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GRAM MATRIX ASSOCIATED TO CONTROLLED FRAMES

E. OSGOOEI AND A. RAHIMI

Abstract. Controlled frames have been recently introduced in Hilbert spaces
to improve the numerical efficiency of interactive algorithms for inverting the
frame operator. In this paper, unlike the cross-Gram matrix of two different
sequences which is not always a diagnostic tool, we define the controlled-Gram
matrix of a sequence as a practical implement to diagnose that a given sequence
is a controlled Bessel, frame or Riesz basis. Also, we discuss the cases that the
operator associated to controlled Gram matrix will be bounded, invertible,
Hilbert-Schmidt or a trace-class operator. Similar to standard frames, we
present an explicit structure for controlled Riesz bases and show that every
(U,C)-controlled Riesz basis {fk}

∞

k=1
is in the form {U−1CMek}

∞

k=1
, where M

is a bijective operator on H. Furthermore, we propose an equivalent accessible
condition to the sequence {fk}

∞

k=1
being a (U,C)-controlled Riesz basis.

1. INTRODUCTION

Frames in Hilbert spaces were first introduced by Duffin and Schaeffer to deal
with nonharmonic Fourier series in 1952 [9] and widely studied from 1986 since
the great work by Daubechies, Grossmann and Meyer constructed [8]. Nowadays
frames play an important role in pure and applied mathematics, also have many
applications in signal processing [10], coding and communications [20], filter bank
theory [5]. We refer to [6, 7] for an introduction to frame theory and its applications.

Controlled frames as a generalization of frames, have been introduced for getting
an improved solution of a linear system of equation Ax = B, which this system
can be solved by equation PAx = PB, where P is a suitable matrix to get a
better duplicate algorithm [4]. Controlled frames used earlier just as a tool for
spherical wavelets and the relation between controlled frames and standard frames
were developed in [3]. The main advantage of these frames lies in the fact that
they retain all the advantages of standard frames but additionally they give a
generalized way to check the frame condition while offering a numerical advantage
in the sense of preconditioning. Recent developments in this direction can be found
in [11, 12, 14, 17, 18, 19] and the references therein.

A sequence {fk}k∈I ⊆ H is a frame for H if there exist 0 < A ≤ B < ∞ such
that

(1.1) A‖f‖2 ≤
∑

k∈I

|〈f, fk〉|
2 ≤ B‖f‖2, f ∈ H.

The constants A and B are called lower and upper frame bounds, respectively. The
sequence {fk}k∈I ⊆ H is a Bessel sequence for H , if the right hand inequality in
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(1.1), holds for all f ∈ H.
Let {fk}k∈I be a Bessel sequence for H . Then the operator

T : ℓ2(N) → H, T {ck}k∈I =
∑

k∈I

ckfk,

is called the synthesis operator and its adjoint

T ∗ : H → ℓ2(N), T ∗f = {〈f, fk〉}k∈I ,

is called the analysis operator of {fk}k∈I . By composing the operators T and T ∗, we
get the frame operator S = TT ∗, which is a bounded, positive, invertible operator
and AI ≤ S ≤ BI.

A Riesz basis for H is a family of the form {Uek}
∞
k=1, where {ek}

∞
k=1 is an

orthonormal basis for H and U is a bounded bijective operator on H .
Checking equation (1.1) is not always an easy task in practice. So the conditions for
a sequences {fk}k∈I being a Bessel sequence, frame, or Riesz basis can be expressed
in terms of the so-called Gram matrix.

1.1. Gram matrix of discrete frames. If {fk}
∞
k=1 is a Bessel sequence, we can

compose the synthesis operator T and its adjoint T ∗ to obtain the bounded operator

T ∗T : ℓ2(N) → ℓ2(N); T ∗T {ck}
∞
k=1 =

{

〈

∞
∑

ℓ=1

cℓfℓ, fk〉

}∞

k=1

.

This operator is called the Gram operator on ℓ2(N) associated to {fk}
∞
k=1 and

corresponds to a matrix given by

T ∗T = {〈fk, fj〉}
∞
j,k=1.

The matrix {〈fk, fj〉}
∞
j,k=1 is called the matrix associated with {fk}

∞
k=1 or Gram

matrix.
The ability of combining the synthesis and analysis operators of a Bessel sequence

to make a sensitive operator is essential in frame theory and its applications. For
example in [15], for given two different Bessel sequences {fk}k∈I and {gk}k∈I the
synthesis operator of {fk}k∈I with the analysis operator of {gk}k∈I is composed
and a fundamental operator is generated. This operator is called the cross-Gram
operator associated with the sequence {〈fk, gj〉}

∞
j,k=1 [2, 16] and the conditions that

this operator be well-defined bounded or invertible is studied.
In this paper, we introduce the Gram operator of controlled frames as a practical

tool and discuss the cases in which this operator can be well-defined, bounded,
Hilbert-Schmidt, trace class, compact and invertible.

The content of this paper is as follows: In Section 2, the Gram operator and Gram
matrix of (U,C)-controlled frames introduced and a practical method to diagnose
Bessel sequence is given by the concept of controlled Gram matrix. Also a bounded
operator from ℓ1(N) to ℓ∞(N) is achieved with the assumption that the controlled
Gram operator is well-defined and bounded on ℓ2(N). In Section 3, the general
construction of (U,C)-controlled Riesz bases proposed and an equivalent feasible
method for {fk}

∞
k=1 to being a (U,C)-controlled Riesz basis, given. Throughout

this paper, H is a separable Hilbert space and GL(H) is the space of all bounded
and invertible operators on H and GL+(H) is the space of all bounded, invertible
and positive operators on H . Also U,C ∈ GL(H).
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2. Gram matrix of controlled frames

Controlled frames with one and two controller operators were first introduced
in [3] and [14], respectively. They are equivalent to standard frames and so this
concept gives a generalization way to check the frame conditions.

Definition 2.1. Let {fk}k∈I be a sequence of vectors in a Hilbert space H and
U,C ∈ GL(H). Then {fk}k∈I is called a frame controlled by U and C or (U,C)-
controlled frame if there exist two constants 0 < A ≤ B < ∞, such that

(2.1) A‖f‖2 ≤
∑

k∈I

〈f, Ufk〉〈Cfk, f〉 ≤ B‖f‖2, f ∈ H.

If only the right inequality holds, then we call {fk}k∈I a (U,C)-controlled Bessel
sequence. If A = B then {fk}k∈I is called a (U,C)-controlled tight frame.

Let F = {fk}k∈I be a Bessel sequence of elements in H . We define the synthesis
operator TUF ,

TUF : ℓ2(I) → H, TUF ({ak}k∈I) =
∑

k∈I

akUfk, {ak}k∈I ∈ ℓ2(I),

and the adjoint operator T ∗
UF which is called the analysis operator is as follows:

T ∗
UF : H → ℓ2(I), T ∗

UF = {〈f, Ufk〉}k∈I

Now we define the controlled frame operator SUC on H

SUCf = TCFT
∗
UF f =

∑

k∈I

〈f, Ufk〉Cfk, f ∈ H.

It is easy to see that if F = {fk}k∈I is a (U,C)-controlled frame with bounds AUC

and BUC , then SUC is well-defined and

AUCIdH ≤ SUC ≤ BUCIdH .

Hence SUC is a bounded, invertible, self-adjoint and positive linear operator. There-
fore, we have SUC = S∗

UC = SCU [3, 14].

Proposition 2.2. [14] Let U,C ∈ GL(H) and F be a family of vectors in a Hilbert
space H. Then the following statements hold:

(1) If F is a (U,C)-controlled frame for H. Then F is a frame for H.
(2) If F is a frame for H and CSFU

∗ is a positive operator, then F is a (U,C)-
controlled frame for H.

By the above proposition for a frame F which is also a (U,C)-controlled frame
for H , we have

CSFU
∗ = SUC = S∗

UC = USFC
∗ = SCU .

Also we have new reconstruction formula as follows:

f =
∑

i∈I

〈f, Ufi〉S
−1
UCCfi =

∑

i∈I

〈f, S−1
UCUfi〉Cfi, f ∈ H.

Proposition 2.3. [6] Let T : H → H be a linear operator. Then the following
conditions are equivalent:

(1) There exist A > 0 and B < ∞, such that AI ≤ T ≤ BI;
(2) T is positive and there exist A > 0 and B < ∞, such that A‖f‖2 ≤

‖T
1

2 f‖2 ≤ B‖f‖2;
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(3) T is positive and T
1

2 ∈ GL(H).
(4) There exists a self-adjoint operator S ∈ GL(H), such that S2 = T ;
(5) T ∈ GL(+)(H);
(6) There exist constants A > 0 and B < ∞ and an operator C ∈ GL(+)(H)

such that AC ≤ T ≤ BC;
(7) For every C ∈ GL(+)(H), there exist constants A > 0 and B < ∞ such

that AC ≤ T ≤ BC.

Since controlled frames and standard frames are equivalent in some cases, we
define the Gram matrix of controlled frames as an effective tool to diagnose the
controlled Bessel, frame or Riesz bases. But as we see the results are not always
the same as cross-Gram matrix or Gram matrix of standard frames.

If {fk}
∞
k=1 is a (U,C)-controlled Bessel sequence, we can compose the synthesis

operator TCF and T ∗
UF , so we obtain the bounded operator

T ∗
UFTCF : ℓ2(N) → ℓ2(N), T ∗

UFTCF{ak}
∞
k=1 = {〈

∞
∑

j=1

ajCfj , Ufk〉}
∞
k=1.

We call this operator the (U,C)-controlled Gram operator.
Suppose that {ek}

∞
k=1 is the canonical orthonormal basis for ℓ2(N), the jk-th entry

in the matrix representation of T ∗
UFTCF is

T ∗
UFTCF = {〈Cfj , Ufk〉}

∞
k,j=1.

The matrix {〈Cfj, Ufk〉}
∞
k,j=1 is called the Gram matrix associated to (U,C)-

controlled Bessel sequence {fk}
∞
k=1 or (U,C)-controlled Gram matrix associated

to {fk}
∞
k=1.

Remark 2.4. The above argument shows that if {fk}
∞
k=1 is a (U,C)-controlled Bessel

sequence, the (U,C)-controlled Gram matrix associated to {fk}
∞
k=1 is well-defined

and bounded.

Example 2.5. Let {ek}
∞
k=1 be the canonical orthonormal basis for ℓ2(N). Consider

the sequence f2k+1 = e2k+1 − e2k+2, k = 0, 1, 2, ... and f2k = e2k−1 + e2k, k =
1, 2, 3, .... If we define the operators

C : ℓ2(N) → ℓ2(N), C(x1, x2, x3, x4, ...) = (−x1, x2,−x3, x4, ...)

and

U : ℓ2(N) → ℓ2(N), U(x1, x2, x3, x4, ...) = (x1,−x2, x3,−x4, ...).

Then a straight calculation shows that {fk}
∞
k=1 is a (U,C)-controlled tight frame for

ℓ2(N) with bound 2 and the (U,C)-controlled Gram matrix associated to {〈Cfk, Ufj〉}
∞
j,k=1

is well-defined and bounded on ℓ2(N) with bound 2.

In Example 2.1 of [15], we saw that although the cross-Gram matrix associated
to {〈fk, gj〉}

∞
j,k=1 is well-defined and bounded, {fk}

∞
k=1 is not a Bessel sequence.

Now a logical question is that: can we say the sequence {fk}
∞
k=1 is Bessel if the

(U,C)-controlled Gram matrix associated to {fk}
∞
k=1 is well-defined and bounded?

The following lemma shows that the answer is positive.

Lemma 2.6. Suppose that U,C ∈ GL(H) and the (U,C)-controlled Gram ma-
trix associated to {fk}

∞
k=1 is well-defined and bounded. Then {fk}

∞
k=1 is a Bessel

sequence.
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Proof. By assumption, there exists M > 0 such that

(2.2)

∞
∑

k=1

|

∞
∑

j=1

cj〈Cfj , Ufk〉|
2 ≤ M

∞
∑

k=1

|ck|
2, {ck}

∞
k=1 ∈ ℓ2(N).

Consider {ck}
∞
k=1 = (0, ..., 1, 0, ...), we get

(2.3)

∞
∑

k=1

|〈CfJ , Ufk〉|
2 ≤ M, J ∈ N.

or

(2.4)

∞
∑

k=1

|〈U∗CfJ , fk〉|
2 ≤ M, J ∈ N.

Suppose that {fk}
∞
k=1 is not a Bessel sequence, then for all integer N > 0 there

exists gN ∈ H such that

(2.5)

∞
∑

k=1

|〈gN , fk〉|
2 > N‖gN‖2.

Therefore three cases may happen:
Case 1. If gN ∈ {U∗Cfk}

∞
k=1, then there exists j ∈ N such that U∗Cfj = gN .

Therefore by (2.5), we have

(2.6)
∞
∑

k=1

|〈U∗Cfj , fk〉|
2 > N‖gN‖2,

which is a contradiction with (2.4).
Case 2. If gN ∈ span{U∗Cfk}

∞
k=1. Then

(2.7)

∞
∑

k=1

|〈

∞
∑

j=1

cjU
∗Cfj, fk〉|

2 > N‖gN‖2

or

(2.8)

∞
∑

k=1

|

∞
∑

j=1

cj〈Cfj , Ufk〉|
2 > N‖gN‖2,

which is a contradiction with (2.2).
Case 3. If gN /∈ span{U∗Cfk}

∞
k=1. Consider M = span{U∗Cfk}

∞
k=1. Then, we can

write gN = pN + hN , where pN ∈ M and hN ∈ M⊥, hN 6= 0, where M⊥ is the
orthogonal complement of M in H . Now, we have

(2.9)

∞
∑

k=1

|〈gN , fk〉|
2 =

∞
∑

k=1

|〈pN + hN , fk〉|
2 =

∞
∑

k=1

〈pN , fk〉|
2 > N‖gN‖2,

Which is a contradiction like case 2. Therefore {fk}
∞
k=1 is a Bessel sequence. �

Lemma 2.7. Let {fk}
∞
k=1 be a (U,C)-controlled Bessel sequence, then {fk}

∞
k=1 is

a Bessel sequence in H.
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Proof. Let SUC be the frame operator of {fk}
∞
k=1. Define SF = C−1SUC(U

∗)−1.
Since SUC , U and C are bounded operators, SF is well-defined and bounded. There-
fore, there exists B > 0 such that

∞
∑

k=1

|〈f, fk〉|
2 = 〈SF f, f〉 ≤ B‖f‖2.

�

Definition 2.8. [13] Suppose that E is an orthonormal basis for H . A bounded
operator T ∈ B(H) is called a Hilbert-Schmidt operator if

‖T ‖2 =

√

∑

x∈E

‖Tx‖2 < ∞

Definition 2.9. [13] Suppose that E is an orthonormal basis for H . A bounded
operator T ∈ B(H) is called a trace-class operator if

‖T ‖1 =
∑

x∈E

〈|T |(x), x〉 < ∞

We denote the class of all Hilbert-Schmidt operators on H and the class of
trace-class operators on H by L2(H) and L1(H), respectively. In [13], we see that
L1(H) ⊆ L2(H).

Theorem 2.10. (Polar Decomposition)[13] Let V be a bounded linear operator on
H. Then there is a unique partial isometry U ∈ B(H) such that

V = U |V |, ker(U) = ker(V ).

Moreover, U∗V = |V |.

Theorem 2.11. Suppose that U,C ∈ GL(H). Let F = {fk}
∞
k=1 be a (U,C)-

controlled frame and GCU is the (U,C)-controlled Gram operator associated to
{fk}

∞
k=1. Then

(1) GCU is a Hilbert-Schmidt operator if and only if H is finite dimensional.
(2) GCU is a trace-class operator if and only if H is finite dimensional.

Proof. (1) Suppose that dimH < ∞. By Lemma 2.7, {fk}
∞
k=1 is a Bessel

sequence. Therefore there exists B < ∞ such that

‖GCU‖
2
2 =

∞
∑

j=1

∞
∑

k=1

|〈Cfj , Ufk〉|
2 =

∞
∑

j=1

∞
∑

k=1

|〈fj , C
∗Ufk〉|

2

=
∞
∑

k=1

∞
∑

j=1

|〈fj , C
∗Ufk〉|

2 ≤ B
∞
∑

k=1

‖C∗Ufk‖
2 ≤ B‖C∗‖2‖U‖2

∞
∑

k=1

‖fk‖
2.(2.10)

Therefore by Proposition 5.1. in [1], GCU is a Hilbert-Schmidt operator.
Now suppose that GCU is a Hilbert-Schmidt operator. By Proposition 2.2,
{fk}

∞
k=1 is a frame for H , therefore there exists A > 0 such that

A‖(C∗U)−1‖−2
∞
∑

k=1

‖fk‖
2 ≤

∞
∑

k=1

∞
∑

j=1

|〈Cfj , Ufk〉|
2

=

∞
∑

j=1

∞
∑

k=1

|〈Cfj , Ufk〉|
2 = ‖GCU‖

2
2.
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The proof is evident by Proposition 5.1. in [1].
(2) Suppose that dimH < ∞. By polar decomposition, there is a unique partial

isometry M ∈ B(ℓ2(N)) such that |GCU | = M∗GCU and GCU = M |GCU |.
Therefore

(2.11) |GCU | = M∗T ∗
UFTCF .

Now we show that TCF is a Hilbert-Schmidt operator. Suppose that {ek}
∞
k=1

is the canonical orthonormal basis for ℓ2(N). So we have

‖TCF‖
2
2 =

∑

{ek}∞

k=1

‖TCF (ek)‖
2 =

∞
∑

k=1

‖Cfk‖
2 ≤ ‖C‖2

∞
∑

k=1

‖fk‖
2.

Therefore by Proposition 5.1. in [1], TCF is a Hilbert-Schmidt operator.
Since ‖TUF‖2 = ‖T ∗

UF ‖2, we deduce that T ∗
UF is also a Hilbert-Schmidt

operator. Now by Theorems 2.4.10. and 2.4.13. in [13] and (2.11), |GCU |
is a trace-class operator. Since GCU = M |GCU |, by Theorem 2.4.15 in [13],
GCU is a trace-class operator.
Vice versa, let GCU is a trace-class operator. Since L1(H) ⊆ L2(H), we
deduce that GCU is a Hilbert-Schmidt operator and so H is a finite dimen-
sional space by part (1).

�

Corollary 2.12. If H is finite dimensional and {fk}
∞
k=1 is a (U,C)-controlled

frame. Then GCU is a compact operator.

The following proposition gives a well-defined and bounded operator from ℓ1(N)
to ℓ∞(N) when the (U,C)-controlled Gram matrix is well-defined and bounded on
ℓ2(N).

Proposition 2.13. Suppose that the (U,C)-controlled Gram matrix associated to
{fk}

∞
k=1, is well-defined and bounded. Then a bounded operator can be defined from

ℓ1(N) to ℓ∞(N).

Proof. Suppose thatGCU is the operator associated to the matrix {〈Cfj , Ufk〉}
∞
k,j=1.

Since GCU is well-defined and bounded on ℓ2(N), for {ck}
∞
k=1 ∈ ℓ2(N), there exists

B > 0 such that

(2.12)

∞
∑

k=1

|

∞
∑

j=1

cj〈Cfj , Ufk〉|
2 ≤ B

∞
∑

k=1

|ck|
2.

Therefore for each j ∈ N,

(2.13)

∞
∑

k=1

|〈Cfj , Ufk〉|
2 ≤ B.

ConsiderMj,k = 〈Cfj , Ufk〉 andM = {Mj,k}
∞
j,k=1. ThenM{ck}

∞
k=1 = {

∑∞
j=1 Mk,jcj}

∞
k=1.

Now, we show that M defines a well-defined and bounded operator from ℓ1(N) to
ℓ∞(N).
First, we show that

∑∞
j=1 Mk,jcj is convergent for each k ∈ N. Given arbitrary

n,m ∈ N, n ≥ m

|

n
∑

j=m+1

Mk,jcj |
2 ≤ (

n
∑

j=m+1

|Mk,j ||cj |)
2 ≤ (

n
∑

j=m+1

|Mk,j |
2)(

n
∑

j=m+1

|cj |
2).
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By (2.13) and since ℓ1(N) ⊆ ℓ2(N), we get the result. Now, we show that M is a
bounded operator. For {ck}

∞
k=1 ∈ ℓ1(N), we have

‖M{ck}
∞
k=1‖

2
∞ = ‖{

∞
∑

j=1

Mk,jcj}
∞
k=1‖

2
∞ = sup

k∈N

|
∞
∑

j=1

Mk,jcj|
2

≤

∞
∑

j=1

|cj |
2 sup
k∈N

(

∞
∑

j=1

|Mk,j |
2)

≤ B

∞
∑

j=1

|cj |
2 ≤ B

∞
∑

j=1

|cj |.

�

3. (U,C)-controlled Riesz basis

In this section, we propose a clear structure of (U,C)-controlled Riesz basis and
show that every (U,C)-controlled Riesz basis is a (U,C)-controlled frame. Also an
equivalent condition for a sequence {fk}

∞
k=1 being controlled Riesz basis given.

Definition 3.1. Suppose that {ek}
∞
k=1 is an orthonormal basis for H. A (U,C)-

controlled Riesz basis for H is a family of the form {U−1CMek}
∞
k=1, where M is a

bounded bijective operator on H .

Corollary 3.2. Every (U,C)-controlled Riesz basis is a Riesz basis for H.

Lemma 3.3. Suppose that U is a positive invertible operator on a Hilbert space H.
Then U−1 is positive.

Proof. Since U is an invertible operator, for each x ∈ H , there exists y ∈ H such
that Uy = x. So

〈U−1x, x〉 = 〈U−1Uy, Uy〉 = 〈y, Uy〉 ≥ 0

�

Lemma 3.4. [7] If two bounded self-adjoint linear operators S and T on a Hilbert
space H are positive and commute, then their product ST is positive.

Theorem 3.5. Suppose that {fk}
∞
k=1 is a (U,C)-controlled Riesz-basis for H. As-

sume that U,C ∈ GL+(H) and U−1 and C commute. Then {fk}
∞
k=1 is a (U,C)-

controlled frame.

Proof. Since {fk}
∞
k=1 is a (U,C)-controlled Riesz-basis, for each f ∈ H , we have

∞
∑

k=1

〈f, Ufk〉〈Cfk, f〉 =

∞
∑

k=1

〈f, CMek〉〈CU−1CMek, f〉

=

∞
∑

k=1

〈f, CMek〉〈CMek, (U
−1)∗C∗f〉.(3.1)
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Consider gk = CMek, for each k ∈ N. Then {gk}
∞
k=1 is a Riesz basis for H . So by

(3.1), we have
∞
∑

k=1

〈f, Ufk〉〈Cfk, f〉 = 〈TgkT
∗
gk
f, (U−1)∗C∗f〉

= 〈Sgkf, (U
−1)∗C∗f〉

= 〈CU−1Sgkf, f〉.

Since U,C ∈ GL+(H) and U−1 and C commute by Lemma 3.3 and 3.4, CU−1 ∈
GL+(H). Since Sgk ∈ GL+(H), by Proposition 2.3, there exist A > 0 and B < ∞,
such that AI ≤ CU−1Sgk ≤ BI. �

Theorem 3.6. If {fk}
∞
k=1 is a (U,C)-controlled Riesz basis for H, then {fk}

∞
k=1

is a Bessel sequence. Furthermore, there exists a unique controlled Riesz basis
sequence {gk}

∞
k=1 for H such that for any f ∈ H

(1) f =
∑∞

k=1〈f, gk〉fk =
∑∞

k=1〈f, fk〉gk.
(2) f =

∑∞
k=1〈f, Ugk〉Cfk =

∑∞
k=1〈f, Cfk〉Ugk.

Proof. (1) Suppose that {ek}
∞
k=1 is an orthonormal basis for H. Since {fk}

∞
k=1

is a (U,C)-controlled Riesz basis, there exists a bounded bijective operator
M on H such that fk = U−1CMek for each k ∈ N. So we have

M−1C−1f =

∞
∑

k=1

〈M−1C−1f, ek〉ek, f ∈ H,

so

f =

∞
∑

k=1

〈f, (C−1)∗(M−1)∗ek〉CMek, f ∈ H,

therefore

U−1f =

∞
∑

k=1

〈f, (C−1)∗(M−1)∗ek〉U
−1CMek, f ∈ H,

and

f =

∞
∑

k=1

〈f, U∗(C−1)∗(M−1)∗ek〉fk, f ∈ H.

Therefore by considering gk = U∗(C−1)∗(M−1)∗ek, {gk}
∞
k=1 is a ((U

∗)−1, (C∗)−1)-
controlled Riesz basis. A simple calculation shows that {gk}

∞
k=1 is a unique

sequence that satisfies in (1).
(2) Considering gk = U−1(C−1)∗U∗(C−1)∗(M−1)∗ek, we get a unique (C

∗U,U∗(C−1)∗)-
controlled Riesz basis, which satisfies in (2).

�

Corollary 3.7. If the sequences {fk}
∞
k=1 and {gk}

∞
k=1 satisfy in part (2) of Theorem

3.6, then 〈Cfk, Ugj〉 = δk,j.

Analogous to Theorem 3.6.6. of [6], the following theorem gives an equivalent
and practical condition for a sequence {fk}

∞
k=1 being a (U,C)-controlled Riesz basis.

Theorem 3.8. Suppose that U,C ∈ GL+(H). Assume that U and U−1 commute
with C. For a sequence {fk}

∞
k=1 in H, the following conditions are equivalent:

(1) {fk}
∞
k=1 is a (U,C)-controlled Riesz basis for H.
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(2) {fk}
∞
k=1 is complete in H, and there exist constants L, P > 0 such that for

{ck}
∞
k=1 ∈ ℓ2(N) one has

(3.2) L

∞
∑

k=1

|ck|
2 ≤ |〈

∞
∑

k=1

ckUfk,

∞
∑

k=1

ckCfk〉| ≤ P

∞
∑

k=1

|ck|
2.

Proof. (1) (1) ⇒ (2). Assume that {fk}
∞
k=1 is a (U,C)-controlled Riesz basis,

then there exists a bijective operator M on H such that fk = U−1CMek,
for each k ∈ N. By Theorem 3.6, {fk}

∞
k=1 is complete in H . For {ck}

∞
k=1 ∈

ℓ2(N) we have

|〈
∞
∑

k=1

ckUfk,
∞
∑

k=1

ckCfk〉| = |〈
∞
∑

k=1

ckCMek,
∞
∑

k=1

ckCU−1CMek〉|

= |〈CM(

∞
∑

k=1

ckek), CU−1CM(

∞
∑

k=1

ckek)〉|.(3.3)

By Lemma 3.3 and 3.4, CU−1 ∈ GL+(H). So there exist A > 0 and B < ∞
such that

A‖CM(

∞
∑

k=1

ckek)‖
2 ≤ |〈CM(

∞
∑

k=1

ckek), CU−1CM(

∞
∑

k=1

ckek)〉|

≤ B‖CM(
∞
∑

k=1

ckek)‖
2.(3.4)

Since

B‖CM(

∞
∑

k=1

ckek)‖
2 ≤ B‖CM‖2

∞
∑

k=1

|ck|
2,

and

A‖(CM)−1‖−2
∞
∑

k=1

|ck|
2‖ ≤ ‖CM(

∞
∑

k=1

ckek)‖
2,

by (3.3) and (3.4), we deduce that

A‖(CM)−1‖−2
∞
∑

k=1

|ck|
2 ≤ |〈

∞
∑

k=1

ckUfk,

∞
∑

k=1

ckCfk〉| ≤ B‖CM‖2
∞
∑

k=1

|ck|
2.

So considering P = B‖CM‖2 and L = A‖(CM)−1‖−2, we get the proof.
(2) (2) ⇒ (1) First, we show that {fk}

∞
k=1 is a Bessel sequence. For this since

CU ∈ GL+(H), for {ck} ∈ ℓ2(N), we have

|〈(CU)(

∞
∑

k=1

ckfk,

∞
∑

k=1

ckfk)〉| = |〈(CU)
1

2 (

∞
∑

k=1

ckfk), (CU)
1

2 (

∞
∑

k=1

ckfk)〉|

= ‖(CU)
1

2 (

∞
∑

k=1

ckfk)‖
2.(3.5)
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Now, we show that
∑∞

k=1 ckfk is convergent. Given arbitrary elements
m,n ∈ N, n > m, by (3.2) and (3.5), for {ck}

∞
k=1 ∈ ℓ2(N), we have

‖

n
∑

k=m+1

ckfk‖
2 = ‖(CU)

−1

2 (CU)
1

2 (

n
∑

k=m+1

ckfk)‖
2

≤ ‖(CU)
−1

2 ‖2‖(CU)
1

2 (

n
∑

k=m+1

ckfk)‖
2

= ‖(CU)
−1

2 ‖2P
n
∑

k=m+1

|ck|
2(3.6)

Therefore
∑∞

k=1 ckfk is convergent and {fk}
∞
k=1 is a Bessel sequence and so

{C−1Ufk}
∞
k=1 is a Bessel sequence. Choose an orthonormal basis {ek}

∞
k=1

for H , and extend by Lemma 3.3.6 in [7], the mapping Mek = C−1Ufk
to a bounded operator on H . In the same way, extend V (C−1Ufk) = ek
to a bounded operator on H . Then MV = VM = I, so M is invertible,
therefore {fk}

∞
k=1 is a (U,C)-controlled Riesz basis.

�

The following theorem gives a practical method to diagnose that {fk}
∞
k=1 is a

(U,C)-controlled Riesz basis.

Theorem 3.9. Suppose that U,C ∈ GL+(H). Assume that U and U−1 commute
with C. For a sequence {fk}

∞
k=1 in H, the following conditions are equivalent:

(1) {fk}
∞
k=1 is a (U,C)-controlled Riesz basis.

(2) {fk}
∞
k=1 is complete and it’s controlled-Gram matrix {〈Cfk, Ufj〉}

∞
j,k=1 de-

fines a bounded, invertible operator on ℓ2(N).
(3) {fk}

∞
k=1 is complete, (U,C)-controlled Bessel sequence and has a complete

biorthogonal sequence that is also a (U,C)-controlled Bessel sequence.

Proof. By a similar calculation of Theorem 3.4.4 in [7], Corollary 3.7 and Theorem
3.8, we get the proof. �
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