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INHOMOGENEOUS SHEARLET COORBIT SPACES

FABIAN FEISE, LUKAS SAWATZKI

Abstract. In this paper we establish inhomogeneous coorbit spaces related to the continuous shearlet
transform and the weighted Lebesgue spaces Lp,v, p ≥ 1, for certain weights v. We present an inhomo-
geneous shearlet frame for L2(R

d) which gives rise to a reproducing kernel RF that is not contained
in the space A1,mv

. To show that the inhomogeneous shearlet coorbit spaces are Banach spaces we
introduce a generalization of the approach of Fornasier, Rauhut and Ullrich.

1. Introduction

When analyzing a given signal, the decomposition of the signal into a certain set of building blocks
is crucial. Which kinds of building blocks to choose depends on the information that one wants to
extract from the signal. Very popular kinds of building blocks are wavelets, especially when dealing
with signals with isolated singularities. Because of its isotropic nature, the wavelet transform cannot
efficiently deal with anisotropic features, therefore several extensions of this framework were proposed,
among those the shearlet transform. While the wavelets consist only of dilated and translated copies
of a mother function, the shearlets are also sheared in each scale, thereby changing the orientation
of the functions. This makes them especially well suited to deal with localized directional features
in a signal. Indeed, it was shown in Ref.14, 18 that the shearlet transform can be used to resolve the
wavefront set of a signal and in Ref.16 that the approximation of cartoon-like images with shearlets is
optimally sparse.

Another main advantage of shearlets, which sets them apart from other such frameworks like the
ridgelets,2 curvelets1 or contourlets8 for example, is, that the continuous shearlet transform, introduced
and investigated in Ref.,4–6, 15 stems from the action of a square-integrable representation of a topo-
logical group, the so-called full shearlet group S. This property makes it possible to use the abstract
coorbit theory, developed by Feichtinger and Gröchenig in Ref.,9–11 to define smoothness spaces related
to the shearlet transform by measuring the decay of the voice transform. Shearlet coorbit spaces were
investigated by Dahlke et al in a series of papers.3–7 Since the shearlets being used to construct these
spaces need to have vanishing moments, any polynomial part in a signal is ignored by the transform
because for a polynomial g one has SH(f + g)(x) = 〈f + g, ψx〉 = 〈f, ψx〉 = SHf(x). This leads to
the resulting shearlet coorbit spaces being homogeneous spaces. However, in practice the smoothness
spaces being used, for example to analyze the regularity of the solution space of an operator equa-
tion, are usually inhomogeneous. Therefore, inhomogeneous smoothness spaces related to the shearlet
transform are also of interest. In this paper we introduce non-homogeneous shearlet coorbit spaces by
using a generalization of the coorbit theory developed by Fornasier, Rauhut, Ullrich et al.12, 17, 20 Their
approach uses a more general parameter space for the transform, resulting in more design flexibility.
Instead of the parameter space being a locally compact topological group, it is only assumed to be
a locally compact topological Hausdorff space, thereby allowing the construction of inhomogeneous
coorbit spaces. Moreover it is needed for the reproducing kernel RF to be integrabel, which poses
difficulties in some applications. For that reason we present a generalization of their approach in the
sense that we only need RF to be integrabel for parameters q > 1.
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1.1. Outline. After giving a short overview of the main definitions and results of this generalized
coorbit theory in Section 2, we use this approach in Section 3 to define a new shearlet transform given
by a continuous frame F = {ψx}x∈X through the action

SHFf(x) = 〈f, ψx〉, x ∈ X,

where the frame is indexed by a topological Hausdorff space X (without group structure). We prove
that an integrability condition for (integration) parameters q > 1 on the kernel function

RF : X ×X → C, (x, y) 7→ 〈ψy, ψx〉
holds so that the coorbit spaces

SCrF,τ,p = {f | SHFf ∈ Lp,vr(X)}, p ≥ 1, vr,n weight function on X,

classifying distributions by the decay of their transform, are well-defined Banach spaces. As it turns out
these spaces coincide for different τ . Furthermore we restrict ourselves to the case of odd dimensions.
This is due to the fact that otherwise our specific construction of the frame is not well-defined.

We also note that there are other approaches, not based on coorbit space theory, to develop in-
homogeneous shearlet smoothness spaces. In Ref.19 Labate, Mantovani and Negi used the notion
of decomposition spaces to define shearlet smoothness spaces, while in Ref.21, 22 Vera applied the
framework of the ϕ-transform, introduced by Frazier and Jawerth, for this purpose.

1.2. Notation. We finish this section by stating a few notational conventions. Throughout this paper
d ∈ N with d ≥ 2 is the space dimension. We usually treat elements x ∈ Rd as x = (x1, x̃) with
x̃ = (x2, . . . , xd) ∈ Rd−1. For two elements x, y ∈ Rd we use the canonical inner product

x · y =

d∑

i=1

xiyi.

The convention R∗ is used for the set R \ {0}, R+ will denote the set of all positive real numbers and
R≥0 the set of all non-negative real numbers.

For a measure space (X,Σ, µ) with a weight function v : X → (0,∞) we denote the usual (weighted)
Lebesgue spaces by Lp,v(X,µ) or just by Lp,v, if the respective measure space is clear from the context,
while Lloc

1 (X,µ) is used for the space of locally integrable functions on X. The norm for the weighted
Lebesgue spaces is hereby given through ‖f‖Lp,v = ‖f · v‖Lp . For the unweighted Lebesgue spaces with

v ≡ 1 we write Lp(X,µ) and Lp. We use the Hilbert space L2(R
d) of complex-valued, square-integrable

functions on Rd with the inner product

〈f, g〉L2(Rd) =

∫

Rd

f(x)g(x) dx.

For two functions f, g ∈ L2(R
d) the convolution product f ∗ g is defined as

(f ∗ g)(x) =
∫

Rd

f(y)g(x− y) dy.

We write C k, k ∈ N0 for the space of functions f : Rd → C, for which all (classical) partial derivatives
∂αf for α ∈ Nd

0, |α| ≤ k exist and are continuous. We also use C∞
0 for the space of infinitely differen-

tiable functions on Rd with compact support and S denotes the spaces of Schwartz-functions on Rd.
We will use the letter q to refer to the kernel spaces Aq and τ, σ to refer to the integrability parameters
of the spaces of test functions Hτ . We denote with p′ = p

p−1 the Hölder-dual of p ≥ 1.

Concerning the Fourier transform of a function f ∈ L1(R
d) we write f̂ = F(f) using the convention

F(f)(ω) :=

∫

Rd

f(x)e−2πiω·x dx, ω ∈ R
d,

with the same symbol being used for the extension to functions f ∈ L2(R
d).
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Given a measure space (X,Σ, µ) we say that a Banach space Y of locally integrable, complex-valued
functions on X satisfies Condition (Y ), if it is solid, i.e. if from f ∈ Lloc

1 (X,µ), g ∈ Y with |f | ≤ |g|
almost everywhere it follows that f ∈ Y with ‖f |Y ‖ ≤ ‖g|Y ‖. Lastly, for quantities a and b we write
a . b if there exists a finite constant C > 0 so that a ≤ C · b, with the constant being independent of
the relevant parameters.

2. Generalized coorbit theory

In this section we give a short overview of the generalized coorbit theory. We follow Ref.12, 20 in
our exposition. For our setting we introduce a generalization of their approach with respect to an
additional integrability parameter.

To generalize the classical coorbit theory—which assumes a locally compact group as the underlying
parameter space of the respective transform—the generalization of Fornasier and Rauhut allows for the
parameter space to be of a more general nature. In this case the parameter space X is only assumed
to be a locally compact Hausdorff space equipped with a positive Radon measure µ. In the following
H denotes a separable Hilbert space (the signal space), which is usually L2, and v is a weight function
on X while Y is a Banach space of equivalence classes of almost everywhere equal, complex-valued
functions on X. We start with a set of functions F = {ψx}x∈X ⊂ H, which is indexed by the parameter
space, and constitutes a tight continuous frame. I.e., the map X → C, x 7→ 〈f, ψx〉 is measurable for
each f ∈ H and there exists a finite constant A > 0 such that

(2.1) A‖f |H‖2 =
∫

X
|〈f, ψx〉|2 dµ(x) for all f ∈ H.

Based on F, a signal transform on the space H is introduced in the following way.

Definition 2.1. Let F = {ψx}x∈X ⊂ H be a tight continuous frame. Then the associated voice
transform is defined as the mapping

VF : H → L2(X,µ), f 7→ VFf

with

VFf : X → C, x 7→ 〈f, ψx〉.
The above transform is well defined due to (2.1).

2.1. Kernel spaces. In order for the resulting smoothness spaces to be well defined, conditions on
the voice transform VF and therefore conditions on F are needed. In this approach the kernel function

(2.2) RF : X ×X → C, (x, y) 7→ RF(x, y) := VFψy(x) = 〈ψy, ψx〉,
the reproducing kernel, is used. To formulate certain conditions on this kernel function the following
spaces, classifying kernel functions in terms of integrability, are used. For 1 ≤ q ≤ ∞ let

Aq :=
{
K : X ×X → C : K is measurable, ‖K|Aq‖ <∞

}

with

‖K|Aq‖ := max

{
ess sup
x∈X

(∫

X
|K(x, y)|q dµ(y)

)1/q

,

ess sup
y∈X

(∫

X
|K(x, y)|q dµ(x)

)1/q }

and the usual adaptation for q = ∞. Through a weight function v ≥ 1 on X a kernel weight function
is defined via

mv : X ×X → (0,∞), (x, y) 7→ max

{
v(x)

v(y)
,
v(y)

v(x)

}
.
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Now the associated weighted kernel space Aq,mv is given by

Aq,mv :=
{
K : X ×X → C : K ·mv ∈ Aq

}

where

‖K|Aq,mv‖ := ‖K ·mv|Aq‖.
In the following, depending on the context, K will also denote the kernel operator induced by the
kernel function acting on a function F through

K(F )(x) :=

∫

X
K(x, y)F (y) dµ(y) for x ∈ X.

This way a reproducing identity is established through the action of RF, namely RF(VFf) = VFf for
all f ∈ H. The following auxiliary Lemma for kernel operators underlines the importance of the kernel
spaces Aq,mv .

Lemma 2.1. Let K be a kernel with K ∈ Aq,mv for all q > 1. Then we have the continuous embeddings

K(Lp,v(X,µ)) →֒ Lr,v(X,µ)

for all 1 < p < r ≤ ∞.

Proof. For fixed 1 < p < r <∞ and g ∈ Lp,v(X,µ) with ‖g|Lp,v‖ ≤ 1 arbitrary one has

‖K(g)|Lr,v‖ = sup
h∈L

r′, 1v
‖h|L

r′, 1v
‖≤1

|〈K(g), h〉|

≤ sup
h∈L

r′, 1v
‖h|L

r′, 1v
‖≤1

∫

X

∫

X
|K(x, y)g(y)h(x)|dµ(x) dµ(y)

=: sup
h∈L

r′, 1v
‖h|L

r′, 1v
‖≤1

IK,p,r,

where r′ denotes the Hölder-dual of r satisfying 1/r + 1/r′ = 1. For some 0 < ε < 1/p − 1/r we set
α := r > 0, β := p′ > 0, 1/γ := 1/p − 1/r > 0, a := 1/r + ε, b := p/r, c := 1/r′ − ε, d := r′/p′,
e := 1− p/r, f := r′/p− r′/r. These choices suffice the following relations:

1/α+ 1/β + 1/γ = 1, a+ c = 1, bα = p, dβ = r′, aα > 1,

b+ e = 1, eγ = p, fγ = r′, cβ > 1,

d+ f = 1.

By applying the three-way Young inequality, see Lemma A.2, we obtain

IK,p,r ≤
∫

X

∫

X
|K(x, y)mv(x, y)|a|f(y)v(y)|b · |K(x, y)mv(x, y)|c|h(x)v(x)−1|d

· |g(y)v(y)|e|h(x)v(x)−1|f dµ(x) dµ(y)

≤ 1

α

∫

X

∫

X
|K(x, y)mv(x, y)|aα|g(y)v(y)|p dµ(x) dµ(y)

+
1

β

∫

X

∫

X
|K(x, y)mv(x, y)|cβ |h(x)v(x)−1|r′ dµ(x) dµ(y)

+
1

γ

∫

X

∫

X
|g(y)v(y)|p|h(x)v(x)−1|r′ dµ(x) dµ(y).
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For the first summand we deduce the estimation∫

X

∫

X
|K(x, y)mv(x, y)|aα|g(y)v(y)|p dµ(x) dµ(y)

≤
(
ess sup
y∈X

∫

X
|K(x, y)|aα|mv(x, y)|aα dµ(x)

)∫

X
|g(y)|p|v(y)|p dµ(y)

≤ ‖K|Aaα,mv‖aα‖g|Lp,v‖p

and the other two summands can be treated analogously. Thus we obtain

IK,p,r ≤
1

α
‖K|Aaα,mv‖aα‖g|Lp,v‖p +

1

β
‖K|Acβ,mv

‖cβ‖h|Lr′, 1
v
‖r′

+
1

γ
‖g|Lp,v‖p‖h|Lr′, 1

v
‖r′

≤ max
{
1, ‖K|Aaα,mv‖aα, ‖K|Acβ,mv

‖cβ
}
=: CK

for all g, h. Hence, ‖K|Lp,v → Lr,v‖ ≤ CK .
If 1 < p < r = ∞ and g ∈ Lp(X,µ) arbitrary, it follows with Hölder’s inequality that

‖K(g)|L∞,v‖ ≤ ess sup
x∈X

∫

X
|K(x, y)mv(x, y)| · |g(y)v(y)|dµ(y)

≤ ‖K|Ap′,mv
‖p′‖g|Lp,v‖p,

which concludes the proof. �

Remark 1. (i) The assumptions in Lemma 2.1 can be weakened in the sense, that we only need specific
q > 1 for the assertion to hold, but this setting is sufficient for our work.

(ii) The proof is similar to the proof of Schur’s test, also known as the generalized Young inequality.
By letting K ∈ A1,mv and p = r it follows that 1/γ = 0 and aα = cβ = 1. This means we only use
the two-way Young inequality and we are in the setting of Schur’s test, see Lemma A.3.

2.2. Coorbit spaces. Before introducing coorbit spaces the concept of signals can first be generalized
from elements of the Hilbert space H to a suitable space of distributions. First of all, for 1 ≤ τ ≤ 2
consider the spaces

Hτ,v := {f ∈ H, VFf ∈ Lτ,v(X,µ)}
of test functions equipped with the natural norm

‖f |Hτ,v‖ := ‖VFf |Lτ,v‖.
First we note, that these spaces are non-empty, moreover the following Lemma holds.

Lemma 2.2. If RF ∈ Aτ,mv , then F ⊂ Hτ,v.

Proof. For x ∈ X arbitrary one has

‖ψx|Hτ,v‖τ =

∫

X
|VFψx(y)|τv(y)τ dµ(y)

≤ v(x)τ
∫

X
|RF(y, x)|τmv(y, x)

τ dµ(y)

≤ v(x)τ‖RF|Aτ,mv‖τ ,
which proves the assertion. �

Since F establishes a frame for H this means Hτ,v ⊂ H is dense. Moreover, the spaces Hτ,v are
Banach spaces, as the following Lemma states.

Lemma 2.3. If RF ∈ Aτ ′,mv
then the space Hτ,v is a Banach space.
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Proof. Let {fn}n∈N ⊂ Hτ,v ⊂ H be a Cauchy sequence, which means {gn}n∈N := {VFfn}n∈N is a
Cauchy sequence in Lτ,v(X,µ). By the completeness of Lτ,v there exists a unique g ∈ Lτ,v with
gn → g. Furthermore, by the reproducing formula it holds RF(gn) = gn for all n ∈ N, which implies
RF(g) = g. Then, by Hölder’s inequality, for every x ∈ X it holds

|RF(g)(x)| ≤
∫

X
|RF(x, y)g(y)|dµ(y)

≤ ‖RF(x, ·)|Lτ ′, 1
v
‖ · ‖g|Lτ,v‖

≤ v(x)−1‖RF|Aτ ′,mv
‖ · ‖g|Lτ,v‖.

Thus, g = RF(g) ∈ L∞ and since L∞ ∩ Lτ,v ⊂ L2 it follows g ∈ L2. Since the application of RF is the
orthogonal projection from L2 onto the image of VF there exists f ∈ H such that g = VFf . Moreover,
VFf ∈ Lτ,v means f ∈ Hτ,v and fn → f ∈ Hτ,v. �

Hence, this set of test functions leads to the Gelfand triple setting of dense embeddings

Hτ,v →֒ H ∼= H∼ →֒ (Hτ,v)
∼

with (Hτ,v)
∼ being the canonical anti-dual space (the space of all conjugate linear, continuous func-

tionals) of Hτ,v and this space can be interpreted as a space of distributions. An element h ∈ (Hτ,v)
∼

is hereby identified with the functional f → 〈h, f〉. With these embeddings it is possible to extend the
notion of the voice transform in a canonical way to elements f ∈ (Hτ,v)

∼ by VF,τf(x) = f(ψx). By
Lemma 2.2 this is well defined.

With assumptions on the reproducing kernel we can prove the following nesting property.

Lemma 2.4. If RF ∈ Aq,mv for every q > 1 then Hσ,v ⊂ Hτ,v and (Hτ,v)
∼ ⊂ (Hσ,v)

∼ for all σ < τ .

Proof. Assume f ∈ Hσ,v, which means f ∈ H with VFf ∈ Lσ,v. Since the reproducing identity holds
it follows VFf = RF(VFf) ∈ RF(Lσ,v) and with Lemma 2.1 we derive VFf ∈ Lτ,v, hence f ∈ Hτ,v. The
second assertion is immediate. �

For the coorbit spaces to be well defined we need the following two auxiliary Lemmas.

Lemma 2.5. The expression ‖VF,τf |Lτ ′, 1
v
(X,µ)‖ is an equivalent norm on (Hτ,v)

∼, where τ ′ denotes

the Hölder-dual of τ .

Proof. First we note that VF is acting as a unitary operator on H, and so does VF,τ . Moreover, by
definition we have VF,τ (Hτ,v) = L2 ∩ Lτ,v, which is dense in Lτ,v. Then, by definition of the norm one
has

‖F |(Hτ,v)
∼‖ = sup

h∈Hτ,v

‖h|Hτ,v‖≤1

|〈F, h〉|

= sup
h∈Hτ,v

‖VF,τh|Lq,v‖≤1

|〈VF,τF, VF,τh〉|

= sup
H∈VF,τ (Hτ,v)
‖H|Lq,v‖≤1

|〈VF,τF,H〉|

= sup
H∈Lτ,v

‖H|Lτ,v‖≤1

|〈VF,τF,H〉|

= ‖VF,τF |Lτ ′, 1
v
‖,

which concludes the proof. �

Lemma 2.6. (i) For f ∈ (Hτ,v)
∼ it holds VF,τf ∈ Lτ ′, 1

v
and the mappings VF,τ : (Hτ,v)

∼ → Lτ ′, 1
v

are

injective.
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(ii) The reproducing formula extends to (Hτ,v)
∼, i.e. RF(VF,τf) = VF,τf for all f ∈ (Hτ,v)

∼.
(iii) Conversely, if F ∈ Lτ ′, 1

v
satisfies the reproducing property RF(F ) = F then there exists f ∈

(Hτ,v)
∼ such that VF,τf = F .

Proof. (i) The assertion follows immediately from Lemma 2.5.
(ii) Suppose that f ∈ (Hτ,v)

∼. Since X is σ-compact there exists a sequence of nested compact
subsets (Un)n∈N such that X =

⋃
n∈NUn. Denote by χUn the characteristic function of Un and let

Fn := χUnVF,τf ∈ L2. Obviously this series converges pointwise to VF,τf . For any x ∈ X we then have

RF(x, y)Fn(y) =

{
RF(x, y)VF,τf(y), y ∈ Un,
0, else,

which means that |RF(x, y)Fn(y)| ≤ |RF(x, y)VF,τf(y)| for all y ∈ X. Furthermore the expression
RF(x, ·)VF,τf is L1-integrabel and by Hölder’s inequality we obtain the estimation

‖RF(x, ·)VF,τf |L1‖ ≤ ‖RF(x, ·)|Lτ,v‖ ‖VF,τf |Lτ ′, 1
v
‖

≤ v(x)‖RF|Aτ,mv‖ ‖f |(Hτ,v)
∼‖

for every x ∈ X. Since the reproducing property holds for every Fn and because of Lebesgue’s
convergence theorem we obtain

VF,τf(x) = lim
n→∞

Fn(x) = lim
n→∞

∫

X
RF(x, y)Fn(y) dµ(y)

=

∫

X
RF(x, y)VF,τf(y) dµ(y) = RF(VF,τf)(x).

(iii) The adjoint mapping of VF,τ : Hτ,v → Lτ,v is given by

V ∗
F,τ : Lτ ′, 1

v
→ (Hτ,v)

∼, V ∗
F,τF =

∫

X
F (x)ψx dµ(x) for F ∈ Lτ ′, 1

v
.

Thus for f := V ∗
F,τF ∈ (Hτ,v)

∼ it holds

F (y) = RFF (y) =

∫

X
〈ψx, ψy〉F (x) dµ(x) = VF,τV

∗
F,τF (y) = VF,τf(y)

for every y ∈ X. �

Now we are ready to define the coorbit spaces.

Definition 2.2. The coorbit spaces of Lp,v(X,µ) with respect to the frame F = {ψx}x∈X and the
integrability parameter τ are defined as

CoF,τ (Lp,v) := {f ∈ (Hτ,v)
∼ : VF,τf ∈ Lp,v(X,µ)}

endowed with the natural norms

‖f |CoF,τ (Lp,v)‖ := ‖VF,τf |Lp,v‖.

The following proposition is essential when dealing with coorbit spaces.

Proposition 2.7. Suppose that RF(Lp,v) ⊂ Lτ ′, 1
v
.

(i) A function F ∈ Lp,v is of the form VF,τf for some f ∈ CoF,τ (Lp,v) if and only if RFF = F .
(ii) The spaces (CoF,τ (Lp,v), ‖·|CoF,τ (Lp,v)‖) are Banach spaces.
(iii) The map VF,τ : CoF,τ (Lp,v) → Lp,v induces an isometric isomorphism between CoF,τ (Lp,v) and the
reproducing kernel space {F ∈ Lp,v : RFF = F} ⊂ Lp,v.

7



Proof. (i) Assume f ∈ CoF,τ (Lp,v), then by definition f ∈ (Hτ,v)
∼ and by Lemma 2.6 ii) the reproduc-

ing identity holds. Conversely, if F ∈ Lp,v satisfies RFF = F we deduce by our assumption F ∈ Lτ ′, 1
v
.

Lemma 2.6 iii) implies that there exists f ∈ (Hτ,v)
∼ such that VFf = F , which shows the assertion.

(ii) Suppose that {fn}n∈N is a Cauchy sequence in CoF,τ (Lp,v) implying that Fn := VF,τfn is a Cauchy
sequence in Lp,v. By the completeness of Lp,v this sequence convergences to an element F ∈ Lp,v. By
i) it holds RFFn = Fn for all n ∈ N and hence RFF = F . Again by i) there exists an f ∈ CoF,q(Lp,v)
with VF,τf = F and the completeness is shown.
(iii) The assertion follows with (i) and the injectivity of VF,τ . �

Remark 2. The assumption in Proposition 2.7 may appear strange, but is readily fulfilled for the
following setting. If we assume RF ∈ Aq,mv for all q > 1 then it follows from Lemma 2.1 that
RF(Lp,v) ⊂ Lτ ′,v ⊂ Lτ ′, 1

v
for all 1 < p < τ ′ <∞.

2.3. Dependency on τ , p, v and F. We will now discuss the dependency of the coorbit spaces on
the parameters involved. To this end we always assume RF ∈ Aq,mv for all q > 1 as suggested in
Remark 2.

We can obtain some nesting properties for the parameters τ and p as well as the weight v.

Lemma 2.8. (i) For all σ < τ we have CoF,τ (Lp,v) ⊂ CoF,σ(Lp,v).
(ii) For all p < r we have CoF,τ (Lp,v) ⊂ CoF,τ (Lr,v).
(iii) For two weights fulfilling v ≤ w we have CoF,τ (Lp,w) ⊂ CoF,τ (Lp,v).

Proof. (i) This follows immediately from Lemma 2.4.
(ii) Assume f ∈ CoF,τ (Lp,v), meaning f ∈ (Hτ,v)

∼ with VF,τf ∈ Lp,v. By Lemma 2.6 (ii) the repro-
ducing identity extends to (Hτ,v)

∼, thus VF,τf = RF(VF,τf) ∈ RF(Lp,v). With Lemma 2.1 we derive
VF,τf ∈ Lr,v, which shows the assumption.
(iii) Since Lp,w ⊂ Lp,v the assertion holds. �

Remark 3. Under the additional assumption RF ∈ A1,mv , the spaces CoF,1(Lp,v), which are analyzed
in Ref.,12 are well-defined by Schur’s test, see Lemma A.3. Hence, by Lemma 2.8 (i) we have the
embeddings CoF,τ (Lp,v) ⊂ CoF,1(Lp,v) for all 1 < τ ≤ 2. This is not applicable for the inhomogeneous
shearlet coorbit spaces we are looking at in this paper but may be of interest for other spaces.

To identify conditions under which the Coorbit spaces are independent of the frame, we introduce
a second Parseval frame for H we denote by G = {ψ̃x}x∈X and introduce the Gramian kernel as

G(F,G)(x, y) := 〈ψ̃y, ψx〉.

Then, the following holds true.

Proposition 2.9. Assume that F = {ψx}x∈X and G = {ψ̃x}x∈X are two Parseval frames for H
fulfilling all necessary conditions on the reproducing kernels and the corresponding Gramian kernel
fulfills G(F,G) ∈ A1,mv . Then it holds CoF,τ (Lp,v) = CoG,τ (Lp,v).

Proof. By expanding VF with respect to G we obtain

VFf(x) = 〈f, ψx〉 =
∫

X
〈f, ψ̃y〉〈ψ̃y , ψx〉dµ(y) = G(F,G)(VGf)(x)

and the same holds for the extended voice transform. By our assumption we derive with Schur’s test
that G(F,G)(Lp,v) ⊂ Lp,v and it holds

‖f |CoF,τ (Lp,v)‖ ≤ ‖G(F,G)|A1,mv‖ ‖f |CoG,τ (Lp,v)‖.

The converse is shown analogously and the assertion follows. �
8



3. Shearlet coorbit spaces

In this section we introduce an inhomogeneous version of the shearlet transform and define smooth-
ness spaces associated to this transform. In order to accomplish this we use the generalized coorbit
theory outlined in Section 2. Since our approach is based on the homogeneous shearlet transform and
the resulting coorbit spaces (as treated in Ref.3–6), we start by giving a short overview of the respective
theory. By modifying the homogeneous shearlet transform, we then develop a new transform, given
through the action of an (inhomogeneous) frame. For this new transform we then show that all the
necessary conditions on the reproducing kernel hold, so that we can introduce the associated coorbit
spaces with respect to the (weighted) Lebesgue spaces.

3.1. Homogeneous shearlet transform. To define the shearlet transform, one starts with an ad-
missible function ψ ∈ L2(R

d), i.e. a function satisfying the condition

(3.1) cψ :=

∫

Rd

|ψ̂(ω)|2
|ω1|d

dω <∞.

This condition is necessary for the transform to be square-integrable. The admissible function is
then translated, dilated and sheared in order to change its localization, scale and orientation. For a
parameter a ∈ R∗ let

Aa =

(
a 0Td−1

0d−1 sign(a)|a| 1d Id−1

)

denote a generalized parabolic scaling matrix and for a parameter s ∈ Rd−1 let

Ss =

(
1 sT

0d−1 Id−1

)

denote the so-called shear matrix. It is easy to see that |detSs| = 1 and |detAa| = |a|2− 1
d . Using these

matrices one can then define the translated, dilated and sheared version of ψ through

ψ(a,s,t)(x) = |detAa|−
1
2ψ(A−1

a S−1
s (x− t)).

In the homogeneous setting, the shearlet transform is then defined through the action of a unitary,
irreducible and integrable representation of the full parameter group, the so-called shearlet group
S = R∗ ×Rd−1 ×Rd with the group law

(a, s, t) ◦ (a′, s′, t′) = (aa′, s+ |a|1− 1
d s′, t+ SsAat

′).

Given the mapping π : S → U(L2(R
d)) with π(a, s, t)ψ = ψ(a,s,t), which can be shown to be a unitary

group representation, the shearlet transform is defined as

SH : L2(R
d) → L2(S), f 7→ SHf

with

SHf : S → C, (a, s, t) 7→ 〈f, π(a, s, t)ψ〉L2(Rd).

Based on this notion of the shearlet transform Dahlke et al. introduced homogeneous shearlet coorbit
spaces with respect to the Lebesgue spaces by using the coorbit space theory developed by Feichtinger
and Gröchenig in Ref.9–11

3.2. Inhomogeneous shearlet frame. Similar to the wavelet approach in Ref.20 we now introduce
an inhomogeneous shearlet transform by restricting the dilation parameter to a closed subset of the
full parameter group, thereby only covering the higher-frequency content of a signal. To analyze the
polynomial and lower-frequency part a second function is introduced to construct an inhomogeneous
frame of functions in L2(R

d) as the set of building blocks for our new transform. Therefore we choose
the set

X :=
(
{∞} ×R

d−1 ×R
d
)
∪
(
[−1, 1]∗ ×R

d−1 ×R
d
)

9



as the new parameter space with “∞” representing an isolated point in R and [−1, 1]∗ := [−1, 1] \ {0}.
The right-hand side of the union is the aforementioned subspace of the shearlet group S, which is closed
under the group action. Obviously, this definition leads to a locally compact Hausdorff space. In the
following definition we introduce a measure on the parameter space so that X, together with its Borel
σ-algebra, becomes a measure space.

Definition 3.1. On the space X a measure µ is defined by

(3.2)

∫

X

F (x) dµ(x) :=

∫

Rd

∫

Rd−1

F (∞, s, t) dsdt+

∫

Rd

∫

Rd−1

1∫

−1

F (a, s, t)
da

|a|d+1
ds dt

with F being a complex-valued function on X which is measurable with respect to the Borel σ-algebra.

The first summand in the definition above is composed of the point measure on R and the Lebesgue
measure on Rd−1 ×Rd, while the second summand is the restriction of the (left) Haar measure on the
shearlet group to the subset [−1, 1]∗ × Rd−1 × Rd. Therefore it is obvious that µ given by (3.2) is a
positive Radon measure. Choosing the measure space (X,B(X), µ) as the underlying index space, we
can introduce a continuous shearlet frame.

Definition 3.2. Let a ∈ R∗, s ∈ Rd−1 and t ∈ Rd. Then

(i) Lt : L2(R
d) → L2(R

d) with Ltψ := ψ(· − t) is called the (left) translation operator,
(ii) DSs : L2(R

d) → L2(R
d) with DSsψ := ψ(S−1

s ·) is called the shearing operator, and

(iii) DAa : L2(R
d) → L2(R

d) with DAaψ := |detAa|−
1
2ψ(A−1

a ·) is called the (anisotropic) dilation
operator.

Using the above defined operators, we can define an inhomogeneous shearlet frame.

Definition 3.3. Let Φ,Ψ ∈ L2(R
d) with Ψ being an admissible shearlet. Then we define F := {ψx}x∈X

with

ψ(∞,s,t) := LtDSsΦ = Φ(S−1
s (· − t)) and(3.3)

ψ(a,s,t) := LtDSsDAaΨ = |detAa|−
1
2Ψ(A−1

a S−1
s (· − t)).(3.4)

The main theorem of this section is that F, given by (3.3) and (3.4), constitutes a continuous Parseval
frame under the conditions given in Theorem 3.3 below so that the transform based on F is well defined.
To this end we need two technical results that can also be found in Ref.6

Lemma 3.1. For all (α, s, t) ∈ X with α = a or α = ∞ and f, ψ ∈ L2(R
d) the identity

〈f, ψ(α,s,t)〉L2(Rd) = (f ∗ ψ∗
(α,s,0))(t)

holds true with ψ∗ := ψ(−·).
Lemma 3.2. Let φ ∈ L2(R

d), a ∈ R∗, s ∈ Rd−1 and ξ ∈ Rd. Then the following equations hold:

(i) F(DSsφ)(ξ) = φ̂(STs ξ);

(ii) F(DSsDAaφ)(ξ) = |detAa|
1
2 φ̂(AaS

T
s ξ).

We now state the main theorem of this section, which identifies conditions on Φ and Ψ for F being
a continuous Parseval frame.

Theorem 3.3. Let Ψ ∈ L1(R
d) ∩ L2(R

d) be an admissible shearlet and let Φ ∈ L1(R
d) ∩ L2(R

d) be
such that

(3.5)

∫

Rd−1

|Φ̂(y, σ)|2
|y|d−1

dσ +

∫

Rd−1

|y|∫

−|y|

|Ψ̂(ξ1, ξ̃)|2
|ξ1|d

dξ1 dξ̃ = 1 for almost every y ∈ R.
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Then the inhomogeneous shearlet frame F is a continuous Parseval frame of L2(R
d), i.e.,

∫

X

|〈f, ψx〉|2 dµ(x) = ‖f |L2(R
d)‖2, f ∈ L2(R

d).

Proof. Applying (3.2), Fubini’s and Plancherel’s theorem we obtain

∫

X

|〈f, ψx〉|2 dµ(x) =
∫

Rd

∫

Rd−1

|〈f, ψ(∞,s,t)〉|2 ds dt

+

∫

Rd

∫

Rd−1

1∫

−1

|〈f, ψ(a,s,t)〉|2
da

|a|d+1
dsdt

=

∫

Rd−1

∫

Rd

|〈f, ψ(∞,s,t)〉|2 dt ds

+

∫

Rd−1

1∫

−1

∫

Rd

|〈f, ψ(a,s,t)〉|2 dt
da

|a|d+1
ds

=

∫

Rd−1

‖〈f, ψ(∞,s,·)〉|L2(R
d)‖2 ds

+

∫

Rd−1

1∫

−1

‖〈f, ψ(a,s,·)〉|L2(R
d)‖2 da

|a|d+1
ds

=

∫

Rd−1

‖F(〈f, ψ(∞,s,·)〉)|L2(R
d)‖2 ds

+

∫

Rd−1

1∫

−1

‖F(〈f, ψ(a,s,·)〉)|L2(R
d)‖2 da

|a|d+1
ds

=

∫

Rd−1

∫

Rd

|F(〈f, ψ(∞,s,·)〉)(t)|2 dtds

+

∫

Rd−1

1∫

−1

∫

Rd

|F(〈f, ψ(a,s,·)〉)(t)|2 dt
da

|a|d+1
ds.

Using Lemma 3.1, Fubini’s theorem, the fact that F(f ∗ g) = f̂ ĝ and |F(f∗)| = |F(f)| leads to

∫

X

|〈f, ψx〉|2 dµ(x) =
∫

Rd−1

∫

Rd

|F(f ∗ ψ∗
(∞,s,0))(t)|2 dt ds

+

∫

Rd−1

1∫

−1

∫

Rd

|F(f ∗ ψ∗
(a,s,0))(t)|2 dt

da

|a|d+1
ds

11



=

∫

Rd−1

∫

Rd

|f̂(t)|2|F(ψ∗
(∞,s,0))(t)|2 dt ds

+

∫

Rd−1

1∫

−1

∫

Rd

|f̂(t)|2|F(ψ∗
(a,s,0))(t)|2 dt

da

|a|d+1
ds

=

∫

Rd

|f̂(t)|2
( ∫

Rd−1

|F(ψ(∞,s,0))(t)|2 ds+
∫

Rd−1

1∫

−1

|F(ψ(a,s,0))(t)|2
da

|a|d+1
ds

)
dt.

Thus, if we can prove that

(3.6)

∫

Rd−1

|F(ψ(∞,s,0))(t)|2 ds+
∫

Rd−1

1∫

−1

|F(ψ(a,s,0))(t)|2
da

|a|d+1
ds

!
= 1

for almost every t ∈ Rd,the assertion follows, since then
∫

X

|〈f, ψx〉|2 dµ(x) =
∫

Rd

|f̂(t)|2 dt = ‖f̂ |L2(R
d)‖2 = ‖f |L2(R

d)‖2.

Hence, it remains to show (3.6). Assuming that t1 6= 0 we use Lemma 3.2 to obtain

∫

Rd−1

|F(ψ(∞,s,0))(t)|2 ds+
∫

Rd−1

1∫

−1

|F(ψ(a,s,0))(t)|2
da

|a|d+1
ds

=

∫

Rd−1

|F(DSsΦ)(t)|2 ds+
∫

Rd−1

1∫

−1

|F(DSsDAaΨ)(t)|2 da

|a|d+1
ds

=

∫

Rd−1

|Φ̂(STs t)|2 ds+
∫

Rd−1

1∫

−1

|detAa||Ψ̂(AaS
T
s t)|2

da

|a|d+1
ds

=

∫

Rd−1

|Φ̂(t1, t̃+ t1s)|2 ds+
∫

Rd−1

1∫

−1

|detAa||Ψ̂(at1, sign(a)|a|
1
d (t̃+ t1s))|2

da

|a|d+1
ds,

with t = (t1, t̃)
T , t̃ ∈ Rd−1. Substituting σ := t̃+ t1s and ξ = (ξ1, ξ̃) := (at1, sign(a)|a|

1
d (t̃+ t1s)), we

end up with

∫

Rd−1

|F(ψ(∞,s,0))(t)|2 ds+
∫

Rd−1

1∫

−1

|F(ψ(a,s,0))(t)|2
da

|a|d+1
ds

=

∫

Rd−1

|t1|−(d−1)|Φ̂(t1, σ)|2 dσ +

∫

Rd−1

|t1|∫

−|t1|

|ξ1|−d|Ψ̂(ξ1, ξ̃)|2 dξ1 dξ̃

=

∫

Rd−1

|Φ̂(t1, σ)|2
|t1|d−1

dσ +

∫

Rd−1

|t1|∫

−|t1|

|Ψ̂(ξ1, ξ̃)|2
|ξ1|d

dξ1 dξ̃,

and (3.6) follows from assumption (3.5). �
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Remark 4. The proof of Theorem 3.3 can also be stated in a similar manner for the case of a tight
frame with arbitrary frame constant A <∞. The only difference is that Φ and Ψ have to satisfy

∫

Rd−1

|Φ̂(y, σ)|2
|y|d−1

dσ +

∫

Rd−1

|y|∫

−|y|

|Ψ̂(ξ1, ξ̃)|2
|ξ1|d

dξ1 dξ̃ = A for almost every y ∈ R

instead of (3.5).

Remark 5. For a given shearlet Ψ it is still necessary to show that one can satisfy condition (3.5) for
a function Φ ∈ L1(R

d) ∩ L2(R
d). To this end we restrict ourselves to odd dimensions and we define

Φ̂ : Rd → C by

Φ̂(ξ) := ξ
d−1
2

1

( ∫

R\[−|ξ1|,|ξ1|]

|Ψ̂(ω1, ξ̃)|2
|ω1|d

dω1

)1/2

.

It is straightforward to see that Φ fulfills (3.5). Moreover, Φ ∈ L2(R
d) is immediate and Φ ∈ L1(R

d)

can be shown if Φ̂ ∈ C∞
0 (Rd), see Example 3.1.

Because of Theorem 3.3, we can now state the definition of the shearlet transform based on F.

Definition 3.4. Let Φ,Ψ ∈ L2(R
d) satisfy the assumptions of Theorem 3.3 and let F = {ψx}x∈X be

given by Definition 3.3. Then the shearlet transform based on F is defined as

SHF : L2(R
d) → L2(X,µ), f 7→ SHFf

with
SHFf : X → C, x 7→ 〈f, ψx〉.

3.3. Conditions on the reproducing kernel. The main goal of this section is to lay the foundations
for the definition of the coorbit spaces CoF,τ (Lp,v(X,µ)), 1 ≤ p < ∞, p < τ ′ < ∞, with v being a
weight function on X, associated to the inhomogeneous shearlet transform introduced in the previous
section. To prove that these spaces are well-defined Banach spaces, we need to show that the conditions
on F, as stated in Section 2, are satisfied. By Remark 2 it suffices to show that RF ∈ Aq,mv for all
q > 1. To this end we need the following auxiliary results.

Lemma 3.4. Let a, a′ ∈ [−1, 1]∗, s, s′ ∈ Rd−1, t, t′ ∈ Rd and ϕ(a,s,t) := |detAa|−
1
2Φ(A−1

a S−1
s (· − t)).

It follows that

(3.7) |〈ψ(∞,s,t), ψ(∞,s′,t′)〉| = |(SHΦ)(∞, s− s′, S−1
s′ (t− t′))|,

(3.8) |〈ψ(∞,s,t), ψ(a′,s′,t′)〉| = |〈Ψ, ϕ
(a′−1 ,|a′|

1
d
−1(s−s′),A−1

a′
S−1
s′

(t−t′)
〉|,

(3.9) |〈ψ(a,s,t), ψ(∞,s′,t′)〉| = |(SHΦ)(a, s − s′, S−1
s′ (t− t′))|,

(3.10) |〈ψ(a,s,t), ψ(a′,s′,t′)〉| = |(SHΨ)(aa′−1, |a′| 1d−1(s− s′), A−1
a′ S

−1
s′ (t− t′))|.

Proof. We only state the proof for (3.10) in detail, (3.7)–(3.9) can be proven analogously. By the
definition of ψ(a,s,t) we obtain

〈ψ(a,s,t), ψ(a′,s′,t′)〉 =
∫

Rd

ψ(a,s,t)(x)ψ(a′,s′,t′)(x) dx

=

∫

Rd

|detAa|−
1
2Ψ(A−1

a S−1
s (x− t))|detAa′ |−

1
2Ψ(A−1

a′ S
−1
s′ (x− t′)) dx,
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which, by means of the substitution y = A−1
a′ S

−1
s′ (x− t′), leads to

〈ψ(a,s,t), ψ(a′,s′,t′)〉 =
∫

Rd

|detAaa′−1 |− 1
2Ψ(A−1

a S−1
s (Ss′Aa′y + t′ − t))Ψ(y) dy

=

∫

Rd

|detAaa′−1 |− 1
2Ψ(A−1

a S−1
s Ss′Aa′(y − (A−1

a′ S
−1
s′ (t− t′))))Ψ(y) dy

=

∫

Rd

|detAaa′−1 |− 1
2Ψ(A−1

aa′−1S
−1

|a′|
1
d
−1(s−s′)

(y − (A−1
a′ S

−1
s′ (t− t′))))Ψ(y) dy

= 〈ψ
(aa′−1,|a′|

1
d
−1(s−s′),A−1

a′
S−1
s′

(t−t′))
,Ψ〉.

This yields

|〈ψ(a,s,t), ψ(a′,s′,t′)〉| = |〈ψ
(aa′−1 ,|a′|

1
d
−1(s−s′),A−1

a′
S−1
s′

(t−t′))
,Ψ〉|

= |〈Ψ, ψ
(aa′−1 ,|a′|

1
d
−1(s−s′),A−1

a′
S−1
s′

(t−t′))
〉|

= |(SHΨ)(aa′−1, |a′| 1d−1(s− s′), A−1
a′ S

−1
s′ (t− t′))|.

�

Using the auxiliary result above, we can prove the following lemma concerning the Aq,mv -Norm of
RF.

Lemma 3.5. Let RF be the kernel function associated to the inhomogeneous shearlet frame as defined
by (3.11). Then for every q the following identity holds:

ess sup
(α,σ,τ)∈X

∫

X

|RF((α, σ, τ), (a, s, t))|qmv((α, σ, τ), (a, s, t))
q dµ(a, s, t)

= max

{
ess sup

(σ,τ)∈Rd−1×Rd

∫

Rd

∫

Rd−1

(
max

{
v(∞, σ, τ)

v(∞, σ̃1, τ̃1)
,
v(∞, σ̃1, τ̃1)

v(∞, σ, τ)

}q
|〈Φ, ψ(∞,s′,t′)〉|q

+

1∫

−1

max

{
v(∞, σ, τ)

v(a, σ̃2, τ̃2)
,
v(a, σ̃2, τ̃2)

v(∞, σ, τ)

}q
|〈Φ, ψ(a,s′,t′)〉|q

da

|a|d+1

)
ds′ dt′,

ess sup
(α,σ,τ)∈[−1,1]∗×Rd−1×Rd

∫

Rd

∫

Rd−1

(
max

{
v(α, σ, τ)

v(∞, σ̃1, τ̃1)
,
v(∞, σ̃1, τ̃1)

v(α, σ, τ)

}q
|〈Φ, ψ(α,s′,t′)〉|q(3.11)

+

|α|−1∫

−|α|−1

max

{
v(α, σ, τ)

v(α̃, σ̃3, τ̃3)
,
v(α̃, σ̃3, τ̃3)

v(α, σ, τ)

}q
|〈Ψ, ψ(a′ ,s′,t′)〉|q

da′

|a′|d+1

)
ds′ dt′

}

with σ̃1 = σ− s′, τ̃1 = τ −Sσ̃1t
′, σ̃2 = σ+ s′, τ̃2 = τ +Sσt

′, α̃ = αa′, σ̃3 = σ+ |α|1− 1
d s′, τ̃3 = τ +SσAαt

′.
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Proof. Let (α, σ, τ) ∈ X with α ∈ {∞} ∪ [−1, 1]∗. Using (3.7) and (3.9) we obtain
∫

Rd

∫

Rd−1

max

{
v(α, σ, τ)

v(∞, s, t)
,
v(∞, s, t)

v(α, σ, τ)

}q
|〈ψ(∞,s,t), ψ(α,σ,τ)〉|q dsdt

=

∫

Rd

∫

Rd−1

max

{
v(α, σ, τ)

v(∞, s, t)
,
v(∞, s, t)

v(α, σ, τ)

}q
|〈Φ, ψ(α,σ−s,S−1

s (τ−t))〉|q ds dt.

Substituting s′ = σ − s and t′ = S−1
σ−s′(τ − t) then leads to

∫

Rd

∫

Rd−1

max

{
v(α, σ, τ)

v(∞, s, t)
,
v(∞, s, t)

v(α, σ, τ)

}q
|〈ψ(∞,s,t), ψ(α,σ,τ)〉|q dsdt

=

∫

Rd

∫

Rd−1

max

{
v(α, σ, τ)

v(∞, σ̃1, t)
,
v(∞, σ̃1, t)

v(α, σ, τ)

}q ∣∣〈Φ, ψ(α,s′,S−1
σ−s′

(τ−t))

〉∣∣q ds′ dt

=

∫

Rd

∫

Rd−1

max

{
v(α, σ, τ)

v(∞, σ̃1, τ̃1)
,
v(∞, σ̃1, τ̃1)

v(α, σ, τ)

}q
|〈Φ, ψ(α,s′,t′)〉|q ds′ dt′.

(3.12)

Analogously we see that

∫

Rd

∫

Rd−1

1∫

−1

max

{
v(∞, σ, τ)

v(a, s, t)
,
v(a, s, t)

v(∞, σ, τ)

}q
|〈ψ(a,s,t), ψ(∞,σ,τ)〉|q

da

|a|d+1
dsdt

=

∫

Rd

∫

Rd−1

1∫

−1

max

{
v(∞, σ, τ)

v(a, σ̃2, τ̃2)
,
v(a, σ̃2, τ̃2)

v(∞, σ, τ)

}q
|〈Φ, ψ(a,s′,t′)〉|q

da

|a|d+1
ds′ dt′,

(3.13)

for σ ∈ Rd−1 and τ ∈ Rd. Now let α ∈ [−1, 1]∗. Then (3.10) yields

∫

Rd

∫

Rd−1

1∫

−1

max

{
v(α, σ, τ)

v(a, s, t)
,
v(a, s, t)

v(α, σ, τ)

}q
|〈ψ(a,s,t), ψ(α,σ,τ)〉|q

da

|a|d+1
ds dt

=

∫

Rd

∫

Rd−1

1∫

−1

max

{
v(α, σ, τ)

v(a, s, t)
,
v(a, s, t)

v(α, σ, τ)

}q

·
∣∣〈Ψ, ψ

(aα−1 ,|α|
1
d
−1(s−σ),A−1

α S−1
σ (t−τ))

〉∣∣q da

|a|d+1
ds dt,

which—by substituting a′ := aα−1—leads to

∫

Rd

∫

Rd−1

1∫

−1

max

{
v(α, σ, τ)

v(a, s, t)
,
v(a, s, t)

v(α, σ, τ)

}q
|〈ψ(a,s,t), ψ(α,σ,τ)〉|q

da

|a|d+1
dsdt

=

∫

Rd

∫

Rd−1

|α|−1∫

−|α|−1

max

{
v(α, σ, τ)

v(α̃, s, t)
,
v(α̃, s, t)

v(α, σ, τ)

}q

·
∣∣〈Ψ, ψ

(a′,|α|
1
d
−1(s−σ),A−1

α S−1
σ (t−τ))

〉∣∣q 1

|α|d
da′

|a′|d+1
ds dt.
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Again, substituting with s′ := |α| 1d−1(s − σ) and t′ := A−1
α S−1

σ (t− τ), we get

∫

Rd

∫

Rd−1

1∫

−1

max

{
v(α, σ, τ)

v(a, s, t)
,
v(a, s, t)

v(α, σ, τ)

}q
|〈ψ(a,s,t), ψ(α,σ,τ)〉|q

da

|a|d+1
dsdt

=

∫

Rd

∫

Rd−1

|α|−1∫

−|α|−1

max

{
v(α, σ, τ)

v(α̃, σ̃3, t)
,
v(α̃, σ̃3, t)

v(α, σ, τ)

}q

·
∣∣〈Ψ, ψ(a′,s′,A−1

α S−1
σ (t−τ))

〉∣∣q|α| 1d−2 da′

|a′|d+1
ds′ dt

=

∫

Rd

∫

Rd−1

|α|−1∫

−|α|−1

max

{
v(α, σ, τ)

v(α̃, σ̃3, τ̃3)
,
v(α̃, σ̃3, τ̃3)

v(α, σ, τ)

}q
|〈Ψ, ψ(a′ ,s′,t′)〉|q

da′

|a′|d+1
ds′ dt′.

(3.14)

Using (3.12), (3.13), and (3.14), we now have

ess sup
(α,σ,τ)∈X

∫

X

|RF((α, σ, τ), (a, s, t))|qmv((α, σ, τ), (a, s, t))
q dµ(a, s, t)

= ess sup
(α,σ,τ)∈X

∫

Rd

∫

Rd−1

(
max

{
v(α, σ, τ)

v(∞, s, t)
,
v(∞, s, t)

v(α, σ, τ)

}q
|〈ψ(∞,s,t), ψ(α,σ,τ)〉|q

+

1∫

−1

max

{
v(α, σ, τ)

v(a, s, t)
,
v(a, s, t)

v(α, σ, τ)

}q
|〈ψ(a,s,t), ψ(α,σ,τ)〉|q

da

|a|d+1

)
ds dt

= max

{
ess sup

(σ,τ)∈Rd−1×Rd

∫

Rd

∫

Rd−1

(
max

{
v(∞, σ, τ)

v(∞, s, t)
,
v(∞, s, t)

v(∞, σ, τ)

}q
|〈ψ(∞,s,t), ψ(∞,σ,τ)〉|q

+

1∫

−1

max

{
v(∞, σ, τ)

v(a, s, t)
,
v(a, s, t)

v(∞, σ, τ)

}q
|〈ψ(a,s,t), ψ(∞,σ,τ)〉|q

da

|a|d+1

)
ds dt,

ess sup
(α,σ,τ)∈[−1,1]∗×Rd−1×Rd

∫

Rd

∫

Rd−1

(
max

{
v(α, σ, τ)

v(∞, s, t)
,
v(∞, s, t)

v(α, σ, τ)

}q
|〈ψ(∞,s,t), ψ(α,σ,τ)〉|q

+

1∫

−1

max

{
v(α, σ, τ)

v(a, s, t)
,
v(a, s, t)

v(α, σ, τ)

}q
|〈ψ(a,s,t), ψ(α,σ,τ)〉|q

da

|a|d+1

)
ds dt

}

= max

{
ess sup

(σ,τ)∈Rd−1×Rd

∫

Rd

∫

Rd−1

(
max

{
v(∞, σ, τ)

v(∞, σ̃1, τ̃1)
,
v(∞, σ̃1, τ̃1)

v(∞, σ, τ)

}q
|〈Φ, ψ(∞,s′,t′)〉|q

+

1∫

−1

max

{
v(∞, σ, τ)

v(a, σ̃2, τ̃2)
,
v(a, σ̃2, τ̃2)

v(∞, σ, τ)

}q
|〈Φ, ψ(a,s′,t′)〉|q

da

|a|d+1

)
ds′ dt′,

ess sup
(α,σ,τ)∈[−1,1]∗×Rd−1×Rd

∫

Rd

∫

Rd−1

(
max

{
v(α, σ, τ)

v(∞, σ̃1, τ̃1)
,
v(∞, σ̃1, τ̃1)

v(α, σ, τ)

}q
|〈Φ, ψ(α,s′,t′)〉|q
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+

|α|−1∫

−|α|−1

max

{
v(α, σ, τ)

v(α̃, σ̃3, τ̃3)
,
v(α̃, σ̃3, τ̃3)

v(α, σ, τ)

}q
|〈Ψ, ψ(a′,s′,t′)〉|q

da′

|a′|d+1

)
ds′ dt′

}

�

We use Lemma 3.5 to prove RF ∈ Aq,mv for certain functions Φ and Ψ. Since it is not possible to
construct functions Φ,Ψ ∈ L2 with compact support in the spatial domain satisfying the conditions
in Remark 5, in the following we assume Ψ to be a bandlimited Schwartz function, in particular

supp Ψ̂ ⊆ ([−a1,−a0] ∪ [a0, a1])×Qb

with 0 < a0 < a1 and Qb := ×d−1
i=1 [−bi, bi] for b ∈ R

d−1
+ . The function Φ is chosen in the same way as

in Remark 5. It follows that

supp Φ̂ ⊆ [−a1, a1]×Qb.

As weight functions on X we consider

(3.15) vr(α, s, t) = vr(α) :=

{
1, α = ∞,

|α|−r, α ∈ [−1, 1]∗,

with r ∈ R≥0, which satisfy all necessary conditions. Through simple calculations one can verify the
following properties of the moderate weight mvr associated with vr for a, a′ ∈ [−1, 1]∗:

mvr(∞,∞) = 1,(3.16)

mvr(a,∞) = mvr(∞, a) = |a|−r,(3.17)

mvr(a, a
′) = max

{ |a|
|a′| ,

|a′|
|a|

}−r

.(3.18)

The following technical lemma concerns support properties of Φ and Ψ in the frequency domain,
similar to Lemma 3.1, Ref.6

Lemma 3.6. Let 0 < a0 < a1 and b ∈ R
d−1
+ . Then with Ψ and Φ defined as above and for a ∈ R∗ and

s ∈ Rd−1 we have

(i) Ψ̂Ψ̂(AaS
T
s ·) 6≡ 0 implies a ∈ [−a1

a0
,−a0

a1
] ∪ [a0a1 ,

a1
a0
] and s ∈ Qd1 with d1 := (a−1

0 + a
−(1+ 1

d
)

0 a
1
d

1 )b,

(ii) Assume |a| ≤ 1 then Φ̂Ψ̂(AaS
T
s ·) 6≡ 0 implies a ∈ [−1,−a0

a1
] ∪ [a0a1 , 1] and s ∈ Qd2 with d2 :=

(a−1
0 + a

−(1+ 1
d
)

0 a
1
d

1 )b,

(iii) supp Φ̂Φ̂(STs ·) ⊆ Ωs := {x ∈ Rd : |x1| ≤ a1,max{−bi,−bi − si−1x1} ≤ xi ≤ min{bi, bi −
si−1x1}, i = 2, . . . d}.

Proof. The proof of (i) can be found in Lemma 3.1, Ref.6 To prove (ii) we assume there exists a

ξ ∈ supp Φ̂ ∩ supp Ψ̂(AaS
T
s ·) which means that ξ ∈ supp Φ̂ and AaS

T
s ξ ∈ supp Ψ̂. This leads to

|ξ1| ≤ a1,(3.19)

−bi ≤ ξi+1 ≤ bi,(3.20)

a0 ≤ |a||ξ1| ≤ a1,(3.21)

−bi|a|−
1
d − ξ1si ≤ ξi+1 ≤ bi|a|−

1
d − ξ1si,(3.22)

for i = 1, . . . , d − 1. By (3.19) and (3.21) it follows that |a| ≥ a0
a1

which means a ∈ [−1,−a0
a1
] ∪ [a0a1 , 1].

Using (3.21) and |a| ≤ 1, it follows that a0 ≤ |a||ξ1| ≤ |ξ1|. Also, with (3.22) and (3.20) we obtain

−bi|a|−
1
d − bi ≤ ξ1si ≤ bi|a|−

1
d + bi,
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which leads to

|si| ≤ |ξ1|−1(bi|a|−
1
d + bi) ≤ a−1

0 bi

(
a0
a1

)− 1
d

+ a−1
0 bi

for i = 1, . . . , d− 1 which proves (ii). To prove (iii) we assume there exists ξ ∈ supp Φ̂ ∩ supp Φ̂(STs ·)
which means that ξ ∈ supp Φ̂ and STs ξ ∈ supp Φ̂. This leads to

|ξ1| ≤ a1,(3.23)

−bi ≤ ξi+1 ≤ bi,(3.24)

−bi ≤ ξ1si + ξi+1 ≤ bi(3.25)

for all i = 1, . . . , d− 1, which means ξ ∈ Ωs. �

The following two auxiliary Lemmas are of technical nature only and the proof of Lemma 3.7 is
based on a draft by Steidl, Dahlke, Häuser and Teschke.

Lemma 3.7. For all y, z ∈ R, λ, λ′ > 0 and k > 1 the following integral estimation holds true
∫

R

(1 + λ|x− y|)−k(1 + λ′|x− z|)−k dx . max{λ, λ′}−1(1 + min{λ, λ′}|y − z|)−k.

Proof. Let y, z ∈ R be arbitrary and assume without loss of generality that λ ≤ λ′. Assume further
that |y − z| ≤ λ−1, then

(1 + λ|x− y|)−k ≤ 1 ≤ 2k(1 + λ|y − z|)−k

and thus
∫

R

(1 + λ|x− y|)−k(1 + λ′|x− z|)−k dx . (1 + λ|y − z|)−k
∫

R

(1 + λ′|x− z|)−k dx

= (1 + λ′|y − z|)−k 1

λ′

∫

R

(1 + |x|)−k dx

.
1

λ′
(1 + λ|y − z|)−k.(3.26)

On the other hand if |y − z| > λ−1 let Hy and Hz be the two half-axes containing the points y and z

respectively, such that Hy ∩Hz = {y+z2 }. Then, for every x ∈ Hz it holds |x− y| ≥ 1
2 |y − z| and thus

∫

Hz

(1 + λ|x− y|)−k(1 + λ′|x− z|)−k dx ≤
(
1 +

λ

2
|y − z|

)−k ∫

Hz

(1 + λ′|x− z|)−k dx

. (1 + λ|y − z|)−k 1

λ′

∫

R

(1 + |x|)−k dx

.
1

λ′
(1 + λ|y − z|)−k(3.27)

Similarily for every x ∈ Hy it holds |x− z| ≥ 1
2 |y − z| and since |y − z| > λ−1 we first deduce

(1 + λ′|x− z|)−k ≤
(
λ′

2
|y − z|

)−k

.

(
λ

λ′

)k
(λ|y − z|)−k

.

(
λ

λ′

)k
(1 + λ|y − z|)−k ≤ λ

λ′
(1 + λ|y − z|)−k

18



and hence we derive the estimate
∫

Hy

(1 + λ|x− y|)−k(1 + λ′|x− z|)−k dx ≤ λ

λ′
(1 + λ|y − z|)−k

∫

Hy

(1 + λ|x− y|)−k dx

≤ 1

λ′
(1 + λ|y − z|)−k

∫

R

(1 + |x|)−k dx

.
1

λ′
(1 + λ|y − z|)−k.(3.28)

Combining (3.27) and (3.28) thus yields
∫

R

(1 + |x− y|)−k(1 + λ|x− z|)−k dx

=

(∫

Hy

+

∫

Hz

)
(1 + |x− y|)−k(1 + λ|x− z|)−k dx .

1

λ′
(1 + λ|y − z|)−k

and together with (3.26) this completes the proof. �

Lemma 3.8. For all y, z ∈ R∗, λ 6= 0 and k > 1 we have
∫

R

(1 + |x|)−k(1 + |x− y|)−k(1 + |λx− z|)−k dx

. (1 + |y|)−kmax{1, |λ|}−1

·
[(

1 + min{1, |λ|}
∣∣∣y − z

λ

∣∣∣
)−k

+
(
1 + min{1, |λ|}

∣∣∣ z
λ

∣∣∣
)−k]

.

Proof. We use the ideas of the proof of Lemma 11.1.1, Ref.,13 as well as Lemma 3.7 and define the set

Ny := {x ∈ R : |x− y| ≤ |y|
2 }. For all x ∈ Ny it follows that |x| ≥ |y|

2 and thus

(1 + |x|)−k ≤
(
1 +

|y|
2

)−k

≤ 2k(1 + |y|)−k.

On the other hand if x ∈ N c
y one has (1 + |x − y|)−k ≤ (1 + |y|

2 )−k. Hence, with Lemma 3.7 we can
derive

∫

R

(1 + |x|)−k(1 + |x− y|)−k(1 + |λx− z|)−k dx

=

(∫

Ny

+

∫

Nc
y

)
(1 + |x|)−k(1 + |x− y|)−k(1 + |λx− z|)−k dx

. (1 + |y|)−k
∫

R

(1 + |x− y|)−k
(
1 + |λ|

∣∣∣x− z

λ

∣∣∣
)−k

dx

+ (1 + |y|)−k
∫

R

(1 + |x|)−k
(
1 + |λ|

∣∣∣x− z

λ

∣∣∣
)−k

dx

. (1 + |y|)−kmax{1, |λ|}−1
(
1 + min{1, |λ|}

∣∣∣y − z

λ

∣∣∣
)−k

+ (1 + |y|)−kmax{1, |λ|}−1
(
1 + min{1, |λ|}

∣∣∣ z
λ

∣∣∣
)−k

,
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which concludes the proof. �

Now we are able to prove that the integrability condition on the kernel function is satisfied, i.e. that
RF ∈ Aq,mvr

.

Theorem 3.9. Let Ψ ∈ L1(R
d) ∩ L2(R

d) be an admissible shearlet with

supp Ψ̂ ⊆ ([−a1,−a0] ∪ [a0, a1])×Qb.

Let Φ ∈ L1(R
d)∩L2(R

d) be chosen as in Remark 5 so that condition (3.5) is satisfied for 0 < a0 < a1
and b ∈ R

d−1
+ and additionally Φ̂ ∈ C∞

0 (Rd). Then, for every q > 1 the kernel RF fulfills

RF ∈ Aq,mvr
.

Proof. For q > 1 fixed we use Lemma 3.5 and look at the four summands in (3.11) independently. We
need to show that all summands are bounded and for that we use Lemma 3.6. Let α̃ := αa and by
using Lemma 3.6 (i) with the specific weight vr we obtain

ess sup
(α,σ,τ)∈X

∫

X

|RF((α, σ, τ), (a, s, t))|qmvr(α, a)
q dµ(a, s, t)

= max

{∫

Rd

∫

Rd−1

(
|〈Φ, ψ(∞,s,t)〉|q +

1∫

−1

|a|−rq|〈Φ, ψ(a,s,t)〉|q
da

|a|d+1

)
ds dt,

ess sup
α∈[−1,1]∗

∫

Rd

∫

Rd−1

(
|α|−rq|〈Φ, ψ(α,s,t)〉|q(3.29)

+

|α|−1∫

−|α|−1

max

{ |α|
|α̃| ,

|α̃|
|α|

}−rq

|〈Ψ, ψ(a,s,t)〉|q
da

|a|d+1

)
ds dt

}
.

We need to show that all four summands of (3.29) are bounded and for this we will treat the summands
independently.

First, since F(f∗) = F(f) and Φ ∗ ψ∗
(a,s,0) ∈ L1(R

d) we obtain

〈Φ, ψ(a,s,t)〉 = (Φ ∗ ψ∗
(a,s,0))(t) = F−1(F(Φ ∗ ψ∗

(a,s,0)))(t) = F−1(Φ̂F(ψ(a,s,0)))(t)

which leads to ∫

Rd

|〈Φ, ψ(a,s,t)〉|q dt = ‖F−1(Φ̂F(ψ(a,s,0)))|Lq‖q.

Applying Lemma 3.6 (ii) we see that Φ̂F(ψ(a,s,0)) ≡ 0 for all s /∈ Qd2 or a /∈ [−1,−a0
a1
] ∪ [a0a1 , 1], which

implies
‖F−1(Φ̂F(ψ(a,s,0)))|Lq‖q = 0

for all s /∈ Qd2 or a /∈ [−1,−a0
a1
] ∪ [a0a1 , 1]. Thus, with Lemma 3.6 (ii) we derive

ess sup
α∈[−1,1]∗

∫

Rd

∫

Rd−1

|α|−rq|〈Φ, ψ(α,s,t)〉|q ds dt

= ess sup
α∈[−1,1]∗

|α|−rq
∫

Rd−1

‖F−1(Φ̂F(ψ(α,s,0)))|Lq‖q ds

= ess sup
α∈[−1,−

a0
a1

]∪[
a0
a1
,1]

|α|−rq
∫

Qd2

‖Φ ∗ ψ∗
(α,s,0)|Lq‖q ds <∞.(3.30)
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Using the same arguments as well as Lemma 3.6 (i) we obtain

ess sup
α∈[−1,1]∗

∫

Rd

∫

Rd−1

|α|−1∫

−|α|−1

max

{ |α|
|α̃| ,

|α̃|
|α|

}−rq

|〈Ψ, ψ(a,s,t)〉|q
da

|a|d+1
ds dt

≤
∫

R

max
{
|a|, |a|−1

}−rq
∫

Rd−1

‖F−1(Φ̂F(ψ(a,s,0)))|Lq‖q ds
da

|a|d+1

=

( −
a0
a1∫

−
a1
a0

+

a1
a0∫

a0
a1

)
max

{
|a|, |a|−1

}−rq
∫

Qd1

‖Φ ∗ ψ∗
(a,s,0)|Lq‖q ds

da

|a|d+1
<∞.(3.31)

Again, with analogous arguments and Lemma 3.6 (ii) it follows that

∫

Rd

∫

Rd−1

1∫

−1

|a|−rq|〈Φ, ψ(a,s,t)〉|q
da

|a|d+1
ds dt

=

1∫

−1

|a|−rq
∫

Rd−1

‖F−1(Ψ̂F(ψ(a,s,0)))|Lq‖q ds
da

|a|d+1

=

( −
a0
a1∫

−1

+

1∫

a0
a1

)
|a|−rq

∫

Qd2

‖Ψ ∗ ψ∗
(a,s,0)|Lq‖q ds

da

|a|d+1
<∞.(3.32)

For the last summand in (3.29) we choose q0, q1 positive, such that q0 + q1 = q. We will specify the
choice at the end of the proof. Then, it follows that

∫

Rd

∫

Rd−1

|〈Φ, ψ(∞,s,t)〉|q ds dt

=

∫

Rd−1

∫

Rd

|(Φ ∗ ψ∗
(∞,s,0)(t)|q0+q1 dt ds

=

∫

Rd−1

∫

Rd

|(Φ ∗ ψ∗
(∞,s,0))(t)|q0 |F−1(Φ̂F(ψ(∞,s,0)))(t)|q1 dt ds

.

∫

Rd−1

∫

Rd

(∫

Rd

|Φ(x)ψ∗
(∞,s,0)(x− t)|dx

)q0
dt

(∫

Rd

|Φ̂(ω)Fψ∗
(∞,s,0)(ω)|dω

)q1
ds

=:

∫

Rd−1

I0(s)I1(s) ds.(3.33)

In the following we will treat both factors I0 and I1 independently.
I0(s): We assume in the following 0 < q0 < 1. Since Φ̂ ∈ C∞

c (Rd), for every k ∈ N it follows that

|Φ(x)| . (1 + |x|)−k for all x ∈ Rd with the constant depending on k and d. Then,

I0(s) .

∫

Rd

(∫

Rd

d∏

i=1

[
(1 + |xi + ti|)−k(1 + |(S−sx)i|)−k

]
dx

)
dt =:

∫

R3

Is(t)
q0 dt
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for s ∈ Rd−1 fixed and where (S−sx)i denotes the i-th entry of the vector S−sx ∈ Rd. With this
notation we intend to show

∫

R3

Is(t)
q0 dt . (1 + ‖s‖)1−q0

∫

Rd

d∏

i=1

(1 + |ti|)−kq0 dt(3.34)

with the constant depending on k and q0 only. For this we first show an auxiliary result for d = 3 which
we will then generalize to arbitrary dimensions. To illustrate our method we differentiate between the
following four cases for s ∈ R2 with s1, s2 6= 0.

Case 1: |s1|, |s2| ≤ 1. With Lemma 3.7 and Lemma 3.8 we obtain

Is(t) .

∫

R2

(1 + |t1 + s1x2 + s2x3|)−k(1 + |x2 + t2|)−k

· (1 + |x2|)−k(1 + |x3 + t3|)−k(1 + |x3|)−k d(x2, x3)

.

∫

R

(1 + |t2|)−k(1 + | − s1t2 + t1 + s2x3|)−k(1 + |x3 + t3|)−k(1 + |x3|)−k dx3

+

∫

R

(1 + |t2|)−k(1 + |t1 + s2x3|)−k(1 + |x3 + t3|)−k(1 + |x3|)−k dx3

. (1 + |t2|)−k(1 + |t3|)−k
[
(1 + |s2t3 + s1t2 + t1|)−k

+ (1 + |s1t2 − t1|)−k + (1 + |s2t3 + t1|)−k + (1 + |t1|)−k
]
.(3.35)

Case 2: |s1| ≤ 1, |s2| > 1. Again, with Lemma 3.7 and Lemma 3.8 we obtain

Is(t) .

∫

R

(1 + |t2|)−k(1 + | − s1t2 + t1 + s2x3|)−k(1 + |x3 + t3|)−k(1 + |x3|)−k dx3

+

∫

R

(1 + |t2|)−k(1 + |t1 + s2x3|)−k(1 + |x3 + t3|)−k(1 + |x3|)−k dx3

. |s2|−1(1 + |t2|)−k(1 + |t3|)−k
[
(1 + | − t3 + s1s

−1
2 t2 − s−1

2 t1|)−k(3.36)

+ (1 + |s1s−1
2 t2 − s−1

2 t1|)−k + (1 + |t3 + s−1
2 t1|)−k + (1 + |s−1

2 t1|)−k
]
.

Case 3: |s1| > 1, |s2| ≤ |s1|. Similarily we apply Lemma 3.7 and Lemma 3.8 to derive

Is(t) .

∫

R2

(1 + |t1 + s1x2 + s2x3|)−k(1 + |x2 + t2|)−k

· (1 + |x2|)−k(1 + |x3 + t3|)−k(1 + |x3|)−k d(x2, x3)

.

∫

R

(1 + |t2|)−k|s1|−1(1 + | − t2 + s−1
1 t1 + s−1

1 s2x3|)−k

· (1 + |x3 + t3|)−k(1 + |x3|)−k dx3

+

∫

R

(1 + |t2|)−k|s1|−1(1 + |s−1
1 t1 + s−1

1 s2x3|)−k(1 + |x3 + t3|)−k(1 + |x3|)−k dx3

. |s1|−1(1 + |t2|)−k(1 + |t3|)−k
[
(1 + | − s−1

1 s2t3 − t2 + s−1
1 t1|)−k

+ (1 + | − t2 + s−1
1 t1|)−k + (1 + | − s−1

1 s2t3 + s−1
1 t1|)−k + (1 + |s−1

1 t1|)−k
]
.(3.37)
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Case 4: |s1| > 1, |s2| > |s1|. Finally we apply Lemma 3.7 and Lemma 3.8 again and conclude

Is(t) .

∫

R

(1 + |t2|)−k|s1|−1(1 + | − t2 + s−1
1 t1 + s−1

1 s2x3|)−k

· (1 + |x3 + t3|)−k(1 + |x3|)−k dx3

+

∫

R

(1 + |t2|)−k|s1|−1(1 + |s−1
1 t1 + s−1

1 s2x3|)−k(1 + |x3 + t3|)−k(1 + |x3|)−k dx3

. |s2|−1(1 + |t2|)−k(1 + |t3|)−k
[
(1 + | − t3 − s1s

−1
2 t2 + s−1

2 t1|)−k(3.38)

+ (1 + | − s1s
−1
2 t2 + s−1

2 t1|)−k + (1 + | − t3 + s−1
2 t1|)−k + (1 + |s−1

2 t1|)−k
]
.

The four cases (3.35), (3.36), (3.37), (3.38) yield the estimate

(3.39) Is(t) . |detAis|
4∑

i=1

3∏

j=1

(1 + |(Aist)j |)−k

with the Matrices Ais, s ∈ R2, i = 1, . . . , 4, being of the form

Ais =



λ µ ν
0 1 0
0 0 1


 for some λ, µ, ν ∈ R depending on s1, s2.

In particular it follows from the four cases that

|detAis| = |λ| =





1, |s1|, |s2| ≤ 1,
|s2|−1, |s1| ≤ 1, |s2| > 1,
|s1|−1, |s1| > 1, |s2| ≤ |s1|,
|s2|−1, |s1| > 1, |s2| > |s1|





= max{1, |s1|, |s2|}−1.

We now intend to show, that this result holds for arbitrary dimension. To this extend we fix d ≥ 3
as well as s ∈ Rd−1 with si 6= 0 for all i = 1, . . . , d − 1 and assume that there exist matrices Ais for
1 ≤ i ≤ 2d−1 of the form

Ais =




∗ ∗ · · · ∗
1

. . .

1


(3.40)

with detAis = (Ais)11 = max{1, |s1|, . . . , |sd−1|}−1 = min{1, |s1|−1, . . . , |sd−1|−1} =: min(s). Assume
the estimate

Is(t) . min(s)

2d−1∑

i=1

d∏

j=1

(1 + |(Aist)j|)−k(3.41)

holds true for fixed d. As shown in (3.39), this readily is the case for d = 3. We now intend to show
that the estimate (3.41) also holds for d + 1. Then, (3.41) will hold for arbitrary dimension by full
induction over the dimension. To this end we fix s ∈ Rd with si 6= 0 for all i = 1, . . . , d and define
x̃ := (x1, . . . , xd), s̃ := (s1, . . . , sd−1), t̃ := (t1, . . . , td) and u := (t1 + sdxd+1, t2, . . . , td). Then we
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deduce from (3.41) the estimate

Is(t) =

∫

Rd+1

d+1∏

i=1

[
(1 + |xi + ti|)−k(1 + |(S−sx)i|)−k

]
dx

=

∫

R

(1 + |xd+1 + td+1|)−k(1 + |xd+1|)−k

(∫

Rd

d∏

i=1

[
(1 + |xi + ui|)−k(1 + |(S−s̃x̃)i|)−k

]
dx̃

)
dxd+1

=

∫

R

Is̃(u)(1 + |xd+1 + td+1|)−k(1 + |xd+1|)−k dxd+1

. min(s̃)

2d−1∑

i=1

d∏

j=1

∫

R

(1 + |(Ais̃u)j |)−k(1 + |xd+1 + td+1|)−k(1 + |xd+1|)−k dxd+1,(3.42)

whereby we remember (S−sx)i = xi for all i = 2, . . . , d + 1 and (Ais̃u)j = uj for all j = 2, . . . , d.
Since all integrals for j 6= 1 will remain unchanged we are now interested in the integrals in (3.42) for
arbitrary 1 ≤ i ≤ 2d−1, j = 1 and obtain with Lemma 3.8

∫

R

(1 + |(Ais̃u)1|)−k(1 + |xd+1 + td+1|)−k(1 + |xd+1|)−k dxd+1

=

∫

R

(1 + |(Ais̃ t̃)1 +min(s̃)sdxd+1|)−k(1 + |xd+1 + td+1|)−k(1 + |xd+1|)−k dxd+1

. min(s̃)(1 + |td+1|)−kmax{1, |min(s̃)sd|}−1

×
[(

1 +

∣∣∣∣min{1, |min(s̃)sd|}td+1 −
min{1, |min(s̃)sd|}

|min(s̃)sd|
(Ais̃t̃)1

∣∣∣∣
)−k

+

(
1 +

min{1, |min(s̃)sd|}
|min(s̃)sd|

|(Ais̃ t̃)1|
)−k ]

= max{min(s̃)−1, |sd|}−1

·
[
(1 + |(Bi

st)d+1|)−k(1 + |(Bi
st)1|)−k + (1 + |(Cist)d+1|)−k(1 + |(Cist)1|)−k

]

for some matrices Bi
s, C

i
s of the form (3.40) where

(Bi
s)11 = (Cis)11 = (Ais̃)11

(
min{1, |min(s̃)sd|}

|min(s̃)sd|

)
= min{|sd|−1,min(s̃)} = min(s).

Since max{min(s̃)−1, |sd|}−1 = max{1, |s1|, . . . , |sd|}−1 = min(s) we derive together with (3.42) the
estimate (3.41) for d+ 1. Hence, (3.41) holds true for arbitrary dimension.

With this at hand we return to arbitrary dimension d and further deduce

|detAis|−1 = max{1, |s1|, . . . , |sd−1|} ≤ 1 + max{|s1|, . . . , |sd−1|} . 1 + ‖s‖.
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Now we can prove the following estimate for 0 < q0 < 1 and almost every s ∈ Rd:

∫

R3

Is(t)
q0 dt . |detAis|q0

∫

Rd

( 2d−1∑

i=1

d∏

j=1

(1 + |(Aist)j |)−k
)q0

dt

≤ |detAis|q0
2d−1∑

i=1

∫

Rd

d∏

j=1

(1 + |(Aist)j |)−kq0 dt

. |detAis|q0−1

∫

Rd

d∏

j=1

(1 + |tj|)−kq0 dt

. (1 + ‖s‖)1−q0
∫

Rd

d∏

j=1

(1 + |tj |)−kq0 dt,

which shows (3.34).
I1(s): We shall now deal with the second factor in (3.32) for q1 > 0. By Lemma 3.6 (iii) and the

definition of Φ̂ we obtain

I1(s)
1/q1 =

∫

Rd

|Φ̂(ω)Φ̂(STs ω)|dω

≤
∫

Ωs

|ω1|d−1

(∫

R

|Ψ̂(ξ1, ω̃)|2
|ξ1|d

dξ1

) 1
2
(∫

R

|Ψ̂(ξ1, S̃Ts ω)|2
|ξ1|d

dξ1

) 1
2

dω

with Ωs = {x ∈ Rd : |x1| ≤ a1,max{−bi,−bi − si−1x1} ≤ xi ≤ min{bi, bi − si−1x1}, i = 2, . . . d}. Since

Ψ̂ is compactly supported and continuous, we conclude

I1(s)
1/q1 .

∫

Ωs

|ω1|d−1 dω.(3.43)

In the following we assume s > 0 componentwise, all other cases can be treated analogously by
symmetry arguments. Then, for any ω ∈ Ωs it follows from Lemma 3.6 (iii) that |ω1| ≤ 2bis

−1
i−1 for

all i = 2, . . . , d, hence, |ω1| . (maxi=1,...,d−1 si)
−1 = |s|−1

∞ . Moreover, since ω ∈ supp Φ̂, we derive
−bi ≤ ωi ≤ bi for all i = 1, . . . , d. We can now estimate (3.43) in the following manner:

I1(s)
1/q1 .

∫

|ω1|≤min{b1,|s|
−1
∞ }

|ω1|d−1 dω1.

Assume first that |s|−1
∞ ≥ b1, then we have

I1(s)
1/q1 .

∫

|ω1|≤b1

|ω1|d−1 dω1 . bd1 . (1 + ‖s‖)−d.

On the other hand if |s|−1
∞ < b1 it follows that

I1(s)
1/q1 .

∫

|ω1|≤|s|−1
∞

|ω1|d−1 dω1 . |s|−d∞ . (1 + ‖s‖)−d.

In both cases we obtain

I1(s) . (1 + ‖s‖)−dq1 .(3.44)
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Plugging (3.34) and (3.44) into (3.33) now yields
∫

Rd

∫

Rd−1

|〈Φ, ψ(∞,s,t)〉|q ds dt .
∫

Rd−1

I0(s)I1(s) ds

.

∫

Rd

d∏

i=1

(1 + |ti|)−kq0 dt
∫

Rd−1

(1 + ‖s‖)1−q0−dq1 ds.(3.45)

For any choice of q0 we can find a k ∈ N, such that the first integral in (3.45) converges. The second
integral in (3.45) is known to converge if and only if q0 + dq1 > d. This can be obtained by setting

q0 =
q−1
d and q1 =

d−1
d q + 1

d . If q > 1 this satisfies

q0 + q1 =
q − 1

d
+
d− 1

d
q +

1

d
=

1

d
(q − 1 + q(d− 1) + 1) = q

and

q0 + dq1 =
q − 1

d
+ (d− 1)q + 1 = 1 + q

(
d− 1 +

1

d

)
− 1

d

= d−
(
d− 1 +

1

d

)
+ q

(
d− 1 +

1

d

)
= d+ (q − 1)

(
d− 1 +

1

d

)
> d

and we finally conclude
∫

Rd

∫

Rd−1

|〈Φ, ψ(∞,s,t)〉|q ds dt <∞.

Altogether with (3.30), (3.31) and (3.32) we have now shown that all four summands in (3.29) are
bounded and this concludes the proof. �

At this point we intend to show that there exist functions Φ̂ satisfying the assumptions of Theo-
rem 3.9. Indeed we will show that we can find Ψ̂ so that Φ̂ ∈ C∞

0 (Rd).

Example 3.1. We fix any odd dimension d. Then, for ξ = (ξ1, ξ̃) let Ψ̂(ξ) := ψ̂1(ξ1)ψ̂2(ξ̃) with

ψ̂1(ξ1) :=





|ξ1|
d
2 e

1
(ξ1−1)(ξ1−3) , 1 < ξ1 < 3

|ξ1|
d
2 e

1
(ξ1+1)(ξ1+3) , −3 < ξ1 < −1

0, otherwise

and ψ̂2 ∈ C∞
0 (Rd−1) with ψ̂ ≥ 0. According to Remark 5 we set

Φ̂(ξ) := ξ
d−1
2

1

( ∫

R\[−|ξ1|,|ξ1|]

|Ψ̂(ω1, ξ̃)|2
|ω1|d

dω1

)1/2

= ξ
d−1
2

1 |ψ̂2(ξ̃)|
(
2

3∫

max{|ξ1|,1}

e
2

(ω1−1)(ω1−3) dω1

)1/2

=: ξ
d−1
2

1 |ψ̂2(ξ̃)|ϕ̂1(ξ1)

with Φ̂(ξ) = 0 for |ξ1| > 3. Now we show that this function satisfies the required assumptions. The fact

that ψ̂1 ∈ C∞
0 (R) and therefore Ψ̂ ∈ C∞

0 (Rd) is immediately obvious. With the given construction,
together with Remark 5, we see that the necessary condition from Theorem 3.3 is satisfied, i.e. the
functions Φ and Ψ constitute a Parseval frame. Furthermore if we assume Φ̂ ∈ C∞

0 (Rd) ⊂ S (Rd)
then Φ ∈ S (Rd) ⊂ L1(R

d) ∩ L2(R
d) and all necessary conditions on Φ are satisfied.
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So we need to show that Φ̂ ∈ C∞
0 (Rd), which means that we will show that ϕ̂1 is infinitely continu-

ously differentiable since ξ
d−1
2

1 is a monomial. To show this we need to prove that

lim
xր3

dn

dxn
(ϕ̂1(x)) = 0

and

lim
xց1

dn

dxn
(ϕ̂1(x)) = 0

for all n ∈ N. Since both statements are proven in an analogous manner, we will only show the proof
of the first statement and for the remainder of this example we assume 2 < x < 3. Since we have
ϕ̂1(x) = (f ◦ g)(x) with f(x) =

√
x and

g(x) = 2

3∫

x

e
2

(ω−1)(ω−3) dω,

we can use Faà di Bruno’s formula to get a closed expression for the n-th derivative. Recall that for
two functions f and g the identity

(3.46)
dn

dxn
(
(f ◦ g)(x)

)
=

n∑

k=1

dkf

dxk
(g(x))Bn,k

(dg
dx

(x),
d2g

dx2
(x), . . . ,

d(n−k+1)g

dx(n−k+1)
(x)
)

holds with Bn,k being the Bell polynomials, i.e.

Bn,k(x1, x2, . . . , x(n−k+1)) =
∑ n!

j1! · · · j(n−k+1)!

(x1
1!

)j1
· · ·
( x(n−k+1)

(n− k + 1)!

)j(n−k+1)

.

The sum in the above expression is taken over all (j1, . . . , j(n−k+1)) with j1 + · · · + j(n−k+1) = k and
j1 + 2j2 + · · · + (n− k + 1)j(n−k+1) = n. The derivatives of the square root satisfy

dkf

dxk
(x) = ckx

−k+ 1
2

with ck being some constant and since because of 1 < x < 3 we have

(3.47)
dg

dx
(x) = −2e

2
(x−1)(x−3)

this means that for all k ∈ N the derivatives of g satisfy

dkg

dxk
(x) = Qk(x)e

2
(x−1)(x−3)

with Qk being some rational function without singularities in the interval (1, 3). Thus, using (3.46) we
now have

dnϕ̂1

dxn
(x) =

n∑

k=1

ck
(
g(x)

)−k+ 1
2

∑

(j1,...,j(n−k+1))

cn,k,j

(
Q1(x)e

2
(x−1)(x−3)

)j1
· · ·

· · ·
(
Q(n−k+1)(x)e

2
(x−1)(x−3)

)j(n−k+1)

=

n∑

k=1

Rk,n(x)
(
g(x)

)−k+ 1
2
(
e

2
(x−1)(x−3)

)k

=

n∑

k=1

(
R̃k,n(x)

(
e

2
(x−1)(x−3)

)1+ 1
2k−1

g(x)

)k− 1
2
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where Rk,n is a rational function for every k = 1, . . . , n possibly changing from line to line and

R̃k,n(x) := Rk,n(x)
1

k− 1
2 . Since

lim
xր3

R̃k,n(x)
(
e

2
(x−1)(x−3)

)1+ 1
2k−1 = 0 and lim

xր3
g(x) = 0

we use l’Hospital’s rule to determine the limit of the fraction. For the derivative of the numerator we
obtain

d

dx

(
R̃k,n(x)

(
e

2
(x−1)(x−3)

)1+ 1
2k−1

)

=
d

dx
R̃k,n(x)

(
e

2
(x−1)(x−3)

)1+ 1
2k−1+R̃k,n(x)

d

dx

(
e

2
(x−1)(x−3)

)1+ 1
2k−1

= Q(x)
(
e

2
(x−1)(x−3)

)1+ 1
2k−1

where Q is of the form Q(x) = Q2(x)(Q1(x))
−2k+3
2k−1 +Q3(x)(Q1(x))

2
2k−1 with Q1, Q2, Q3 being rational

functions. This, together with (3.47), yields

lim
xր3

d
dx

(
R̃k,n(x)

(
e

2
(x−1)(x−3)

)1+ 1
2k−1

)

d
dx

(
g(x)

) = lim
xր3

Q(x)e
2

(2k−1)((x−1)(x−3)) = 0.

Thus, with l’Hospital’s rule we get

lim
xր3

dnϕ̂1

dxn
(x) = lim

xր3

n∑

k=1

(
R̃k,n(x)

(
e

2
(x−1)(x−3)

)1+ 1
2k−1

g(x)

)k− 1
2

=

n∑

k=1

(
lim
xր3

R̃k,n(x)
(
e

2
(x−1)(x−3)

)1+ 1
2k−1

g(x)

)k− 1
2

=
n∑

k=1

(
lim
xր3

d
dx

(
R̃k,n(x)

(
e

2
(x−1)(x−3)

)1+ 1
2k−1

)

d
dx

(
g(x)

)
)k− 1

2

= 0.

This proves that ϕ̂1 ∈ C∞
0 (R) and therefore that Φ̂ ∈ C∞

0 (Rd).

3.4. Inhomogeneous shearlet coorbit spaces. Now we are able to give a definition of the coorbit
spaces associated to our inhomogeneous shearlet frame with respect to the weighted Lebesgue spaces
Lp,vr(X,µ).

Definition 3.5. Let the shearlet frame F be chosen so that it satisfies the conditions in Theorem 3.9.
Then for 1 ≤ p <∞ and 1 < τ ≤ 2 with p < τ ′ the shearlet coorbit space with respect to the Lebesgue
space Lp,vr(X,µ) is defined as

SCrF,τ,p := CoF,τ (Lp,vr(X,µ)) = {f ∈ (Hτ,vr)
∼ : SHF,τf ∈ Lp,vr(X,µ)}.

It is endowed with the natural norm

‖f |SCrF,τ,p‖ := ‖SHF,τf |Lp,vr(X,µ)‖.
These spaces are well-defined Banach spaces, which is implied by Theorem 3.9.

Theorem 3.10. With the same assumptions as in Theorem 3.9 the spaces SCrF,τ,p are well-defined
Banach spaces.

Proof. As stated in Remark 2, Theorem 3.9 and Lemma 2.1 imply that the assumption in Proposi-
tion 2.7 is fulfilled. Hence, the assertion follows. �

The following results are straightforward.
28



Lemma 3.11. Let 1 < p < q < ∞, 1 < τ ≤ 2 with p, q < τ ′ and 0 ≤ r < s. Furthermore let F and G

satisfiy the conditions in Theorem 3.9 with G(F,G) ∈ A1,mvr
. Then,

(i) SCrF,τ,p ⊂ SCrF,τ,q,
(ii) SCsF,τ,p ⊂ SCrF,τ,p,
(iii) SCrF,τ,p = SCrG,τ,p.
Proof. (i) and (ii) follow from Lemma 2.8 (ii), (iii) is a consequence of Proposition 2.9. �

Even though we introduced new integrability conditions on the kernel to obtain new spaces, these
spaces are in fact one and the same, as the following proposition shows.

Proposition 3.12. Let 1 ≤ p <∞, 1 < σ, τ ≤ 2 with p < σ′, τ ′. Then, SCrF,τ,p = SCrF,σ,p.
Proof. Assume f ∈ SCrF,σ,p, i.e. f ∈ (Hσ,vr )

∼ with SHF,σf ∈ Lp,vr , by the reproducing identity and

Lemma 2.1 it holds SHF,σf = RF(SHF,σf) ∈ RF(Lp,vr) ⊂ Lτ ′,vr ⊂ Lτ ′, 1
vr

. Thus, Lemma 2.5 yields

f ∈ (Hτ,vr)
∼ and f ∈ SCrF,τ,p. Equivalently the converse is shown. �

Remark 6. With Proposition 3.12 at hand the coorbit spaces solely depend on p and not on τ . Thus
it is justified to omit the parameter τ and simply write

SCrF,p = {f ∈ (Hτ,vr)
∼ : SHF,τf ∈ Lp,vr(X,µ)}

for 1 ≤ p <∞ and some τ fulfilling p < τ ′ <∞.

Appendix A.

In this appendix we will briefly discuss Young’s inequality, the three-way Young’s inequality and
Schur’s test mentioned in Section 2.

Lemma A.1 (Young’s inequality). Let a, b ≥ 0 and p, q > 0 with 1/p + 1/q = 1, then

ab ≤ ap

p
+
bq

q
.

Lemma A.2 (Three-way Young’s inequality). Let a, b, c ≥ 0 and p, q, r > 0 with 1/p+1/q+1/r = 1,
then

abc ≤ ap

p
+
bq

q
+
cr

r
.

Proof. By applying Young’s inequality twice and observing p′

q + p′

r = 1 with 1
p +

1
p′ = 1 we obtain

abc ≤ ap

p
+
bp

′

cp
′

p′
≤ ap

p
+

1

p′

(
(bp

′

)q/p
′

q/p′
+

(cp
′

)r/p
′

r/p′

)
=
ap

p
+
bq

q
+
cr

r
,

which proves the claim. �

Lemma A.3 (Schur’s test). For a kernel K : X ×X → C with K ∈ A1,mv the corresponding kernel
operator fulfills

‖K|Lp,v → Lp,v‖ ≤ ‖K|A1,mv‖
for all 1 ≤ p ≤ ∞.

Proof. For p <∞ assume f ∈ Lp,v with ‖f |Lp,v‖ ≤ 1, then

‖K(f)|Lp,v‖ = sup
g∈L

p′, 1v
‖g|L

p′, 1v
‖≤1

〈K(f), g〉

≤ sup
g∈L

p′, 1v
‖g|L

p′, 1v
‖≤1

∫

X

∫

X
|K(x, y)f(y)g(x)|dµ(x) dµ(y),
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where p′ denotes the Hölder-dual of p. By Young’s inequality we obtain
∫

X

∫

X
|K(x, y)f(y)g(x)|dµ(x) dµ(y)

≤ 1

p

∫

X

∫

X
|K(x, y)|mv(x, y) · |f(y)|pv(y)p dµ(x) dµ(y)

+
1

p′

∫

X

∫

X
|K(x, y)|mv(x, y) · |g(x)|p

′ 1

v(x)p
′
dµ(x) dµ(y)

≤ 1

p
‖K|A1,mv‖ · ‖f |Lp,v‖p +

1

p′
‖K|A1,mv‖ · ‖g|Lp′, 1

v
‖p′ .

Thus, ‖K(f)|Lp,v → Lp,v‖ ≤ ‖K|A1,mv‖.
On the other hand for p = ∞ and f ∈ L∞,v we have

‖K(f)|L∞,v‖ ≤ ess sup
x∈X

∫

X
|K(x, y)|mv(x, y) · |f(y)|v(y) dµ(y)

≤ ‖K|A1,mv‖ · ‖f |L∞,v‖,
which concludes the proof. �
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