functions

The simplest case of a B-spline basis is that of B-splines of order one, i.e., degree
zero. The basis functions are characteristic functions on the intervals between two
knots. This is the Haar scaling basis defined on these knots.
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As p̃ = 1, we findu = 0, meaning that the lifting scheme has zero update
steps. There will be one prediction step becauser = 1. This single prediction step
is defined by (32) and (33) with indicess = 0, t = 0, m = 0, andr + s − 1 = 0.
From (26), it follows that all factorsc[0]j+1,ℓ are equal to one in this prediction. We

also find r̃ = 1, and so,t̃ = 1, meaning that the prediction will be a diagonal
matrix. This is confirmed by substitution of all the indices in (32) and (33). We
find thatP [1]

j,k,k = 1 andP [1]
j,k,k+1 = 0. We also find thatDj,k,k = c

[0]
j+1,2k = 1.

This lifting scheme defines the refinement equation and hencethe Haar scaling
functions, in a way developed in Section 3.3. It does not yet fix the Haar wavelet
basis. There are several options for these basis functions,including the classical
Haar basisψj,k(x) = ϕj+1,2k+1(x) − ϕj+1,2k(x), but also the Unbalanced Haar
basis (Girardi and Sweldens, 1997). Each option can be realised by one additional
update step, as explained in Section 3.4.

3.2.2 The linear B-spline scaling functions

Linear splines reproduce constant and linear functions, hencep̃ = 2. We find that
u = 0, so the lifting scheme for the refinement equation has again no update step.
As before, there is one prediction step, and also the indicess = 0, t = 0, m = 0,
andr+s−1 = 0 remain the same as in the Haar case, again leading to the conclu-
sion that the factorsc[0]j+1,ℓ are equal to one. In contrast to the Haar case, we now

haver̃ = 0, and from there,̃t = 0. The effect of this is that the prediction is now a
bidiagonal matrix, with elementsP [1]

j,k,k = (xj+1,2k+2 − xj+1,2k+1)/(xj+1,2k+2 −
xj+1,2k) andP [1]

j,k,k+1 = (xj+1,2k+1 − xj+1,2k)/(xj+1,2k+2 − xj+1,2k). We find

againDj,k,k = c
[0]
j+1,2k = 1.

This matrix can be interpreted as a linear interpolation in the odd covariate val-
ues. Therefore, the constant and linear splines have refinement schemes consisting
of, respectively, constant and linear polynomial interpolation in a single predic-
tion step. Higher order splines cannot be associated with higher order polynomial
interpolation, as illustrated by the next example.

3.2.3 The cubic B-spline scaling functions

For cubic B-splines, we set̃p = 4, from which it follows thatu = 1, meaning
that we have one update step. There will be one prediction step, asr = 0, so
the lifting scheme starts with the update. The indexs ∈ {1 − r, . . . , u} = {1}
takes only one value, and so do the indicest = 1, m = 0, andr + s − 1 =
0. Furthermorer̃ = 0, from which it follows thatt̃ = 0 = ũ, meaning that
both the update and the prediction are bidiagonal matrices.For the update, we
findU [1]

j,k,k = −(xj+1,2k−1 − xj+1,2k−2)/(xj+1,2k+2 − xj+1,2k−2) andU [1]
j,k,k−1 =

−(xj+1,2k+2−xj+1,2k+1)/(xj+1,2k+2−xj+1,2k−2). The subsequent prediction is

given byP [1]
j,k,k = (xj+1,2k+4−xj+1,2k+1)/(xj+1,2k+4−xj+1,2k−2) andP [1]

j,k,k+1 =
(xj+1,2k+1 − xj+1,2k−2)/(xj+1,2k+4 − xj+1,2k−2). The diagonal elements of the
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final rescaling becomeDj,k,k = c
[1]
j+1,2k = (xj+1,2k+1−xj+1,2k−1)/(xj+1,2k+2 −

xj+1,2k−2).

3.3 From the factorisation to a multiscale transform

The two-scale equation (17) containing the matrixHj in Section 2.3 concentrated
on the refinement of coarse scale functionsfj(x) or coarse scale basis functions
Φj(x). The argument used for the design ofHj in Proposition 2 went the other
way, starting from the finer scalej + 1, and imposing that fine scale power co-
efficients are projected onto coarse scale power projections. This section will re-
assemble the matrixHj from the lifting factorisation that resulted from Proposi-
tion 2. In the first instance, the argument runs again from fineto coarse scale. Let
fj+1(x) = Φj+1(x)sj+1, then this function can be projected onto the basisΦj(x).
Even if power coefficients are projected onto power coefficients, the projection is
not unique, orthogonal projection being just one of the possibilities. The reassem-
bly of the refinement matrixHj from its factorisation, discussed in this section,
induces one particular projection. Section 3.4 will explain how to realise any other
projection using one further lifting step.

A projection ontoΦj(x) is characterised by a complementary basisΨj(x),
termed the wavelet basis, for which

Φj+1(x)sj+1 = Φj(x)sj +Ψj(x)dj . (38)

The expression (38) is a basis transformation that can be interpreted in two direc-
tions. From left to right, it represents the projection, where the actual calculation
of sj anddj still has to be developed. In the other direction it describes the recon-
struction of the fine scale data from the coarse projectionΦj(x)sj and the residual
Ψj(x)dj . The reconstruction includes the refinement given in the equation (17).
Indeed, take for the vectorssj anddj a column of the matricesInj

andOnj
, the

identity and zero matrices of sizenj × nj. Then the the vectorsj+1 must be the
corresponding column ofHj. In a similar way one can take forsj a zero column
and fordj a canonical vector. The vectorsj+1 is then the column of the matrixGj

in the wavelet equation
Ψj(x) = Φj+1(x)Gj . (39)

Substitution of the two-scale and wavelet equations (17) and (39) into (38) amounts
to

sj+1 = Hjsj +Gjdj . (40)

The projection offj+1(x) is found from the inverse of (40). This inverse can be
represented by the matrices

sj = H̃T
j sj+1, (41)

dj = G̃T
j sj+1. (42)
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The matricesH̃j andG̃j can be found from the inversion of (40), which is formu-
lated as theperfect reconstructionproperty

HjH̃
T
j +GjG̃

T
j = Inj+1

. (43)

The residual coefficientsdj are known as detail or wavelet coefficients at scale
j. The coarse scaling coefficientssj can further be processed into detail and scaling
coefficients at scalej − 1 and so on. The multiscale transform from coefficients
sJ at finest scaleJ into details at successive scales and scaling coefficients at a
final, coarse scalesL is the forward wavelet transform or wavelet analysis. It is
carried out by repeated application of (41) and (42). Likewise, (40) is one step in
the inverse wavelet transform or wavelet synthesis.

The forward transform matrix is denoted as̃W . It maps the fine scaling vector
sJ onto the vector of coarse scaling coefficients and multiscale details. Denot-
ing the latter vector aswL in the definitionwT

L =
[
sTL dT

L . . . dT
J−1

]
, the

forward wavelet transform is formalized as

wL = W̃sJ . (44)

The inverse wavelet transform matrix is denoted byW = W̃−1.
The following theorem states that the lifting factorisation of a refinement ma-

trix Hj can be used to find in a straightforward way a matrixG
[0]
j , so thatHj and

G
[0]
j constitute one step of an inverse wavelet transform. Moreover, the forward

transform matrices̃H [0]T
j andG̃T

j follow immediately as well, i.e., without any ex-

plicit non-diagonal matrix inversion. The superscripts inG[0]
j andH̃ [0]T

j refer to
the fact that these matrices follow in a natural way from the lifting factorisation
of Hj . Other matricesGj andH̃T

j may appear in a perfect reconstruction scheme
(43) withHj as well. Theorem 8 will provide a lifting construction for all possible
Gj andH̃T

j , given a refinement matrixHj. This construction does not affect̃GT
j ,

which is the reason for not writing a superscript in that matrix.

Theorem 7 (wavelet transform from lifting factorisation) If we can write H [s]
j,e =

H
[s+1]
j,e −U [s+1]

j H
[s]
j,o, as in (22), withH [s+1]

j,e = Dj an invertible matrix, then we can

construct a wavelet transform containingH [s]
j as refinement matrix. In particular,

we letP [s+1]
j = H

[s]
j,oD

−1
j , and take as forward transform

sj = D−1
j (sj+1,e + U

[s+1]
j sj+1,o), (45)

dj = sj+1,o − P
[s+1]
j Djsj . (46)

The synthesis or inverse transform consists of

sj+1,o = dj + P
[s+1]
j Djsj , (47)

sj+1,e = Djsj − U
[s+1]
j sj+1,o. (48)
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Proof. From the inverse transform, we can check thatH
[s]
j,o = P

[s+1]
j Dj , while

sj+1,e = Djsj−U [s+1]
j (dj+P

[s+1]
j Djsj), meaning thatH [s]

j,e = Dj−U [s+1]
j P

[s+1]
j Dj =

H
[s+1]
j,e − U

[s+1]
j H

[s]
j,o. ✷

The factorisation behind the transform is thus
[
H

[s]
j,e

H
[s]
j,o

]
=

[
Inj

−U [s+1]
j

0 In′

j

] [
Inj

0

P
[s+1]
j In′

j

] [
Dj

0

]
,

wheren′j = nj+1 − nj .
In principle, Theorem 7 is applicable to any factorisation (22). In practice, it

becomes interesting as soon asDj is a diagonal matrix. Then the band structure
for both forward and inverse transform is under immediate control, as inverting
the transform requires no matrix inversion, except for the trivial case of a diagonal
matrix.

LetHj be a general refinement matrix, so thatHj,e has a larger bandwidth than
Hj,o, then a full factorisation is given by

Hj =

[
Hj,e

Hj,o

]
=

(
u∏

s=1

[
Inj

−U [s]
j

0 In′

j

] [
Inj

0

P
[s]
j In′

j

])[
Dj

0

]
, (49)

whereu is the number of update steps. The refinement matrix can be expanded
into a full, invertible two-scale transform by adding independent columns to the
last factor, thus defining a detail matrixG[0]

j =
[
G

[0]
j,e G

[0]
j,o

]
in the following

factorisation

[
Hj G

[0]
j

]
=

[
Hj,e G

[0]
j,e

Hj,o G
[0]
j,o

]
=

(
u∏

s=1

[
Inj

−U [s]
j

0 In′

j

] [
Inj

0

P
[s]
j In′

j

])[
Dj 0
0 In′

j

]
.

(50)
This is an inverse transform, i.e., the synthesis of fine scale coefficients. The corre-
sponding forward transform or analysis is denoted with the matricesH̃ [0]

j andGj

and its factorisation follows immediately from the inversion of (50), i.e.,

[
H̃

[0]T
j

G̃T
j

]
=
[
Hj G

[0]
j

]−1
=

[
D−1

j 0

0 In′

j

](
u−1∏

s=0

[
Inj

0

−P [q−s]
j In′

j

] [
Inj

U
[q−s]
j

0 In′

j

])
.

(51)
For completeness, ifHj,o has a larger bandwidth thanHj,e, then the full fac-

torisation of the refinement matrix is

Hj =

[
Hj,e

Hj,o

]
=

[
Inj

0

P
[0]
j In′

j

](
u∏

s=1

[
Inj

−U [s]
j

0 In′

j

] [
Inj

0

P
[s]
j In′

j

])[
Dj

0

]
.

(52)
The other matrices in the perfect reconstruction scheme (43) follow from this fac-
torisation in a similar way as in (50) and (51).
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In any case, the last step in the factorisation must be a prediction step. Indeed,
as follows from Theorem 7 and its interpretation, the factorisation may stop as
soon asH [s+1]

j,e is a diagonal matrix. A diagonal matrix is not required for the last

H
[s+1]
j,o .

Theorem 7 also implies to the following corollary (Daubechies and Sweldens,
1998).

Corollary 2 A matrixHj can only qualify for a wavelet transform if all columns
in Hj,e andHj,o are pairwise coprime.

Indeed, if the evens on a column form a vector which is a multiple of the odds,
thenDj will contain a zero diagonal element in that column, making it a singular
matrix.

3.4 Fast B-spline wavelet transforms

So far, we have concentrated on finding the matrixHj in the two-scale equation
(17) for a B-spline scaling basisΦj. The actual goal is, however, the design of
a wavelet transform associated to the B-spline basis. In particular, we want to
choose an appropriate wavelet basisΨj in (38). From the wavelet equation (39) it
is clear that properties ofΨj(x) can be realised through an appropriate design of

Gj . The design of lifting steps (50) in Section 3.3 has produceda matrixG[0]
j as a

side effect, but it is unlikely that this matrix realises theexact properties we have
in mind. In particular, all elements in−U [s]

j andP [s]
j are positive or zero, leading

to the conclusion thatG[0]
j contains only non-negative entries. The functions in

Ψ
[0]
j (x) = Φj+1(x)G

[0]
j , being linear combinations of non-negative functions with

a non-negative coefficients, cannot possibly have zero integrals. Therefore, in a
strict sense, these detail basis functions cannot be termedwavelets.

The following theorem (Daubechies and Sweldens, 1998) states that all possi-
ble matricesGj can found one from the other by a single update lifting step.

Theorem 8 (final update step) Letsj+1 = Hjsj+Gjdj be a fine scale reconstruc-

tion with two-scale matrixHj and detail matrixGj , and letsj+1 = Hjs
[0]
j +G

[0]
j d

be an alternative scheme involving the same two-scale matrix and the same detail
coefficients. Both pairs(Hj, Gj) and(Hj , G

[0]
j ) belong to a perfect reconstruction

(43) quadruple of matrices. Then there exists un update operationUj so that

Gj = G
[0]
j −HjUj. (53)

As a consequence, the updated scaling coefficientssj can be found froms[0]j and
dj :

s
[1]
j = s

[0]
j + Ujdj . (54)
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Proof. The proof is straightforward by the construction

Uj = H̃T
j G

[0]
j . (55)

Perfect reconstruction and Definition (55), amount to
[
H̃T

j

G̃T
j

] [
Hj G

[0]
j

]
=

[
Ij+1,e Uj

0 Ij+1,o

]
, and to

[
H̃T

j

G̃T
j

] [
Hj Gj

]
=

[
Ij+1,e 0
0 Ij+1,o

]
.

These two expressions can be combined into
[
H̃T

j

G̃T
j

] [
Hj G

[0]
j

]
−
[
Ij+1,e Uj

0 Ij+1,o

] [
H̃T

j

G̃T
j

] [
Hj Gj

]
=

[
0 0
0 0

]
,

which includes (53). ✷

In the factored wavelet transforms of (50) and (51) the operation Uj occurs at
the end of the forward transform. Formally, this adds

[
Hj,e Gj,e

Hj,o Gj,o

]
=

[
Hj,e G

[0]
j,e

Hj,o G
[0]
j,o

] [
Inj

−Uj

0 In′

j

]
(56)

to (50) and, obviously,

[
Hj,e Gj,e

Hj,o Gj,o

]−1

=

[
Inj

Uj

0 In′

j

] [
Hj,e G

[0]
j,e

Hj,o G
[0]
j,o

]−1

(57)

to (51)
Unlike the lifting steps in Section 3.3, the matrixUj can have more than two

non-zeros in each of its columns.
Given a matrixG[0]

j , for instance from the factoring in Sections 3.3 and 3.1,
the design of the final wavelet matrixGj proceeds through the design of the final
updateUj . A typical design property is to impose vanishing moments, that is∫
∞

−∞
ψj,k(x)x

m = 0 for all j andk and form = 0, . . . , p. Define the moment
vectors ofΦj(x) andΨj(x) as

Mj;m =

∫
∞

−∞

ΦT
j (x)x

mdx, (58)

Oj,m =

∫
∞

−∞

ΨT
j (x)x

mdx, (59)

and letM (p)
j =

[
Mj;0 Mj;1 . . . Mj;p−1

]
, and similarly forO(p)

j . AsΨ[0]
j (x) =

Φj+1(x)G
[0]
j , the preliminary moments can be computed throughout the lifting

scheme culminating into the expressionO(p)[0]
j = G

[0]T
j M

(p)
j+1. Similarly we find

M
(p)
j = HT

j M
(p)
j+1. As the final update defines the basis functionΨj(x) = Φj+1(x)Gj =
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Ψ
[0]
j (x) − Φj(x)Uj , we haveOj = O

(p)[0]
j − UT

j M
(p)
j . Imposing thatOj = [0]

amounts to the equation
O

(p)[0]
j = UT

j M
(p)
j . (60)

For a wavelet in the strict sense of the definition, we need to impose the van-
ishing moment condition forp = 1. Higher vanishing moments are often not so
useful in statistical applications, and if they turn out to be beneficial, then often
it is a better idea to optimise for the wanted benefits in a moreexplicit way. In
particular, for use in statistics, it is better to explicitly impose that the transform is
as close as possible to being orthogonal. All this is furtherdeveloped in Section 5.

3.5 The non-decimated B-spline wavelet transform

The non-decimated wavelet transform is a redundant data decomposition that hasn
wavelet coefficients at each scale, wheren is the size of the input vector. Moreover,
if the elements of the input vector is shifted, then the coefficients at each scale are
shifted in the same way. This is the translation invariance property. Translation
invariance is impossible in a decimated transform. Indeed,the decimation takes
place in the the even-odd partitioning. As evens and odds play different roles in the
subsequent lifting steps, a shift in the input vector leads to a different role for each
input element, and thus a different outcome. The fact that shifted inputs lead to
outcomes with different values may, for obvious reasons, complicate the analysis
or processing of the wavelet coefficients.

Each step in the non-decimated transform starts fromn scaling coefficients at
scalej + 1 and producesn scaling coefficients at scalej together withn wavelet
coefficients. At the finest scale, i.e., forj = J − 1, the decimated scaling coef-
ficients fill up ⌈n/2⌉ values of the non-decimated expansion, while⌊n/2⌋ values
of the non-decimated wavelet coefficients at scaleJ − 1 come from the decimated
transform. In order to complete the other half of the coefficients, the same trans-
form is carried out switching the roles of evens and odds. This can be realised
by defining the shifted knotsx[1]J,k = xJ,k−1, while we setx[0]J,k = xJ,k = xk for
the original vector of knots. After the first step, the shifted vector of knots has
generated an alternative decimated set of knots, which contains the evens of the
shifted vector, that is, the odds of the original vector. We denote the new vec-
tor at scaleJ − 1 by x[2]J−1,k = x

[1]
J,2k = xJ,2k+1 = x2k+1, while the original

decimated vector is now denoted asx[0]J−1,k = x
[0]
J,2k = xJ,2k = x2k. Both vec-

tors can be shifted for use in the second step, thereby defining two more vectors
x
[1]
J−1,k = x

[0]
J−1,k−1 = x

[0]
J,2k−2 andx[3]J−1,k = x

[2]
J−1,k−1 = x

[1]
J,2k−2. All four

vectors are used in the second step, leading us to scaleJ − 2. In general, the non-
decimated transform at scalej consists of2J−j decimated transforms, each defined
by a vector of knotsx[2a+b]

j,k = x
[a]
j+1,2k−2b = x(k−b)2J−j+rem(a,2J−j+1).
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4 The experimental approximation error of a spline wavelet
decomposition

The following subsections discuss the accuracy of approximation in a B-spline
wavelet basis on irregular knots. The importance of the approximation error in
statistical applications lies in the fact that approximation error is a source of esti-
mation bias. From the discussion below, it turns out that thecommon practice in
wavelet based noise reduction to take observations as fine scaling coefficients can
not be adopted when the observations are not equidistant.

4.1 Linear approximation error in a homogeneous dyadic refinement

Let f(x) be a smooth function on[0, 1], i.e., a function with at least̃p continuous
and bounded derivatives, or a function which is uniformly Lipschitz-α continuous,
with α ≥ p̃, as defined in (Mallat, 2001, Definition 6.1). This function can be ap-
proximated by a linear combinationfJ(x) of the B-spline scaling functions at level
J defined on the equidistant knotsxJ,k = k2−J , leading to an expansion as in (7),
substitutingj by J . As in Section 3.3, indexJ refers to the finest scale, this is the
scale at which the observations take place. It can be proven that both the pointwise
approximation errorf(x) − fJ(x) (Sweldens and Piessens, 1994, (3.5) and (3.9))
and the mean squared error‖f(x) − fJ(x)‖ (Strang and Nguyen, 1996, Theorem

7.5, page 230) are of the orderO
(
2−Jp̃

)
. The approximationfJ(x) is not unique.

It can, for instance, be defined in accordance to a subsequentwavelet decomposi-
tion that is applied to the approximation. In principle, thewavelet transform of the
approximation does not interact with the construction of the approximation at finest
scale. Nevertheless, each wavelet systemψj,k(x) fixes a dual scaling basis̃ϕJ,k(x)

which can be used to define a projectionfJ(x) =
∑2J−1

k=0 〈f(x), ϕ̃J,k(x)〉ϕJ,k(x).
Alternatively, if ϕJ,k(x) does not form an orthogonal basis, thenfJ(x) can also
be the orthogonal projection onto the basisϕJ,k(x). Suggesting yet another possi-
bility, similar approximation results are also available for interpolating splines on
regular point sets (Dubeau and J. Savoie, 1995). In all thesecases, we conclude
that a resolution of2−J is enough to obtain an accuracy of2−Jp̃, thanks to the
smoothness of the functionf(x). To the best of my knowledge, nearly no such
results exist for irregular knots. One of the difficulties isthat little is known about
the dual functions̃ϕJ,k(x). On regular knots, all these functions are translations
and dilation of a single dual father function, allowing us ina fairly easy way to
establish a general upper bound for the approximation error.

The accuracy of order2−Jp̃ for resolution2−J does not hold for the approxi-
mation obtained by taking function values as scaling coefficients, i.e.,

fJ(x) =
2J−1∑

k=0

f(xJ,k)ϕJ,k(x). (61)

Instead, it can be proven (Sweldens and Piessens, 1994, Theorem 2.4) thatfJ(x)
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is within anL2-distanceO
(
2−Jp̃

)
from the blurred function

fJ(x) =
2J−1∑

k=0

ϕJ,0(xJ,k)f(x− xJ,k), (62)

whose approximation error, it its turn, is of the order‖fJ(x)− f(x)‖2 = O(2−J ),

at least if theϕJ,k(x) are normalised so that
∑2J−1

k=0 ϕJ,k(x) = 1. The blurring
effect thus neutralises all benefits from thep̃ vanishing moments for linear ap-
proximation of smooth function by a refinable basis. This phenomenon is known
as thewavelet crime(Strang and Nguyen, 1996). If, however, the scaling func-
tions are interpolating in the sense thatϕ0,0(k) = 0 unlessk = 0, then the
approximation accuracy is restored. This is the case for thewavelets that fol-
low from the Deslauries-Dubuc refinement scheme (Deslauriers and Dubuc, 1987,
1989; Donoho and Yu, 1999; Sweldens and Schröder, 1996), and the advantage
is preserved if the Deslauries-Dubuc refinement takes placeon a non-equidistant
point set. Although Deslauries-Dubuc refinement may sufferin other aspects from
non-equidistance, the immediate use of function values at the input is an impor-
tant benefit for this scheme. As an alternative for interpolating scaling functions,
one can impose that the projection coefficients are close to the function values,
i.e., 〈f(x), ϕ̃J,k(x)〉 = f(xJ,k) + O

(
2−Jp̃

)
. This is realised by imposing that

〈xq, ϕ̃J,k(x)〉 = 0 for q ∈ {1, . . . , p̃−1}. If the basis is orthogonal, theñϕJ,k(x) =
ϕJ,k(x), and the development of the condition leads to the class of coiflets (Daubechies,
1993).

4.2 Nonlinear approximation, compression and thresholding

When f(x) contains jumps, cusps, or other singularities, any approximation as
in (7) may have a local error of orderO(1) near the singularities. More pre-
cisely, if the interval[xJ,k, xJ,k+1] contains a singularity, then for any pointx ∈
[xJ,k, xJ,k+1], the pointwise approximation error is|fJ(x) − f(x)| = O(1). As
the location of the singularity is only known up to the resolution of the observa-
tion, the local error contributes to the totalL2-error at a rate equal to the resolution
of the observation, no matter how accurately the smooth parts in between are ap-
proximated. Therefore, whenf(x) is piecewise smooth, then the resolution of
observations,J , is often taken much finer than necessary for the application. Next,
a wavelet decomposition is applied and all fine scale detail coefficients up to a level
L are omitted, except for those that correspond to the singularities (typically the
large ones). TakingJ > Lp̃ ensures that the error in catching the singularities does
not exceed the error from the smooth part approximation.

In this nonlinear thresholding scheme, the error from usingfunction values as
scaling coefficients at scale2−J has to be compared to the smooth approximation
error of2−Lp̃. SettingJ > Lp̃ thus also ensures that function values as finest scal-
ing coefficients poses no problem,at least if the thresholding in between causes no
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additional error. In particular, iff(x) is a polynomial, then all wavelet coefficients
of a proper approximationfJ(x) are zero. In that case, the detail coefficients of
fJ(x) are also zero, because of the following result (Mallat, 2001, Theorem 7.4,
p.241).

Theorem 9 Letϕ(x) be a father scaling function. Then for allq ∈ {0, 1, . . . , p̃−
1}, the function

v[p̃,q](x) =
∑

k∈Z

kqϕ(x− k),

is a polynomial of degreeq if and only if for all q ∈ {0, 1, . . . , p̃− 1}, there exist a

sequence of coefficients̃x[p̃,q]k so that

xq =
∑

k∈Z

x̃
[p̃,q]
k ϕ(x− k).

This result has the following interpretation: if the basis consists of translations
of a single father function along equispaced knots, and if the basis reproduces
polynomials up to degreẽp − 1, then the coefficients for the decomposition of
that polynomial can be found as the evaluation of another polynomial in the knots.
Conversely, if the function values of any polynomial used ascoefficients lead to a
polynomial, then all polynomials can be reproduced within this basis.

Replacing the scaling coefficients of a polynomial by the function values thus
defines a new polynomial, whose detail coefficients are also zero, at least if the
scaling functions havẽp vanishing moments to reproduce polynomials up to degree
p̃−1. Thresholding up to levelL introduces then no additional error. This motivates
the p̃ vanishing moments in compression and denoising, even if at the finest scale,
they are not exploited when function values are plugged in asscaling coefficients.
As a conclusion, on an equidistant set of knots, and in a nonlinear wavelet method,
the wavelet crime can be forgiven.

4.3 Nonlinear approximation on non-equidistant knots

In an approximation using non-interpolating scaling functions, such as B-splines,
on a non-equidistant set of knots, the wavelet crime is unforgivable. It has two
unpleasant effects that do not occur in the equispaced case.First, the approxi-
mation error may propagate towards the coarser levels. Indeed, Theorem 9 is not
applicable. From (12), it can be seen that the coefficients representing the identity
function on the grid of knots cannot be retrieved as the evaluation of a polyno-
mial in the knots. Conversely, when we take the knot valuesxJ,k as scaling coeffi-
cients, they will not be recognised as coming from a smooth function. We can write

xJ,k = x̃
[p̃,1]
J,k + εJ,k, where the error termεJ,k depends on the configuration of the

knots. Thresholding the detail coefficients that follow from such errorsεJ,k may
have an error reducing effect. Depending on the positions ofthe knots, it may also
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lead to an increase of the approximation error up to the orderof O(∆L), thereby
undoing all benefits fromϕj,k(x) having p̃ vanishing moments. The second un-
pleasant effect of taking function values as scaling coefficients is a visual one: it
leads to a decrease in smoothness of the reconstruction at the fine level. Indeed, the
approximationfJ(x), reflects the irregular spacing of the knotsxJ,k, in a way sim-
ilar to a decomposition and reconstruction that would ignore the non-equidistant
locations, assuming thatxJ,k = k/2J .

Therefore, before carrying out the actual wavelet analysis, we need to find a

vector of scaling coefficientssJ for whichf(x) = Φ
[p̃]
J (x)sJ . As we are given the

function valuesf(xJ,k) for k = 0, . . . , n− 1, we have to solve the set of equations

f(xJ,k) =
∑n−1

l=0 sJ,lϕ
[p̃]
J,l (xJ,k). In matrix notation, this isfJ = ΦJsJ , where

fJ = [. . . , f(xJ,k), . . .] is the vector of observations and where the matrixΦJ has

entriesΦJ ;k,l = ϕ
[p̃]
J,l (xJ,k). For the sake of readability, the superscripts are omit-

ted in the notation of the matrix. The evaluationsϕ
[p̃]
J,l (xJ,k) are carried out using

the recursion (2) in Definition 2. All B-splines are zero in the first and last knots,

i.e.,ϕ
[p̃]
J,l (xJ,k) = 0 for k ∈ {0, n− 1}, and for alll ∈ {0, . . . , n− 1}. So, the first

and last row inΦJ contain zeros only, and no vectorsJ can reconstruct the values
f(xJ,0) andf(xJ,n−1). In order to be able to reconstructf(xJ,0) andf(xJ,n−1),
we add two artificial knots left and right from the interval[xJ,0, xJ,n−1]. By adding
the two columns for the additional corresponding B-splines, but not the zero rows
for these new end knots, we get ann × (n + 2) matrix ΦJ and a vectorsJ of
length(n+2). The systemΦJsJ = fJ being indeterminate system, we look for a
solution that behaves well iffJ is observed with noise. For reasons of superposi-
tion, the transformationsJ = SJfJ should be linear. There is no need for a noise
reducing effect in the transformation, since we want to keepthe noise reduction for
subsequent wavelet analysis, which is much better equippedfor the task, especially
whenfJ has singularities. On the other hand, independent, homoscedastic noise
should stay more or less homoscedastic. Therefore, the matrix SJ should be as
close as possible to the identity matrix. In particular, itssingular values should be
close to 1. This would motivate to takeSJ = Φ

T
J (ΦJΦ

T
J )

−1. Simulation studies
show, however, that even in this optimal case, the singular values are much too
large for use in practice. Moreover, the outcomesJ would be an exact solution
of the indeterminate system, but not necessarily the solution that the subsequent
wavelet analysis expects. In particular, suppose thatfJ comes from a polynomial
of degree less that̃p, then the wavelet detail coefficients should be zero. This hap-
pens only if the operationSJ would deliver the right power coefficients, as given in
Theorem 3. There is no guarantee that this would happen. For these two reasons,
no exact solution of the systemΦJsJ = fJ is satisfactory for use in practice.

An approximative solution can be found using some sort of regularisation.
Tikhonov regularisation would minimise‖ΦJsJ−fJ‖22+α‖sJ‖22, for some appro-
priate value ofα. As the objective is to control but not to reduce the noise variance,
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the value ofα would be smaller than in ridge regression. While the regularisa-
tion controls the variance effectively, there is no controlat all on the propagation
of approximation error, i.e., the bias, through the subsequent wavelet decompo-
sition. The same remark holds for other general regularisation methods, such as
the Landweber iteration scheme for ill posed linear inverseproblems (Landweber,
1951; Daubechies et al., 2004).

A good compromise forSJ should not be too restrictive, i.e., it should not im-
pose the perfect reconstructionΦJSJfJ = fJ for any vectorfJ . Instead, we focus
on the power functions. LetX [p̃] denote the matrix with entries(X [p̃])k,q+1 = xqJ,k

for q = 0, . . . , p̃− 1 and letX̃ [p̃] the matrix with the corresponding coefficients in

the fine scale B-spline basis, i.e.,(X̃ [p̃])k,q = x̃
[p̃,q]
J,k . Then imposing

SJX
[p̃] = X̃ [p̃], (63)

ensures that all polynomials of degree less thanp̃ are represented exactly and with
the coefficients that are recognised by the subsequent wavelet transform as coming
from a polynomial. Expression (63) formulatesp̃ conditions for each rowk of
SJ . Let ∂k denote the set of indicesl for which we chooseSJ ;k,l 6= 0, then
taking#∂k ≥ p̃ + 1, allows us to satisfy these constraints, leaving one or a few
free parameters to control the variance of the scaling coefficients. In particular, an
objective can be to takeSJ as close as possible to the identical transform, extended
with two zero columns for the two additional knots at the end points of the interval.
We minimise the Frobenius norm‖SJ−IJ‖F , whereIJ =

[
0n InJ

0n

]
.On

the level of thekth row, this amounts to the constraint optimisation problem

min
SJ;k,∂k

‖SJ ;k,∂k − δk+1,∂k‖22, (64)

subject to
∑

l∈∂k

SJ,k,lx
q
J,l = x̃

[p̃,q]
j,k , (65)

for q = 0, . . . , p̃− 1.

5 Estimation in a B-spline wavelet basis

The spline wavelets proposed by Cohen, Daubechies, and Feauveau (1992) devote
all free parameters inGj to vanishing momentsp. This corresponds to a lifting
scheme where the final update step is found by the system in (60). Imposing one
primal vanishing moment, i.e., (60) withp = 1, is necessary to have wavelets in
the strict sense of the word, basis functions that fluctuate around zero so that their
integral is zero. Basis functions with zero integral are indispensable for the rep-
resentation of square-integrable functions. Indeed, whenthe basis functions have
nonzero integrals, there exist nontrivial approximationsof the zero function that

27



converge in quadratic norm (Jansen and Oonincx, 2005, page 93). Basis functions
with nonzero integrals are useful on subspaces of the square-integrable functions,
defined by additional smoothness conditions. These conditions exclude functions
with jumps, which are typically the functions of interest ina wavelet analysis.

On the other hand, the experiment in Figure 1 illustrates that using all free
parameters for a maximum number of primal vanishing momentsmay not be the
best choice in a context of function estimation. This holds in particular on non-
equispaced data, irrespective of the wavelet family. For spline wavelets, it holds
also for data observed in equidistant points. The experiment suggests that specific
design criteria are necessary for wavelets in statistical applications.

The experiment starts fromnJ = 1000 fine scaling coefficients that are inde-
pendently and identically distributed random variables with zero meanεJ . Using
W̃ from (44), define the transformed random vectorηL = W̃εJ . The wavelet co-
efficient vectorηL consists of coarse scaling coefficients plus detail coefficients at
each scale,ηT

L =
[
εTL δTL . . . δTJ−1

]
. Let DL be the linear diagonal selec-

tion operation that keeps the coarse scaling coefficients and discards all detail coef-

ficients, i.e.,DLηL =
[
εTL 0

T
L . . . 0

T
J−1,

]T
and consider the reconstruction

WDLη
J
L = (WDLW̃ )εJ = (WDLDLW̃ )εJ = (WLW̃L)εJ . HereW̃L = DLW̃

andWL =WDL. Note that

WL =
J−L∏

i=1

HJ−i = HJ−1HJ−2 . . . HL+1HL, (66)

while

W̃L =
J−1∏

j=L

H̃T
j . (67)

Since all its steps are linear operations, the reconstruction (WLW̃L)εJ is unbi-
ased. All observed errors are due to the variance of the reconstruction. Each plot in
Figure 1 compares a non-orthogonal projectionPL = WLW̃L with the orthogonal
PL⊥ = WL(W

T
LWL)

−1W T
L . The projection matricesPL should not be confused

with the prediction matricesP [s]
j in Sections 2.3, 3.3, and 3.1. The non-orthogonal

projection is constructed level by level, where in each level the lifting factorisa-
tion of the cubic B-spline basis is completed with a final update matrixUj that
has one nonzero off-diagonal next to a nonzero diagonal. Allnonzero elements in
Uj are filled in by imposing two primal vanishing moments, i.e.,Oj,m = 0j for
intermediate scales and form ∈ {0, 1}, whereOj,m is defined by (59).

The reconstruction from the Deslauries-Dubuc projection with two vanish-
ing moments shows a large variance on the non-equidistant data, but not on the
equidistant equivalent. Reconstruction from a projectionwith two vanishing mo-
ments onto a B-spline basis shows a large variance in both theequidistant and non-
equidistant cases. Moreover, further experiments reveal that the variance increases
when the B-spline wavelet transform involves more scales. In the Deslauries-
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Multiscale B−Splines, equidistant Deslauries−Dubuc, equidistant

Multiscale B−Splines, non−equidistant Deslauries−Dubuc, non−equidistant

Figure 1: Noise reduction using linear diagonal selection in a multiscale cubic B-
spline basis and in a Deslauries-Dubuc scheme with multiscale cubic interpolation:
reconstruction with all detail coefficients replaced by zero. Equidistant and non-
equidistant observations. In grey line the observations, in black solid line the re-
constructions from projections with two primal vanishing moments, in thick black
dashed line the reconstructions from the orthogonal projections onto the B-spline
or Deslauries-Dubuc bases.

Dubuc scheme, there appears to be no such multiscale deterioration. Large vari-
ances in that scheme are rather isolated, although possiblydevastating, effects from
local irregularities in the non-equidistant grid of observations.

Although the large variances are clearly an effect of the non-orthogonality of
the transform, the classical numerical condition number sheds no light on the prob-
lem. Indeed, on an equispaced, dyadic grid ofnJ = 2048 knots, the condition
number of the forward Cohen-Daubechies-Feauveau cubic B-spline wavelet with
two primal vanishing moments turned out to be71.9, and this number is fairly in-
dependent fromnJ . On the other hand the condition number of a cubic Deslauries-
Dubuc scheme with also two primal vanishing moments is dependent onnJ and
for nJ = 2048 it equals203.7. Nevertheless, the Deslauries-Dubuc scheme on
equispaced data shows no problems with large variances. Thenumerical condi-

29



tion of the wavelet transform is therefore not an adequate description of the non-
orthogonality of the transform for statistical applications. The same conclusion
holds for the Riesz constants Mallat (2001) in a biorthogonal transformation.

As in B-spline wavelet transforms the increasing variancesacross scales oc-
cur also on equidistant data sets, it is possible to describethem using Fourier
transforms. Given a vector after projectionεL = PLε, define its Fourier trans-
form Y (ω) = 1

n

∑n
ℓ=1 εL,ie

−ℓiω. By carefully checking the effect of sub- and
up-sampling on the Fourier transform, it is fairly straightforward to prove that for
ε uncorrelated and homoscedastic, it holds that

E |Y (ω)|2 = 1

22(J−L)

J−1∏

j=L

∣∣∣H(2jω)
∣∣∣ ·



2J−L−1∑

k=0

J−1∏

j=L

∣∣∣H̃(2j(ω + kπ/2J−L−1))
∣∣∣


 .

(68)
In this expressionH(ω) represents the Fourier transform of one row of the one step
matrixHj. In the equidistant settings, allHj coincide with a single Toeplitz ma-
trix, for which one row suffices to characterise the completemultiscale transform.
Obviously, the same definition holds for̃H(ω).

The Fourier analysis cannot be applied to non-equidistant observations, and so
it cannot be used to find the bestH̃j for a given sequence ofHj. Still under the
assumption that the covariance matrix ofε isΣε = σ2I, we find that the covariance
matrix after projection equalsΣPLε

= σ2PLP
T
L. SincePLPL⊥ = PL⊥, and

PL⊥ is symmetric and idempotent, it holds thatPLP
T
L − PL⊥P

T
L⊥ = PL(I −

PL⊥)P
T
L. The matrixI−PL⊥ is positive semi-definite, so all diagonal elements of

PLP
T
L −PL⊥P

T
L⊥ must be non-negative, which reads asvar(PLε) ≥ var(PL⊥ε),

this vector inequality holding componentwise. This conclusion is confirmed by
the observation in Figure 1. As a result, the variance propagation of a wavelet
decomposition applied to uncorrelated homoscedastic observations is described by
the nonzero eigenvalues ofPLP

T
L, i.e., the nonzero singular values ofPL. As a

summary, define the multiscale variance propagation as follows

Definition 4 (multiscale variance propagation) Given a wavelet transform defined
by the sequences of forward and inverse refinement matricesHj andH̃j, wherej =
L, . . . , J−1. LetWL andW̃L be defined as in (66) and (67), and letPL =WLW̃L.
Then the multiscale variance propagation equals

κF (WL, W̃L) = ‖σ(PL)‖2/
√
nL = ‖PL‖F /

√
nL, (69)

whereσ(PL) is the vector of singular values ofPL, while nL is the number of
columns inWL, which is also the number of nonzero singular values ofPL. The
notation ‖PL‖F stands for the Frobenius norm ofPL, whereas‖σ(PL)‖2 =√
σ(PL)Tσ(PL) is the classical Euclidean vector norm.

As an alternative for (69), the multiscale variance propagation can also be defined
as

κ2(WL, W̃L) = max(σ(PL)) = ‖PL‖2, (70)
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where‖PL‖2 denotes the matrix norm induced from the Euclidean vector norm,
which is equal to the largest singular value of the matrix.

Using the perfect reconstruction property thatW̃LWL = InL
, it can be proven

that all singular values ofPL = WLW̃L must be either zero or greater than one.
As a consequence, it holds thatκF (WL, W̃L) ≥ 1, andκF (WL, W̃L) = 1 if and
only if PL is an orthogonal projection.

Given the refinement and detail matricesH̃ [0]
L andG̃L that result from the fac-

torisation in Section 2.3, we want to design a sparse update matrix UL that min-
imises the Frobenius norm ofPL, under the constraint that it also preserves a few,
sayp, primal vanishing moments. The indexL refers here to the coarsest scale up
to the current stage in the design, butL may turn out to be an intermediate scale in
the eventual transform.

We first fix which elements ofUL will be nonzero. The number of non-zeros
must be large enough to cover thep vanishing moments and allow a further optimi-
sation. For a given elementUL;r,s this means that we either choose it to be zero, or
we optimise its value. We therefore compute the derivative of the Frobenius norm
with respect toUL;r,s. SinceWLW̃L =WL(H̃

[0]T
L + ULG̃

T
L)W̃L+1, we find that

∂(WLW̃L)i,j
∂UL;r,s

=
∂(WLULG̃

T
LW̃L+1)i,j

∂UL;r,s
=WL;i,r(G̃

T
LW̃L+1)s,j.

This we use in

∂‖WLW̃L‖2F
∂UL;r,s

=
∂
∑n

i=1

∑n
j=1(WLW̃L)

2
i,j

∂UL;r,s
=

n∑

i=1

n∑

j=1

2(WLW̃L)i,j
∂(WLW̃L)i,j
∂UL;r,s

= 2
n∑

i=1

n∑

j=1

WL;i,r(WLW̃L)i,j(G̃
T
LW̃L+1)s,j =

(
W T

LWLW̃L(G̃
T
LW̃L+1)

T
)
r,s
.

In this expression, the matrix̃WL = (H̃
[0]T
L +ULG̃

T
L)W̃L+1 depends on the update

matrixUL that we want to optimise.
Most applications require at least one primal vanishing moment. Therefore,

the moment equation (60) is imposed as a constraint in the optimisation process.
Using a vector of Lagrange multipliers for each moment, the objective function
KL(UL,λL;m) can be written as

KL(UL,λL;m) = ‖WLW̃L‖2F +
p−1∑

m=0

λT
L;m(OL;m − UT

LML;m).

Given a choiceIL = {(r, s) ∈ {1, . . . , nL}× {1, . . . , nL+1 −nL}|UL;r,s 6= 0, the
nUL

= #IL equations for the optimisation follow from∂KL

∂UL;r,s
= 0,

(
W T

LWLULG̃
T
LW̃L+1W̃

T
L+1G̃

T
L

)
r,s

= −
(
W T

LWLH̃
[0]T
L W̃L+1W̃

T
L+1G̃

T
L

)
r,s
+

p−1∑

m=0

λL;m;sML;m;r.

(71)
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Figure 2: Singular values in descending order for projectionsWLW̃L onto a coarse
scale B-spline basis, using several forward transformsW̃L. In all examples,ν = 4
andp = 2. The orthogonal̃WL has no band structure. All other̃WL are quadri-
diagonal, except for the upper curve, marked with the∆ signs, which corresponds
to a bidiagonal̃WL.

These equations are completed by(nL+1 − nL)p moment equations (60).
The set of non-zeros inUL is fixed by the user before the optimisation is carried

out. For obvious reasons, its cardinalitynUL
should be large enough to cope with

the moment constraints, i.e.,nUL
≥ (nL+1 − nL)p. The easiest option is to letIL

be the collection ofν main and side diagonals. The diagonals have lengths equal
to nL+1 − nL, nL − 1, nL+1 − nL − 1, nL − 2, nL+1 − nL − 2, . . ., summing up
to nUL

= ⌊ν/2⌋ nL + ⌈ν/2⌉ (nL+1 − nL) − ⌊ν/2⌋ ⌈ν/2⌉. SincenL+1 − nL is
the number of odds at scalej + 1, we havenL+1 − nL ∈ {nL − 1, nL}, and so
nUL

= ν(nL+1−nL)−⌊ν/2⌋ ⌈ν/2⌉+rL ⌊ν/2⌋, whererL = 2nL−nL+1 ∈ {0, 1}.
It follows thatnUL

≥ (nL+1 − nL)p is not possible forν equal top, unlessp = 1.
In other words, due to boundary effects,p vanishing moments require more thanp
diagonals in the final update.

As an example, depicted in Figure 2, we compute the singular values of the
projectionsWLW̃L using cubic B-splines, for the analysis of data that are de-
fined onnJ = 1000 fine scale knots. The fine scale knots were drawn indepen-
dently from each other from a uniform distribution on[0, 1]. After J − L = 5
resolution steps, the coarse scale has a resolution ofnL = 32. Therefore, the
matricesWL and W̃ T

L have 1000 rows and 32 columns, from where we know
that rank(WLW̃L) = nL = 32. Figure 2 plots the first 53 singular values of
the projections in descending order. It is no surprise that the 33rd and beyond
are all zero. It is no surprise either that for the orthogonalprojection, i.e., for
W̃L = (W T

LWL)
−1W T

L , all 32 non-zeros are equal to one. The orthogonal projec-
tion matrixW̃L is not sparse in the strict sense, although the off-diagonalelements
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show rapid decay. Therefore, the fully orthogonal projection can be well approx-
imated by a band-limited matrix, using the system of equations in (71). Figure 2
examines the quality of the approximations, showing that a bidiagonal matrix is
probably too sparse: even if all free parameters are spent inthe optimisation of the
singular values, the largest value is close to 8. Three otheralternatives for the or-
thogonal projection use four diagonals. One option is to spend all free parameters
on primal vanishing moments. The corresponding waveletsψL,k(x) all have four
vanishing moments, except those near the boundaries of the interval. The singular
values are, however, not controlled, the maximum being close to 6 in this case. The
situation may deteriorate quickly in other settings. When all free entries inUL are
spent on the minimisation of the singular values, the fourthorder approximation
is ready for use in statistical applications. But even when two vanishing moments
are imposed in combination with a minimisation of the singular values, these val-
ues are kept low enough for use in statistical applications.Other experiments, not
shown here, confirm that imposing one or two vanishing moments in a scheme that
otherwise concentrates on the singular values, is performing nearly as well in terms
of singular values, as a scheme that has its entire focus on these singular values.

As a summary for this section, wavelet transforms for use in statistical estima-
tion should be as close as possible to being orthogonal, because reconstructions
from non-orthogonal decompositions may suffer from variance blow up. Orthog-
onality puts, however, serious limitations on the design ofa wavelet transform.
As an example, orthogonal spline wavelets with compact support do not exist. The
numerical notions of condition number and Riesz constants in a biorthogonal trans-
form are not sufficiently adequate for the description of thevariance propagation.
The design of the wavelet transform proposed in this sectiontherefore focusses
directly on the variance and it does so by looking at the combined effect of decom-
position and reconstruction.

6 Conclusion and outlook

The first contribution of this paper has been to extend the construction of the
Cohen-Daubechies-Feauveau B-spline wavelets towards thecase of non-equidistant
knots. The new construction is based on the factorisation oftwo-scale or refine-
ment equations into lifting steps. An interesting topic forfurther research is to
investigate the same methodology for other spline wavelets.

The second contribution has been the design of a numerical method to find
fine scaling coefficients from function values, in a way that performs well when
the function is observed with noise. Future research could improve the method by
making it adaptive to jumps or other singularities. In the neighbourhood of jumps,
the benefit from a perfect reconstruction of power functionsis limited, so a local
relaxation of these conditions may yield sharper reconstructions.

Finally, the third contribution has been a modification of the Cohen-Daubechies-
Feauveau wavelet transform for specific use in statistical applications, making sure
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to control the propagation of the variance on the wavelet coefficients at succes-
sive scales. The focus on the variance propagation in the design of the transform
allows us to relax the stringent orthogonality condition and to construct a basis
of compactly supported spline wavelets in which non-linearprocessing leads to a
reconstruction with a well controlled bias-variance balance.
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Appendices

A Available software - reproducible research

All transforms presented in this article have been implemented in the latest version
of ThreshLab , a MatlabR©software package available for download from
http://homepages.ulb.ac.be/ ˜ majansen/software/threshlab.html .

The forward and inverse B-spline wavelet transforms are carried out by the
routinesFWT2Gspline.m andIWT 2Gspline.m . Several alternatives for the
retrieval of appropriate fine scaling coefficients from noisy observations, explained
in Section 4, are implemented infinescaleBsplinecoefs.m . The use of
this routine is illustrated inillustratefinescalecoefs.m .

In particular, the experiment in Figure 1 is set up in the routine illustratevarianceprojection.m .
The singular value plots in Figure 2 have been generated using illustrate updateLSapprxprimmom.m .

B Proofs for Theorems 2,3, and 4

The proofs are given for the sake of self-containment. The results are well-known
in literature.

B.1 Proof of Theorem 2

The summation in (5) containsnj − ⌈p̃/2⌉ − ⌊p̃/2⌋ = nj − p̃ B-spline functions.
All B-splines have mutually unequal supports, and are thus linearly independent.
On the other hand,Ij consists ofnj − 2p̃ + 1 subintervals[xj,k, xj,k+1), with p̃
degrees of freedom on each of them. The continuous derivatives in each interior
knot consume(nj − 2p̃)× (p̃ − 1) of these degrees of freedom, leaving us with a
vector space of dimensionnj − p̃. ✷
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B.2 Proof of Theorem 3

2. Expression (11) follows from (8), applied forfj(x) = xq. The left hand side
of (8) can then be written as

qxq−1 = q
∑

k∈Z

x̃
[p̃−1,q−1]
j,k−r̃′

ϕ
[p̃−1]
j,k−r̃′

(x),

whereas the right hand side becomes

qxq−1 = (p̃− 1)
∑

k∈Z

x̃
[p̃,q]
j,k − x̃

[p̃,q]
j,k−1

xj,k+⌈p̃/2⌉−1 − xj,k−⌊p̃/2⌋
ϕ
[p̃−1]
j,k−r̃′

(x).

Identification of the terms in the decomposition leads to (11).

3. Next, it can be verified that all solutions forx̃
[p̃,1]
j,k in (11) must satisfy

x̃
[p̃,1]
j,k =

1

p̃− 1

⌈p̃/2⌉−1∑

i=1−⌊p̃/2⌋
xj,k+i −

1

p̃− 1

⌈p̃/2⌉−1∑

i=1−⌊p̃/2⌋
xj,i + s

[p̃,1]
j,0 .

On the other hand,̃x
[p̃,1]
j,k must be independent from thẽp − 1 knots xj,i

aroundxj,0 if k > p̃. So takexj,i symmetric aroundxj,0 = 0. Then,
obviously,

1

p̃− 1

⌈p̃/2⌉−1∑

i=1−⌊p̃/2⌋
xj,i = 0.

On the other hand,s
[p̃,1]
j,0 = 0, as the corresponding basis function is even.

This leads to (12).

4. The proof for (13) is similar to that for (12), following aninduction argument
on p̃.

✷

B.3 Proof of Theorem 4

Considerx ∈ (xj,k, xj,k+1) ⊂ Ij , thenx ∈ Sj,m ⇔ lm < k + 1 andrm > k ⇔
k − ⌈p̃/2⌉ + 1 ≤ m ≤ k + ⌊p̃/2⌋ . Then inx, it holds that

[
1 x x2 . . . xp̃−1

]
=

[
ϕ
[p̃]
j,k−⌈p̃/2⌉+1

(x) . . . ϕ
[p̃]
j,k+⌊p̃/2⌋(x)

]
X̃,
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whereX̃m−k+⌈p̃/2⌉,q+1 = x̃
[p̃,q]
j,m . It can be verified that̃X is non-singular, so we

find an expression for the basis functions on the subinterval(xj,k, xj,k+1),

[
ϕ
[p̃]
j,k−⌈p̃/2⌉+1

(x) . . . ϕ
[p̃]
j,k+⌊p̃/2⌋(x)

]
=
[
1 x x2 . . . xp̃−1

]
X̃−1, (72)

all other basis functions being zero on this subinterval. Itfollows that on each
subinterval, the basis functions must be polynomials, and the polynomials are
uniquely defined by (72). As from Theorem 3, we know that the power func-

tions have the coefficients̃x
[p̃,q]
j,m in a B-spline basis, the polynomials defined by

(72) must coincide with the B-splines on that interval. ✷

C Constructive proof for the factorisation in Theorem 6

The factorisation is based on the approach in Daubechies andSweldens (1998).
Because of the non-equidistant knots, it proceeds column bycolumn in the refine-
ment matrix. The proof also makes use of the band structure ofa matrix. For the
sake of simplicity, and without any impact on the applicability of the argument, we
ignore occasional zeros within the nonzero band ofH

[s]
j,e or H [s]

j,o. In each column
of these matrices, we take the same number of rows into consideration, equal to
the bandwidth of the whole matrix, even if that particular row has actually less
non-zeros.

Consider first the case whereH [s]
j,e has a larger bandwidth thanH [s]

j,o. This is
only possible if the first and last nonzero in each column ofHj is situated on an
even row. Denote by2k1(ℓ) the first nonzero row in columnℓ of Hj and by2k2(ℓ)
the last nonzero row in the same column. Then theℓth column of (22) reads as

H
[s]
j,2k,ℓ = H

[s+1]
j,2k,ℓ −

k2(ℓ)∑

m=k1(ℓ)

U
[s+1]
j,k,mH

[s]
j,2m+1,ℓ, (73)

We assume thatk1(ℓ) andk2(ℓ) are strictly increasing functions, otherwise a more
careful design of the update step is needed. Letℓ2(k) be the inverse ofk1(ℓ), i.e.,
ℓ2(k1(ℓ)) = ℓ. In words,ℓ2(k) is the last column on rowk with a nonzero element.
In a similar way, letℓ1(k) be the inverse ofk2(ℓ). In a given columnℓ, we impose

for k = k1(ℓ) and fork = k2(ℓ) thatH [s+1]
j,2k,ℓ = 0, so that the number of non-zeros

in columnℓ of H [s+1]
j,e equalsk2(ℓ) − k1(ℓ) − 1. Note that the number of nonzero

rows equalsk2(ℓ)− k1(ℓ) + 1 for H [s]
j,e andk2(ℓ)− k1(ℓ) for H [s]

j,o. Fork = k1(ℓ),
and fork = k2(ℓ), we obtain the two equations of the form

H
[s]
j,2k,ℓ = −

k2(ℓ)−1∑

m=k1(ℓ)

U
[s+1]
j,k,mH

[s]
j,2m+1,ℓ. (74)
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These two equations contain as unknowns two partial rows in matrix U [s+1]
j . In-

stead of solving the two equations for fixedℓ, we consider the two equations for
givenk, by looking atℓ = ℓ2(k) andℓ = ℓ1(k).

Fork = k1(ℓ), i.e.,ℓ = ℓ2(k), we setU [s+1]
j,k,m = 0 for allm = k+1, . . . , k2(ℓ2(k))−

1, while form = k, we must then take

U
[s+1]
j,k,k = −H [s]

j,2k,ℓ2(k)
/H

[s]
j,2k+1,ℓ2(k)

, (75)

in order to satisfy (74) fork = k1(ℓ) or ℓ = ℓ2(k).

Fork = k2(ℓ), i.e.,ℓ = ℓ1(k), we setU [s+1]
j,k,m = 0 for allm = k1(ℓ1(k)), . . . , k−

2, while form = k − 1, we must then take

U
[s+1]
j,k,k−1 = −H [s]

j,2k,ℓ1(k)
/H

[s]
j,2k−1,ℓ1(k)

, (76)

in order to satisfy (74) fork = k2(ℓ) or ℓ = ℓ1(k).

Once the diagonal and the lower diagonal ofU
[s+1]
j has been found, all the

other entries of this matrix can be filled with zeros. This leaves us withk2(ℓ) −
k1(ℓ) − 1 equations of the form (73). Each of these equations allows usto find

exactly one element in columnℓ of H [s+1]
j,e .

The case where the bandwidth ofH [s]
j,o is larger than that ofH [s]

j,e is treated in

a similar way. The case where the bandwidths ofH
[s]
j,e andH [s]

j,o are equal can be

reduced to the first case if we artificially increase the bandwidth ofH [s]
j,e, by taking

an additional zero into account in each column ofH
[s]
j,e. ✷

D Proof of Proposition 1

First, it can be checked that (25) holds for anyp̃ and forq = 1 and forq = p̃ − 1.
More precisely, a bit of calculations show that from (12), itfollows indeed that,

t̃
[p̃,1,L1]
j,k =

tj,k+p̃−1 − tj,k+1

tj,k+p̃ − tj,k


tj,k +

p̃−2∑

i=2

tj,k+i + tj,k+p̃


 . (77)

In a similar way, starting from (13), we arrive at

t̃
[p̃,p̃−1,L1]
j,k =

tj,k+p̃−1 − tj,k+1

tj,k+p̃ − tj,k


tj,k ·

p̃−2∏

i=2

tj,k+i · tj,k+p̃


 . (78)

As a result, forp̃ = 1, 2 the result holds for allq = 0, . . . , p̃ − 1. This is the
basis for the subsequent induction argument.

Using the recursion in (14), we can find the coefficientt̃
[p̃,q,L1b]
j,k in two steps.

First we definẽt
[p̃,q,L1a]
j,k as the coefficient that results from taking outtj,k+1 from
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t̃
[p̃,q]
j,k and replacing it bytj,k. This intermediate coefficient equals

t̃
[p̃,q,L1a]
j,k = t̃

[p̃,q]
j,k +

q

p̃− 1
t̃
[p̃−1,q−1]
j,k+1 (tj,k − tj,k+1) .

We define a similar coefficient for̃p− 1 andq − 1.

t̃
[p̃−1,q−1,L1a]
j,k = t̃

[p̃−1,q−1]
j,k +

q − 1

p̃− 2
t̃
[p̃−2,q−2]
j,k+1 (tj,k − tj,k+1) .

Next, we take outtj,k+p̃−1 from t̃
[p̃,q,L1a]
j,k and replace it withtj,k+p̃. In order to

apply (14), we need the power coefficient of degreep̃ − 1 for q − 1 based on all

remaining knots iñt
[p̃,q,L1a]
j,k . This is exactlỹt

[p̃−1,q−1,L1a]
j,k . We thus find

t̃
[p̃,q,L1b]
j,k = t̃

[p̃,q,L1a]
j,k +

q

p̃− 1
t̃
[p̃−1,q−1,L1a]
j,k

(
tj,k+p̃ − tj,k+p̃−1

)
.

Using the expressions above fort̃
[p̃,q,L1a]
j,k and fort̃

[p̃−1,q−1,L1a]
j,k , this can further be

developed into

t̃
[p̃,q,L1b]
j,k = t̃

[p̃,q]
j,k +

q

p̃− 1

[
t̃
[p̃−1,q−1]
j,k (tj,k + tj,k+p̃ − tj,k+1 − tj,k+p̃−1)

+
q − 1

p̃− 2
t̃
[p̃−2,q−2]
j,k+1 (tj,k − tj,k+1)(tj,k+p̃ − tj,k+1)

]
.

(79)
Expression (79) can be substituted in the right hand side of (25). We now work

on t̃
[p̃,q,L1]
j,k in the left hand side, starting from its definition in (1), andusing once

more the recursion (14). We find

t̃
[p̃,q,L1]
j,k =

tj,k+p̃−1 − tj,k+1

tj,k+p̃ − tj,k
t̃
[p̃,q]
j,k − q

p̃− 1

1

tj,k+p̃ − tj,k
·

[
t̃
[p̃−1,q−1]
j,k+1 (tj,k+p̃ − tj,k+1)(tj,k+1 − tj,k) + t̃

[p̃−1,q−1]
j,k (tj,k − tj,k+p̃−1)(tj,k+p̃ − tj,k+p̃−1)

]
.

For the last factor in this expression, we use again the recursion (14), this time for

t̃
[p̃−1,q−1]
j,k+1 = t̃

[p̃−1,q−1]
j,k +

q − 1

p̃− 2
t̃
[p̃−2,q−2]
j,k+1

(
tj,k+p̃−1 − tj,k+1

)
.

Substitution of this recursion, followed by straightforward algebraic manipulation,
amounts to (25), thereby completing the proof.
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