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Abstract

In this work we provide polyphase, modulation, and frame theoretical analyses of a filter
bank on a discrete abelian group. Thus, multidimensional or cyclic filter banks as well as
filter banks for signals in `2(Zd×Zs) or `2(Zr ×Zs) spaces are studied in a unified way. We
obtain perfect reconstruction conditions and the corresponding frame bounds.
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1 Introduction

The aim of this paper is to provide a filter bank theory for processing signals in the space `2(G)
where G denotes a countable discrete abelian group. Working in this general setting allows us
to study all the classical groups associated with filter banks in digital signal processing in one
go. Thus, unidimensional (setting `2(G) = `2(Z)), multidimensional (`2(G) = `2(Zd)), cyclic
filter banks (`2(G) = `2(Zs)), as well as filter banks processing signals in the spaces `2(Zd×Zs),
`2(Zr × Zs), `2(Zds) or `2(Zr × Zs × Zv) are englobed in the present study.

The proposed abstract group approach is not just a unified way of dealing with classical
discrete groups Z,Zd or Zs; it also allows us to deal with products of these groups. This has
been pointed out in [11] and it has consequences from a practical point of view: for example,
multichannel video signal involves the group Zd × Zs, where d is the number of channels and
s the number of pixels of each image. Hence the availability of an abstract filter bank theory
becomes a useful tool to englobe different digital signal processing problems.

Besides, nowadays there exists a mathematical literature dealing with abstract or applied
mathematical problems which are studied from a theoretical groups point of view. See, in
particular, Refs. [2, 6, 7, 13, 11, 16] where shift-invariant spaces, Fourier-like frames or sampling
problems are considered on LCA groups. An introduction to group theory and symmetries in
signal processing can be found in Ref. [26].
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Classical filter banks have turned out to be very useful in digital signal processing and in
wavelet theory (see, for instance, [24, 27, 29, 33] and references therein). One of the main reasons
why filter banks has become so useful has been the use of the polyphase analysis, first carried out
by Vetterli [32] and Vaidyanathan [28], which simplifies considerably the theory, and is especially
convenient in their practical design. The original filter bank theory for unidimensional signals
in `2(Z) was extended for multidimensional filter banks (see, for instance, [23, 29, 34]), as well
as for cyclic filter banks [30, 31].

Also, associated to a unidimensional analysis filter bank there is a sequence of shifts
{
Tnfk :=

fk(· − n)
}
k=1,2,...,K;n∈Z of K elements fk in `2(Z). The frame property of this sequence give

information about the corresponding filter bank: its dual frames provide synthesis filter banks,
and its frame bounds provide information on the filter bank stability. See, for instance, Refs. [4,
8, 19, 12, 14] for the unidimensional `2(Z) setting.

In this paper we introduce the filter bank concept in the setting of a discrete abelian group
G, and we generalize the polyphase representation for classical filter banks to our setting. This
polyphase representation provide a suitable perfect reconstruction condition. Besides, we extend
the frame analysis to this new `2(G) setting. In particular and as far as we know we carry out
the first frame analysis for multidimensional filter banks.

Although our study is done in the polyphase domain, for the sake of completeness, we also
include the filter bank representation in the modulation domain, as well as the relationship
between polyphase and modulation matrices. The modulation matrix in the group setting was
firstly introduced in [3].

The paper is organized as follows: Section 2 introduces the properties of Fourier transform
for discrete abelian group used along the article. Section 3 contains the main results in the paper:
we provide a polyphase representation of a filter bank in `2(G) obtaining a perfect reconstruction
condition; we derive the corresponding frame analysis obtaining the optimal frame bounds; we
also include the filter bank representation in the modulation domain and the relationship between
polyphase and modulation matrices. Finally, in Section 4 we apply the results in Section 3 to a
wide variety of examples.

2 Some preliminaries on harmonic analysis on groups

The results about harmonic analysis on locally compact abelian (LCA) groups are borrowed
from Ref. [15]; see also [18] or [25]. Note that, in particular, a countable discrete abelian group
is a second countable Hausdorff LCA group.

2.1 Convolutions

Let G be a countable discrete abelian group with the operation group denoted by +. For,
1 ≤ p <∞, `p(G) denotes the set of functions x : G 7→ C such that ‖x‖pp :=

∑
n∈G |x(n)|p <∞.

For x, y ∈ `2(G) we define its convolution as

(x ∗ y)(m) :=
∑
n∈G

x(n)y(m− n) , m ∈ G .

The series above converges absolutely for any m ∈ G [15, Proposition 2.40]. According to [15,
Proposition 2.39], if x ∈ `2(G) and y ∈ `1(G) then x ∗ y ∈ `2(G) and

‖x ∗ y‖2 ≤ ‖x‖2 ‖y‖1. (1)
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2.2 The Fourier transform

Let T = {z ∈ C : |z| = 1} be the unidimensional torus. We said that ξ : G 7→ T is a
character of G if ξ(n + m) = ξ(n)ξ(m) for all n,m ∈ G. We denote ξ(n) = 〈n, ξ〉. Defining
(ξ + γ)(n) = ξ(n)γ(n), the set of characters Ĝ with the operation + is a group, called the dual
group of G. For x ∈ `1(G) we define its Fourier transform as

X(ξ) = x̂(ξ) :=
∑
n∈G

x(n)〈n, ξ〉, ξ ∈ Ĝ.

It is known [15, Theorem 4.5] that Ẑ ∼= T, with 〈n, z〉 = zn, and Ẑs ∼= Zs := Z/sZ, with
〈n,m〉 = Wnm

s , where Ws = e2πi/s. Thus, the Fourier transform on Z is the z-transform,

X(z) =
∑
n∈Z

x(n)z−n

and the Fourier transform on Zs is the s-point DFT,

X(m) =
∑
n∈Zs

x(n)W−nms .

There exists a unique measure, called the Haar measure, µ on Ĝ satisfying µ(ξ+E) = µ(E),
for every Borel set E ⊂ Ĝ [15, Section 2.2], and µ(Ĝ) = 1. We denote

∫
Ĝ
X(ξ)dξ =

∫
Ĝ
X(ξ)dµ(ξ).

If G = Z, ∫
Ĝ
X(ξ)dξ =

∫
T
X(z)dz =

1

2π

∫ 2π

0
X(eiw)dw ,

and if G = Zs, ∫
Ĝ
X(ξ)dξ =

∫
Zs

X(n)dn =
1

s

∑
n∈Zs

X(n) .

For 1 ≤ p < ∞, Lp(Ĝ) denotes the set of measurable functions X : Ĝ 7→ C such that
‖X‖pp :=

∫
Ĝ
|X(ξ)|pdξ <∞. The Fourier transform on `1(G) ∩ `2(G) is an isometry on a dense

subspace of L2(Ĝ). Thus, by Plancherel Theorem it can be extended in a unique manner to a
unitary operator of `2(G) onto L2(Ĝ) [15, p. 99].

If x ∈ `1(G) and X ∈ L1(Ĝ) then

x(n) =

∫
Ĝ
X(ξ)〈n, ξ〉dξ, n ∈ G (Inversion Theorem [15, Theorem 4.32])

and, if x ∈ `2(G) and h ∈ `1(G) then

(x ∗ h)∧(ξ) = X(ξ)H(ξ), a.e. ξ ∈ Ĝ [18, Theorem 31.27].

If G1, . . . Gd are abelian discrete groups then the dual group of the product group is(
G1 × . . .×Gd

)∧ ∼= Ĝ1 × . . .× Ĝn [15, Proposition 4.6],

with
〈

(x1, x2, . . . , xd) , (ξ1, ξ2 . . . , ξd)
〉

= 〈x1, ξ1〉〈x2, ξ2〉 · · · 〈xd, ξd〉. Hence, Ẑd ∼= Td and the
corresponding Fourier transform is

X(z) =
∑
n∈Zd

x(n)z−n, z = (z1, . . . , zd) ∈ Td,
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where zn = zn1
1 . . . znd

d . Besides, Ẑs × Zr ∼= Zs × Zr and the corresponding Fourier transform is

X(m) =
∑

n∈Zs×Zr

x(n)W−n1m1
s W−n2m2

r , m = (m1,m2) ∈ Zs × Zr.

3 Filter banks on discrete groups

Let us begin the section giving a short introduction to the polyphase transform which is the
appropriate tool for analyzing and designing a classical filter bank. In the `2(Z) setting, a filter
bank involves an L-fold decimator, also called downsampler or compressor, which takes the input
signal {x(n)}n∈Z and produces the output (↓L x) = {x(Ln)}n∈Z, where the sampling period L
is a natural number. The polyphase transform of the signal {x(n)}n∈Z is the L-dimensional
vector which entries are the z-transform of the so called polyphase components

{
x(Ln+ l)

}
n∈Z,

l = 0, 1, . . . , L− 1, of the signal x. Namely,

X(z) =
[∑
n∈Z

x(Ln+ l)z−n
]
l=0,1,...,L−1

.

A filter bank designed to process signals in `2(G), where G is a countable discrete abelian
group, should involve an M -decimator taking the input signal {x(n)}n∈G and producing as
output the restriction of x to a subgroup M of G of finite index L (also called a lattice of
G), i.e., (↓M x) := {x(n)}n∈M . In order to generalize the polyphase representation to this
setting (see [5]), it comes naturally to define the polyphase transform of {x(n)}n∈G as the
L-dimensional vector whose entries are the M -Fourier transform (the Fourier transform with
respect to the subgroup M) of the polyphase components {x(m+ `)}m∈M , ` ∈ L, where L is a
set of representatives of the cosets of M . Namely (see the details below),

X(γ) =
[ ∑
m∈M

x(m+ `)〈m, γ〉
]
`∈L

, γ ∈ M̂. (2)

When G = Zd the above transform becomes that used in multidimensional filter banks [23, 29,
34], while G = Zs yields the transform used in cyclic filter banks [30, 31]. It is also worth to
note that the considered polyphase transform (2) can be obtained, as a particular case of the
Zak transform for LCA groups (see, for instance, [1, 17, 21]), which generalizes the classical Zak
transform; specifically, X(γ) =

[
Zx(`, γ)

]
`∈L.

3.1 The lattice M

Throughout the article, we assume that M is a subgroup of G with finite index L; we fix a set
L = {`0, . . . , `L−1} of representatives of the cosets of M , i.e., the group G can be decomposed
as

G = (`0 +M) ∪ (`1 +M) ∪ . . . ∪ (`L−1 +M)

with (`r + M) ∩ (`r′ + M) = ∅ for r 6= r′ (the set L is also called a transversal or a section of
M). For instance, for G = Z and M = LZ we can take L = {0, 1, . . . , L− 1} since

Z = LZ ∪ (1 + LZ) ∪ · · · ∪ (L− 1 + LZ).

We denote by ∗M the convolution with respect to the subgroup M , i.e.,(
c ∗M d

)
(n) :=

∑
m∈M

c(m) d(n−m) , n ∈M .
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3.2 The M-Fourier transform

The annihilator of M is the subgroup of Ĝ given by M⊥ :=
{
ξ ∈ Ĝ : 〈m, ξ〉 = 1 for all m ∈M

}
,

which has L elements [15, Section 4.3]. We have that

M̂ ∼= Ĝ/M⊥ with
〈
m, ξ +M⊥

〉
= 〈m, ξ〉 [15, Theorem 4.39] .

We denote by C(ξ +M⊥) or ĉ(ξ +M⊥) the Fourier transform of a function c in the group M ,
i.e.,

C(ξ +M⊥) =
∑
m∈M

c(m)〈m, ξ +M⊥〉 =
∑
m∈M

c(m)〈m, ξ〉.

As we said above, our polyphase representation relies on this transform. Thus, in many occasions
to simplify the notation we denote the characters of M̂ by γ instead of ξ + M⊥. To prevent
confusions, we call C(γ) the M -Fourier transform of c.

3.3 The filter bank

For a complex function x with domain in G, we denote its restriction to the subgroup M as

(↓M x)(m) = x(m), m ∈M.

For a complex function x with domain M we define the expander to G as

(↑M x)(n) =

{
x(n), n ∈M
0, n /∈M.

Throughout this paper we consider the K-channel filter bank represented in Fig. 1, i.e.,

ck =
(
↓M (x ∗ hk)

)
and y =

K∑
k=1

(↑M ck) ∗ gk ,

where hk, k = 1, 2, . . . ,K, are the analysis filters, and gk, k = 1, 2, . . . ,K, are the synthesis
filters. Equivalently, we have the input-output expression:

y(n) =

K∑
k=1

∑
m∈M

(x ∗ hk)(m) gk(n−m), n ∈ G . (3)

In the sequel, we assume that the filters hk, gk ∈ `1(G), for k ∈ K, where for notational ease we
denote K := {1, 2, . . . ,K}. This assumption guarantees the convergence of series involved in (3)
for any x ∈ `2(G). Indeed, from (1) we have that x ∗ hk ∈ `2(G) and then, again from (1), we
have that the series in (3) converges absolutely and y ∈ `2(G).

3.4 Polyphase analysis

For k = 1, 2, . . . ,K and ` ∈ L we define the polyphase components of x, hk, gk and y as

x`(m) := x(m+ `), y`(m) := y(m+ `),

hk,`(m) := hk(m− `), g`,k(m) := gk(m+ `), m ∈M,

5



x(n) H1 ↓ M ↑ M

c1(m)
G1

H2 ↓ M ↑ M

c2(m)
G2

HK ↓ M ↑ M

cK(m)
GK y(n)

...
...

...

Figure 1: Scheme for a K-channel filter bank

and we denote their M -Fourier transforms by X`(γ), Y`(γ), Hk,`(γ), G`,k(γ) respectively.
For any x ∈ `2(G) and m ∈M , we have

ck(m) = (x ∗ hk)(m) =
∑
n∈G

x(n)hk(m− n) =
∑
`∈L

∑
n∈M

x(n+ `)hk(m− n− `)

=
∑
`∈L

∑
n∈M

x`(n)hk,`(m− n) =
∑
`∈L

(x` ∗M hk,`)(m).

All the series above converge absolutely since we have assumed that hk ∈ `1(G). Moreover,
ck ∈ `2(M) since x ∗ hk ∈ `2(G). Taking the M -Fourier transform, we obtain

Ck(γ) =
∑
`∈L

Hk,`(γ)X`(γ). (4)

Thus, we have the matrix expression

C(γ) = H(γ)X(γ) a.e. γ ∈ M̂, (5)

where
C(γ) = [Ck(γ)]k∈K , X(γ) = [X`(γ)]`∈L , H(γ) =

[
Hk,`(γ)

]
k∈K, `∈L . (6)

Above, C(γ) and X(γ) denote column vectors, i.e., C(γ) = [C1(γ), . . . , CK(γ)]> and X(γ) =
[X`0(γ), . . . , X`L−1(γ)]

>, and H(γ) is a K × L matrix.
The polyphase components of the output y can be written as

y`(m) = y(m+ `) =
K∑
k=1

∑
n∈M

ck(n)gk(m+ `− n)

=

K∑
k=1

∑
n∈M

ck(n) g`,k(m− n) =

K∑
k=1

(ck ∗M g`,k)(m).

Taking the M -Fourier transform, we obtain

Y`(γ) =
K∑
k=1

G`,k(γ)Ck(γ) a.e. γ ∈ M̂,

which can be written as
Y(γ) = G(γ)C(γ) a.e. γ ∈ M̂, (7)
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where
Y(γ) = [Y`(γ)]`∈L , G(γ) =

[
G`,k(γ)

]
`∈L, k∈K . (8)

Thus, from (5) and (7), we have

Y(γ) = G(γ)H(γ)X(γ) a.e. γ ∈ M̂. (9)

On the other hand, we consider in the following proposition a generalization to discrete groups
of the polyphase transform:

Proposition 1. The polyphase transform P : `2(G)→ L2(M̂)×· · ·×L2(M̂) (L times) defined
by P(x) := X = [X`]`∈L, is a unitary operator.

Proof. For x, y ∈ `2(G) we have

〈x, y〉`2(G) =
∑
`∈L

∑
m∈M

x(m+ `)y(m+ `) =
∑
`∈L

∑
m∈M

x`(m)y`(m) =
∑
`∈L
〈x`, y`〉`2(M)

=
∑
`∈L
〈X`, Y`〉L2(M̂)

= 〈X,Y〉
L2(M̂)×···×L2(M̂)

.

Then P is a isometry. Besides, for any X ∈ L2(M̂)×· · ·×L2(M̂), since theM -Fourier transform is

a surjective isometry between `2(M) and L2(M̂), there exists a function x such that its polyphase
components [X`]`∈L coincides with X. Hence, P is surjective.

By using Proposition 1, from (9) we easily deduce:

Theorem 1. The filter bank defined by (3) satisfies the perfect reconstruction property, i.e,

y = x for all x ∈ `2(G) if and only if G(γ)H(γ) = IL for all γ ∈ M̂ , where IL denotes the
identity matrix of order L.

Proof. Having in mind Proposition 1 and (9) the filter bank satisfies the perfect reconstruction

property if and only if G(γ)H(γ) = IL a.e. γ ∈ M̂ . Since we have assume that hk and gk belong
to `1(G), their polyphase components, hk,` and g`,k belong to L1(M). Then their M -Fourier
transform are continuous [15, Proposition 4.13]. Hence, the entries of G(γ)H(γ) are continuous.

Therefore, G(γ)H(γ) = IL a.e. γ ∈ M̂ if and only if G(γ)H(γ) = IL for all γ ∈ M̂ .

It is easy to check that between the polyphase transform and the Fourier transform, there
exists the relationship

X(ξ) = p>(ξ)X(ξ +M⊥), ξ ∈ Ĝ, where p(ξ) =
[
〈`, ξ〉

]
`∈L .

Then, from (9) the Fourier transform of the output y is expressed as

Y (ξ) = p>(ξ)G(ξ +M⊥)H(ξ +M⊥) X(ξ +M⊥) a.e. ξ ∈ Ĝ.
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3.5 Frame analysis

For m ∈M , we denote the translation operator by m as (Tmf)(n) := f(n−m), n ∈ G, and the
involution of f as f̃(n) := f(−n), n ∈ G. Then, for k = 1, 2, . . . ,K

ck(m) := (x ∗ hk)(m) =
∑
n∈G

x(n)hk(m− n) = 〈x, Tmh̃k〉`2(G), m ∈ G , (10)

and if, for notational ease, we denote fk := h̃k, k = 1, 2, . . . ,K, the expansion (3) representing
the filter bank can be written as

y =
K∑
k=1

∑
m∈M

〈x, Tmfk〉`2(G) Tmgk .

Thus, the filter bank in Fig. 1 is related to the sequences
{
Tmfk

}
k∈K,m∈M and

{
Tmgk

}
k∈K,m∈M .

The following results provide the frame properties of these sequences. In Ref. [10] the reader can
find the main properties of frames and Riesz bases. Recall that we have assumed that hk ∈ `1(G)
which is equivalent to assume that fk ∈ `1(G).

Theorem 2. The sequences
{
Tmfk

}
k∈K,m∈M and

{
Tmgk

}
k∈K,m∈M are dual frames for `2(G)

if and only if G(γ)H(γ) = IL for all γ ∈ M̂ .

Proof. By using (10) and (1), for each k = 1, 2, . . . ,K we obtain that∑
m∈M

|〈x, Tmfk〉|2 ≤
∑
n∈G
|〈x, Tnfk〉|2 =

∑
n∈G
|x ∗ hk(n)|2

= ‖x ∗ hk‖22 ≤ ‖x‖22‖hk‖21 , for all x ∈ `2(G) .

Hence,
{
Tmfk

}
k∈K,m∈M is a Bessel sequence for `2(G). Analogously one proves that the sequence{

Tmgk
}
k∈K,m∈M is a Bessel sequence for `2(G). Having in mind Lemma 5.6.2 in [10], the result

is now a consequence of Theorem 1.

Let H∗(γ) denote the transpose conjugate of the matrix H(γ).

Theorem 3. The sequence
{
Tmfk

}
k∈K,m∈M is a frame for `2(G) if and only if Rank H(γ) = L

for all γ ∈ M̂ . In this case, the optimal frame bounds are

A = min
γ∈M̂

[
λmin(γ)

]
and B = max

γ∈M̂

[
λmax(γ)

]
,

where λmin(γ) and λmax(γ) are the smallest and the largest eigenvalue of the matrix H∗(γ)H(γ).
In case

{
Tmfk

}
k∈K,m∈M is a frame for `2(G), its canonical dual frame is

{
Tmfk

}
k∈K,m∈M

where fk = P−1(H∗H)−1Pfk, k = 1, 2, . . . ,K, where P denotes the polyphase transform in
Prop. 1.

Proof. First, notice that λmin(γ) and λmax(γ) have a minimum and a maximum value over M̂ .
Indeed, since hk ∈ `1(G), the entries of H∗(γ)H(γ) are continuous functions [15, Proposition
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4.13] and then λmin(γ) and λmax(γ) are real continuous functions (see [35]). Besides, since M is

discrete, M̂ is compact [15, Proposition 4.4].
In the proof of Theorem 2 we have showed that

{
Tmfk

}
k∈K,m∈M is a Bessel sequence. Now,

we obtain a representation in the polyphase domain for its frame operator

Sx =
K∑
k=1

∑
m∈M

〈x, Tmfk〉 Tmfk, x ∈ `2(G) .

Indeed, when gk(n) = fk(n) = hk(−n), then G = H∗, and the representation (9) reads[
PSx

]
(γ) = H∗(γ)H(γ)X(γ).

By using Proposition 1, we get

K∑
k=1

∑
m∈M

∣∣〈x, Tmfk〉∣∣2 = 〈Sx, x〉`2(G) =
〈
PSx,Px

〉
L2(M̂)×...×L2(M̂)

=

∫
M̂

X∗(γ)
[
PSx

]
(γ)dγ =

∫
M̂

X∗(γ)H∗(γ)H(γ)X(γ) dγ.

Hence,

K∑
k=1

∑
m∈M

∣∣〈x, Tmfk〉∣∣2 ≥ ∫
M̂
λmin(γ)|X(γ)|2dγ ≥ A

∫
M̂
|X(γ)|2dγ

= A‖X‖2
L2(M̂)×...×L2(M̂)

= A‖x‖22.

Let J > A; there exists a subset Ω ⊂ M̂ with positive measure such that λmin(γ) < J for γ ∈ Ω.
Let X(γ) be equal to 0 when γ /∈ Ω and equal to a unitary eigenvector of H∗(γ)H(γ) correspond-

ing to λmin(γ) when γ ∈ Ω. Notice that X ∈ L2(M̂)× . . .× L2(M̂) since ‖F‖2
L2(M̂)×...×L2(M̂)

=

measure(Ω) ≤ 1. The function x = P−1X satisfies

K∑
k=1

∑
m∈M

∣∣〈x, Tmfk〉∣∣2 =

∫
Ω
X∗(γ)H∗(γ)H(γ)X(γ)dγ =

∫
Ω
λmin(γ)X∗(γ)X(γ)dγ ≤ J‖x‖2 .

Therefore, the sequence
{
Tmfk

}
k∈K,m∈M is a frame for `2(G) if and only if A > 0, and in this

case the lower optimal bound is A. In the same way it can be proved that B is the optimal
Bessel bound. Since λmin(γ) is a continuous function, A > 0 if and only if λmin(γ) > 0 for all

γ ∈ M̂ which is equivalent to be the rank of H(γ) equal to L for all γ ∈ M̂ .
It is easy to check that STmx = TmSx. The canonical dual frame is given by (see [10, Lemma

5.1.1])
S−1Tmfk = TmS

−1fk = TmP−1PS−1fk = TmP−1(H∗H)−1Pfk .

The synthesis matrix G(γ) corresponding to the canonical dual frame is [H(γ)∗H(γ)]−1H∗(γ),
which coincides with the Moore-Penrose pseudoinverse H†(γ) of the analysis matrix H(γ).
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Analogously, the optimal frame bounds of the dual frame
{
Tmgk

}
k∈K,m∈M are given by

Ag = min
γ∈M̂

[
µmin(γ)

]
and Bg = max

γ∈M̂
[
µmax(γ)

]
, where µmin(γ) and µmax(γ) are the

smallest and the largest eigenvalues of the matrix G(γ)G∗(γ). For the canonical dual frame
gk = fk, we have that Ag = 1/B and Bg = 1/A [10, Lemma 5.1.1].

The frame bounds give information about the stability of the filter bank. Notice that, by its
definition, the optimal frames bounds of

{
Tmfk

}
k∈K,m∈M are the tightest numbers 0 < A ≤ B

such that

A‖x‖22 ≤
K∑
k=1

∑
m∈M

|ck(m)|2 =

K∑
k=1

∑
m∈M

∣∣(x ∗ hk)(m)
∣∣2 ≤ B‖x‖22 , x ∈ `2(G) .

Thus B gives a measure of how an error in the input x of the analysis filter bank affects to
subband signals ck. For the synthesis, we have that Bg is the tightest number such that [10,
Theorem 3.2.3]

‖y‖2 =
∥∥∥ K∑
k=1

∑
m∈M

ck(m)gk(· −m)
∥∥∥2
≤ Bg

K∑
k=1

∑
m∈M

|ck(m)|2 .

Thus Bg gives a measure of how an error in the subband signals ck affects to the recovered signal
y. The smallest possible value for Bg is 1/A, which correspond to take the canonical dual frame.
One can find a sensitivity analysis based on frame bounds in Ref. [4]; see also [10, p. 118].

Having in mind that A = B if and only if H∗(γ)H(γ) = A IL for all γ ∈ M̂ , we deduce:

Corollary 1. The sequence
{
Tmfk

}
k∈K,m∈M is a tight frame for `2(G) if and only if there exists

A > 0 such that H∗(γ)H(γ) = A IL for all γ ∈ M̂ . In this case, the frame bound is A.

For maximally decimated filter banks, i.e., whenever L = K, we have the following result:

Theorem 4. Assume that L = K. The sequence
{
Tmfk

}
k∈K,m∈M is Riesz basis for `2(G) if

and only if detH(γ) 6= 0 for all γ ∈ M̂ . In this case, the optimal Riesz bounds are the constants
A and B defined in Theorem 3.

Proof. If the sequence
{
Tmfk

}
k∈K,m∈M is a Riesz basis then it is a frame. Then, by Theorem 3,

Rank H(γ) = L = K, and thus detH(γ) 6= 0, for all γ ∈ M̂ .

To prove the reciprocal, assume that detH(γ) 6= 0, for all γ ∈ M̂ . Then Rank H(γ) = L
and, from Theorem 3,

{
Tmfk

}
k∈K,m∈M is a frame. Thus, to prove that it is a Riesz basis it

only remains to prove that it has a biorthogonal sequence [10, Theorem 6.1.1]. Notice that

since |detH(γ)| is continuous on the compact M̂ , and |detH(γ)| > 0 for all γ ∈ M̂ , then there

exists J > 0 such that | detH(γ)| > J for all γ ∈ M̂ . Then the rows of H−1(γ) belong to

L2(M̂)× . . .×L2(M̂). We denote by g1, . . . , gk the inverse polyphase transform (see Proposition
1) of these rows. Thus G(γ) defined by (8) is G(γ) = H(γ)−1. From (4), we obtain that the
M -Fourier transform of ck,k′ =↓M (gk′ ∗ hk) is

Ck,k′(γ) =
∑
`∈L

Hk,`(γ)G`,k′(γ) .
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Since G(γ) = H−1(γ) we obtain that Ck,k′(γ) = δk,k′ Then, having in mind that the inverse
M -Fourier transform of Ck,k = 1 is the δ sequence, by using (10) we obtain

〈Tm′gk′ , Tmfk〉 = 〈gk′ , Tm−m′fk〉 =
(
gk′ ∗ hk

)
(m−m′) = ck,k′(m−m′) = δk,k′δm,m′ ,

which proves that the sequence
{
Tmfk

}
k∈K,m∈M is a Riesz basis for `2(G). The optimal Riesz

bounds are the optimal frame bounds [10, Theorem 5.4.1], and then, from Theorem 3, they are
A and B.

3.6 Modulation Analysis

Recall that M⊥, the annihilator of M , is a subgroup of Ĝ with L elements.

Proposition 2. For any x ∈ `2(G), the M -Fourier transform of (↓M x) is

(↓M x)∧(ξ +M⊥) =
1

L

∑
η∈M⊥

X(ξ + η), a.e. ξ ∈ Ĝ.

Proof. If n /∈ M we have that there exist ηr ∈ M⊥ such that 〈n, ηr〉 6= 1 [15, Proposition 4.38].
Since M⊥ is a group, ∑

η∈M⊥
〈n, η〉 =

∑
η∈M⊥

〈n, η + ηr〉 = 〈n, ηr〉
∑
η∈M⊥

〈n, η〉.

Therefore ∑
η∈M⊥

〈n, η〉 =

{
L n ∈M
0 n /∈M.

(11)

By using this relationship, we obtain

(↓M x)∧(ξ +M⊥) =
∑
m∈M

x(m)〈m, ξ〉 =
1

L

∑
n∈G

∑
η∈M⊥

〈n, η〉x(n)〈n, ξ〉

=
1

L

∑
η∈M⊥

∑
n∈G

x(n)〈n, ξ + η〉 =
1

L

∑
η∈M⊥

x̂(ξ + η).

As a consequence of the above proposition, the M -Fourier transform of ck =↓M (x ∗ hk) is

Ck(ξ +M⊥) =
1

L

∑
η∈M⊥ X(ξ + η)Hk(ξ + η). Hence, denoting C =

[
Ck
]
k∈K, we have

C(ξ +M⊥)> =
1

L
Hmod(ξ)xmod(ξ), (12)

where
xmod(ξ) :=

[
X(ξ + η)

]
η∈M⊥ and Hmod(ξ) :=

[
Hk(ξ + η)

]
k∈K, η∈M⊥ . (13)

For any c ∈ `2(M), the Fourier transform of (↑M c) is M⊥-periodic; specifically, for any η ∈M⊥,

(↑M c)∧(ξ + η) =
∑
n∈G

[↑M c](n)〈n, ξ + η〉 =
∑
m∈M

c(m)〈m, ξ +M⊥〉 = C(ξ +M⊥).
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Then the Fourier transform of

y(n) =
K∑
k=1

∑
m∈M

ck(m)gk(n−m) =
K∑
k=1

∑
l∈G

(↑M ck)(l)gk(n− l) =
K∑
k=1

(
(↑M ck) ∗ gk

)
(n)

is Y (ξ) =
∑K

k=1Ck(ξ + M⊥)>Gk(ξ). From (12), the Fourier transform of the output y to the
filter bank in Fig. 1 is

Y (ξ) =
1

L

[
G1(ξ), G2(ξ), · · · , GK(ξ)

]
Hmod(ξ)xmod(ξ), ξ ∈ Ĝ.

This modulation representation of the output to the filter bank was obtained in [3].

Proposition 3. The K × L matrices Hmod(ξ) and H(ξ), defined in (13) and (6) respectively,
are related by

Hmod(ξ) = H(ξ +M⊥)D(ξ)W for all ξ ∈ Ĝ,

where W =
[
〈`i, η〉

]
i=0,1,...,L−1, η∈M⊥ and D(ξ) = diag

(
〈`0, ξ〉, 〈`1, ξ〉, . . . , 〈`L−1, ξ〉

)
.

Proof. We have

Hk(ξ) =
∑
n∈G

hk(n)〈n, ξ〉 =
∑
`∈L

∑
m∈M

hk(m− `)〈m− `, ξ〉

=
∑
`∈L
〈`, ξ〉

∑
m∈M

hk(m− `)〈m, ξ〉 =
∑
`∈L
〈`, ξ〉Hk,`(ξ +M⊥).

Therefore, Hk(ξ + η) =
∑

`∈L〈`, ξ〉Hk,`(ξ +M⊥)〈`, η〉 for all ξ ∈ Ĝ, η ∈M⊥.

It is worth to note that WW∗ = L IL (see (11)); then H(ξ+M>) = (1/L)Hmod(ξ)W∗D(ξ).

4 Some illustrative examples

In this section we consider the filter bank depicted in Fig. 1 for different choices of the group
G and the lattice M . Thus, we particularize the general theory in Section 3 in four different
contexts:

4.1 The case G = Zd and M = {Mn : n ∈ Zd}

Let M be a d×d matrix with integer entries and positive determinant. For the case G = Zd and
M = {Mn : n ∈ Zd}, we could take as transversal L = −N (M) where N (M) := M[0, 1)n ∩ Zd
which has detM elements (see [29]). We could also take L = N (M>) (see [23]), or even other
possibilities (see [34]). In the following corollary we write some of the results of Section 3 in terms
of the K × detM and detM×K polyphase matrices usually used in this context [23, 29, 34]:

E(z) =
[ ∑
n∈Zd

hk(Mn− `)z−n
]
k∈K, `∈L

, R(z) =
[ ∑
n∈Zd

gk(Mn+ `)z−n
]
`∈L,k∈K

, z ∈ Td.
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Corollary 2. Under the above circumstances, consider the filter bank described in Fig. 1. Let
λmin(z) and λmax(z) be the smallest and the largest eigenvalue of the detM × detM matrix
E∗(z)E(z). Then, the sequence

{
Tmfk

}
k∈K,m∈M is a frame for `2(Zd) if and only if Rank

E(z) = detM for all z ∈ Td. In this case, the optimal frame bounds are

A = min
z∈Td

[
λmin(z)

]
and B = max

z∈Td

[
λmax(z)

]
.

The sequences
{
Tmfk

}
k∈K,m∈M and

{
Tmgk

}
k∈K,m∈M are dual frames if and only if R(z)E(z) =

IdetM for all z ∈ Td. The sequence
{
Tmfk

}
k∈K,m∈M is a tight frame if and only if E∗(z)E(z) =

A IdetM, z ∈ Td. Whenever detM = K, the sequence
{
Tmfk

}
k∈K,m∈M is a Riesz basis for

`2(Zd) if and only if detE(z) 6= 0 for all z ∈ Zd. In this case, the optimal Riesz bounds are A
and B.

Proof. For a matrix with integer entries A we define zA as the vector whose k-component is

z
A1,k

1 z
A2,k

2 . . . z
Ad,k

d . It can be verified that [zA]B = zAB (see [29, pp. 581-582]). Then

Hk,`(z +M⊥) =
∑
m∈M

hk(m− `)z−m =
∑
n∈Zd

hk(Mn− `)z−Mn

=
∑
n∈Zd

hk(Mn− `)[zM]−n = Ek,`(z
M).

(z +M⊥ denotes an element of Td/M⊥) and analogously G`,k(z +M⊥) = R`,k(z
M). Then

H(z +M⊥) = E(zM), G(z +M⊥) = R(zM).

Besides, for any z ∈ Td there exists s ∈ Td such sM = z. Indeed, there exists r ∈ Td such
that rdetM

j = zj and then [radjM]M = r(adjM)M = rI detM = z. By using these two facts, the
corollary is a consequence of Theorems 2, 3 and 4 and Corollary 1.

This corollary generalizes, to the multidimensional case, the results obtained in [4] and [12]
for the unidimensional case.

4.2 The case G = Zs and M = LZs
Assume that s = LN , with L,N ∈ N. Whenever G = Zs and M = LZs we could take
L = {0,−1, . . . ,−(L− 1)} (mod s) (see [30, 31]). In the following corollary we write the results
in terms of the K × L and L×K polyphase matrices defined in [30, 31]:

E(n) =
[N−1∑
m=0

hk(Lm− `)W−mnN

]
k∈K, `∈L

, R(n) =
[N−1∑
m=0

gk(Lm+ `)W−mnN

]
`∈L,k∈K

, n ∈ ZN .

Note that the N -point DFT appears since M̂ ∼= Zs/M⊥ ∼= Zs/(NZs) ∼= ZN .

Corollary 3. Under the above circumstances, consider the filter bank described in Fig. 1. Let
λmin(n) and λmax(n) be the smallest and the largest eigenvalue of the L×L matrix E∗(n)E(n).
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The sequence
{
Tmfk

}
k∈K,m∈M is a frame for `2(Zs) if and only if Rank E(n) = L for all n ∈ ZN .

In this case, the optimal frame bounds are

A = min
n∈ZN

[
λmin(n)

]
and B = max

n∈ZN

[
λmax(n)

]
.

It is tight frame if and only if E∗(n)E(n) = AIL for all n ∈ ZN . The sequences
{
Tmfk

}
k∈K,m∈M

and
{
Tmgk

}
k∈K,m∈M are dual frames if and only if R(n)E(n) = IL for all n ∈ ZN . Whenever

L = K, the sequence
{
Tmfk

}
k∈K,m∈M is a Riesz basis for `2(Zs) if and only if detE(n) 6= 0 for

all n ∈ ZN . In this case, the optimal Riesz bounds are A and B.

Proof. We have M̂ ∼= Ĝ/M⊥ ∼= Zs/M⊥ with 〈Lm,n+M⊥〉 = WmLn
s = Wmn

N . Then

Hk,`(n+M⊥) =
N−1∑
m=0

hk(Lm− `)〈Lm,n〉 =
N−1∑
m=0

hk(Lm− `)W−mnN = Ek,`(n)

and analogously G`,k(n) = R`,k(n). Hence,the corollary is a consequence of Theorems 2, 3 and
4 and Corollary 1, having in mind that E(n) and R(n) are N -periodic.

Some of these results can be found in [8, 9, 19, 14].

4.3 The case G = Zd × Zs and M = MZd × LZs
Consider now the tensor product of the two previous examples, i.e., G = Zd × Zs and M =
MZd × LZs, where M is a matrix with integer entries, detM > 0 and s = LN . We could take
L = N (M)× {0, 1, . . . , (L− 1)}. Set the K × L and L×K matrices

E(z, n) =
[N−1∑
m=0

∑
u∈Zd

hk
(
[Mu, Lm]− `)z−uW−mnN

]
k∈K, `∈L

R(z, n) =
[N−1∑
m=0

∑
u∈Zd

gk
(
[Mu, Lm] + `)z−uW−mnN

]
`∈L, k∈K

Corollary 4. Under the above circumstances, the filter bank described in Fig. 1 satisfies the
perfect reconstruction property if and only if R(z, n)E(z, n) = ILdetM for all z ∈ Td and n ∈ ZN .
Let λmin(z, n) and λmax(z, n) be the smallest and the largest eigenvalue of the LdetM×LdetM
matrix E∗(z, n)E(z, n). The sequence

{
Tmfk

}
k∈K,m∈M is a frame for `2(Zd×Zs) if and only if

Rank E(z, n) = LdetM for all z ∈ Td and n ∈ ZN . In this case, the optimal frame bounds are

A = min
z∈Td,n∈ZN

[
λmin(z, n)

]
and B = max

z∈Td,n∈ZN

[
λmax(z, n)

]
.

Whenever K = LdetM, the sequence
{
Tmfk

}
k∈K,m∈M is a Riesz basis for L2(Zd × Zs) if and

only if detE(z, n) 6= 0 for all z ∈ Zd and n ∈ ZN . In this case, the optimal Riesz bounds are A
and B.
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Proof. We have

Hk,`

(
(z, n) +M⊥

)
=
∑
u∈Zd

N−1∑
m=0

hk
(
(Mu,mL)− `

)
〈(Mu,mL), (z, n)〉

=
∑
u∈Zd

N−1∑
m=0

hk
(
(Mu,mL)− `

)
z−MuW−mLns

=
∑
u∈Zd

N−1∑
m=0

hk
(
(Mu,mL)− `

)
[zM]−uW−mnN = Ek,`(z

M, n)

and analogously G`,k
(
(z, n) + M⊥

)
= R`,k(z

M, n). Besides (it was proved in previous proof)
for any z ∈ Td there exist s ∈ Td such sM = z. Thus, having in mind the N -periodicity, the
corollary is a consequence of Theorems 1, 3 and 4.

4.4 The case G = Z2P × Z2Q and M the Quincunx

Given P,Q ∈ N, the Quincunx M consists of the elements (n,m) in Z2P × Z2Q such that n
and m are both even or both odd; it is a subgroup of Z2P × Z2Q. In this case we could take
L = {(0, 0), (1, 0)}. Consider the [P,Q]-Points DFT transform

[
DFTx

]
(n,m) =

P−1∑
u=0

Q−1∑
v=0

x(u, v)W−unP W−vmQ ,

and the transform

[Λx](n,m) =
[
DFTx0

]
(n,m) +W−n2P W−m2Q

[
DFTx1

]
(n,m),

where x0(n,m) = x(2n, 2m) and x1(n,m) = x(2n+ 1, 2m+ 1). Respectively set the K × 2 and
2×K matrices

E(n,m) =
[
Λhk,`(n,m)

]
k∈K, `∈L

and R(n,m) =
[
Λg`,k(n,m)

]
`∈L,k∈K

.

Corollary 5. Under the above circumstances, the filter bank described in Fig. 1 has the perfect
reconstruction property if and only if R(n,m)E(n,m) = I2 for all (n,m) ∈ Z2P × ZQ.

Proof. We have M̂ ∼= Ĝ/M⊥ ∼= (Z2P × Z2Q)/M⊥ with〈
(2u, 2v), (n,m) +M⊥

〉
= W 2un

2P W 2vm
2Q = W un

P W vm
Q〈

(2u+ 1, 2v + 1), (n,m) +M⊥
〉

= W
(2u+1)n
2P W

(2v+1)m
2Q = Wn

2P W
m
2QW

un
P W vm

Q .

Then, the M -Fourier transform of a function h is given by

H
(
(n,m) +M⊥

)
=

P−1∑
u=0

Q−1∑
v=0

[
h0(u, v)W−unP W−vmQ + h1(u, v)W−unP W−vmQ W−n2P W−m2Q

]
.

Hence, from Theorem 1, the filter bank satisfies the perfect reconstruction property if and only
if R(n,m)E(n,m) = I2 for all (n,m) ∈ Z2P × Z2Q. Since Λ(n + P,m + Q) = Λ(n,m) and
Λ(n,m+Q) = Λ(n+ P,m), it suffices to consider (n,m) ∈ Z2P × ZQ.
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Note that M̂ ∼= (Z2P × Z2Q)/M⊥ ∼= (Z2P × Z2Q)/{(0, 0), (P,Q)} ∼= Z2P × ZQ.
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[23] J. Kovacević and M. Vetterli. Nonseparable multidimensional perfect reconstruction filter
banks and wavelets bases for Rn. IEEE Trans. Inform. Theory, 38:533–555, 1992.

[24] S. Mallat. A wavelet Tour of Signal Processing. Academic Prees, Burlington MA, 2009.

[25] W. Rudin. Fourier Analysis on Groups. Wiley, Wiley Classics Library, New York, 1990.

[26] V.P. Sinha. Symmetries and Groups in Signal Processing. Springer, New York, 2010.

[27] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press, MA
1996.

[28] P. P. Vaidyanathan. Theory and design fo M-channel maximally decimated quadrature
mirror filters with arbitrary M, having perfect reconstruction property. IEEE Trans. on
Acoustics, Speech and Signal Processing., ASSP-35: 476–492, 1987.

[29] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall, 1993.

[30] P. P. Vaidyanathan and A. Kirac. Theory of cyclic filter banks. Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., pp. 2449–2452, 1997.

[31] P. P. Vaidyanathan and A. Kirac. Cyclic LTI Systems in Digital Signal Processing. IEEE
Trans. Signal Process., 47(2):433–447, 1999.

[32] M. Vetterli Filter banks allowing for perfect reconstruction. Signal Processing. 10:219–244,
1986.

17

http://arxiv.org/abs/1605.04127
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