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Abstract

We study a localization of functions defined on Vilenkin groups. To measure the
localization we introduce two uncertainty products U Py and U Pg that are similar to the
Heisenberg uncertainty product. U Py and U Pg differ from each other by the metric used
for the Vilenkin group G. We discuss analogs of a quantitative uncertainty principle.

Representations for U Py and U Pg in terms of Walsh and Haar basis are given.
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1 Introduction

An uncertainty product for a function characterizes how concentrated is the function in
time and frequency domain. Initially the notion of uncertainty product was introduced for
f € Ly(R) by W. Heisenberg [6] and E. Schrédinger [12]. Later on extensions of this no-
tion appeared for various algebraic and topological structures. For periodic functions, it
was suggested by E. Breitenberger [I]. For some particular cases of locally compact groups
(namely a euclidean motion groups, non-compact semisimple Lie groups, Heisenberg groups)
the counterpart was derived in [II]. Uncertainty products on compact Riemannian manifolds
was discussed in [4]. In [8], this concept was introduced for functions defined on the Cantor
group. In this paper, we discuss localization of functions defined on Vilenkin groups.

To measure the localization we introduce a functional that is similar to the Heisenberg
uncertainty product (see Definition [). It depends on the metric used for the Vilenkin group

G. Two equivalent metrics are in common use for the group G. So we discuss two uncertainty
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products U Py and U Pg. The first one is a strict counterpart of “dyadic uncertainty constant”
introduced in [§] (see Theorems [l and 2]). Usage of another metric in the second uncertainty
product allows for exploitation of a modified Gibbs derivative that plays a role of usual
derivative for the Heisenberg uncertainty product. At the same time it turns out that usage
of Haar basis is a good approach for evaluation of UPg (see Theorem [3)). In particular, it
allows for an estimate of Fourier-Haar coefficients for functions defined on the Vilenkin group

(see Corollary ). The connection between U Py and U Py is showed in Lemma Il

2 Auxiliary results

We recall necessary facts about the Vilenkin group. More details can be found in [3] [13]. The
Vilenkin group G = G, p € N, p # 1, is a set of the sequences

r=(x;) =(..,0,0,0 k, T py1, T ps2,...),

where z; € {0,...,p — 1} for j € Z. The operation on G is denoted by & and defined as the

coordinatewise addition modulo p :
(zj) = (x;) ® (y;) <= zj =z;+y; (modp) for jeZ.

The inverse operation of & is denoted by &. The symbol Sx denotes the inverse element of
x € G. The sequence 0 = (...,0,0,...) is a neutral element of G. If x # 0, then there exists
a unique number N = N(z) such that 2y # 0 and z; = 0 for j < N. The Vilenkin group G,
where p = 2 is called the Cantor group. In this case the inverse operation © coicides with the
group operation @.

Define a map A : G — [0, 400)

Az) = ijp_j_l, r=(z;) € G.

The mapping  — A(z) is a bijection taking G\ Qp onto [0, co), where Q is a set of all
elements terminating with p — 1’s.

Two equivalent metrics are in common use for the group G. One metric is defined by
di(z,y) = ANz oy) for x,y € G. To define another one dy we consider a map || - [|¢ : G —
[0, 00), where ||0]|¢ := 0 and ||z||g := p~¥@ for # # 0. Then da(z,y) = ||z ©yllg, 2,y € G.
Given n € Z and x € G, denote by I,(z) the ball of radius 27" with the center at z, i.e.

I(x)={y e G:d(z,y) <27"}.

For brevity we set I, := 1;(0) and I := I,.

We denote dilation on G by D : G — G, and set (Dz), = x4 for z € G. Then
D7': G — G is the inverse mapping (D 'x), = 2. Set D¥ = Do---0 D (k times) if
k>0,and D¥ =D to...0 D! (—k times) if k¥ < 0; D° is the identity mapping.
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We deal with functions taking G to C. Denote 1 the characteristic function of a set
E c G. Given a function f: G — C and a number h > 0, for every z € G we define
fon(z) = f(x ®A7'(h)). Finally, we set for j € Z

fin(@) =2 fon(D’z), 2€G.

The functional spaces L,(G) and L,(E), where E is a measurable subset of G, are
derived using the Haar measure (see [7]).
Given ¢ € (G, a group character of G is defined by

Xe(z) = x(z,€) —eXp< vaﬁlj)-

JEZ

The functions w,(z) := x(A7}(n),z) are called the generalized Walsh functions. If p = 2,
than w,, are called the Walsh functions.
The Fourier transform of a function f € L'(G) is defined by

_ /G @)X @)du(z), weG. 1)

The Fourier transform is extended to Lo(G) in a standard way, and the Plancherel equality

takes place

/ F(2)9(@) dz = / FfEFE) de = (Ff.Fg), f.g€ Lo(G).

The inversion formula is valid for any f € Ly(G)

FUFS@) = [ PR w)dule) = (o)
It is straightforward to see that

F(fin) (&) =p?x(k, DEFF(DE), nely,jeL (2)

The discrete Vilenkin-Chrestenson transform of a vector z = (2 ),—gpr—1 € Cr" is a

vector § = (Yi)p—ozi=t € C*", where

pt—1
Yp =D Zzswk Y(s/p"), 0<k<p'—1. (3)
The inverse transform is
pt—1
T = Zyswk Hs/pn). 0<k<p'—1. (4)



Given f : Gy — C, the function

_7}133022) i Jop-i-1(x))

Jj=-n

is called the Gibbs derivative of a function f. The following properties hold true

FUE) = MOFf(E), whil(z) = nw,(2). (5)

Set ¢ = 1;. The Haar functions ¢, v =1,...,p — 1 are defined by

pZI exp <2m”") o(Dz ® A (n)). (©)

The system ¢, v=1,....,p—1,j € Z, k € Z, forms an orthonormal basis (Haar basis)

for Ly(G), see [5, 9.

It follows from (I)) that Fip = ¢ = 1; and F'¢» = L ygx-1(,—). Taking into account (£,

we get
F@DZk(f) _J/2 (k D~ ]5)]11 FBAH((p—v)p?)- (7)
Given f € Ly(G), the modified Gibbs derivative D is defined by
FDf = |- laFf. (8)
It was introduced in [2] for L, (G3). Such kind of operators are often called pseudo-differential.

Proposition 1. Suppose g, Fg, ||-||cFg are locally integrable on G, j € Z. Then the assertion
supp g C I_j_1\1_; is necessary and sufficient for g to be an eigenfunction of D corresponding
to the eigenvalue p’.

The proof can be rewritten from Proposition 1 [I0], where it is proved for the Cantor

group.

Corollary 1. Any Haar function vy, is an eigenfunction of D* corresponding to the eigen-
value p’.

Proof. The statement follows from Proposition [ and (). O

3 Uncertainty product and metrics

Originally, the concept of an uncertainty product was introduced for the real line case in 1927.
The Heisenberg uncertainty product of f € Ly(R) is the functional UCy(f) := AyAz such
that

835 ke [ = e PU@P s, &%= 1Tl [0 - 170 R ar



2y = |12 / tlf@)Pdr, 7=l /Rtlf(t)l”t’

where f denotes the Fourier transform of f € Ly(R). It is well known that UCy(f) > 1/2
for a function f € Ly(R) and the minimum is attained on the Gaussian. To motivate the
definition of a localization characteristic for the Vilenkin group we note that on one hand z;

is the solution of the minimization problem

min [ (0= 2P\ de.

(132

and on another hand the sense of the sign “-” in the definition of A is the distance between

x and x¢. So we come to the main definition.

Definition 1. Suppose f: G — C, f € Ly(G), and d is a metric on G, then a functional

UP(f)=V(f)V(Ff), where

! i )2 f(x)]? de
V) = i | 22 @)Ra

is called the uncertainty product of a function f defined on the Vilenkin group.

Thus, we study two uncertainty products U Py and U Py that corresponds to the metric
di(z,y) := Mz e y) and dy(z,y) = ||z © y||¢. More precisely,
UP)\(f) = V)\(f)V)\(Ff), where

1
1712,
The functional U P is defined as

VA(f) = min /G (A © B)2I1 (0)]? d.

UPs(f) :=Va(f)Va(Ff), where

Va(f) = min / o & 211 ()2 d.

112, H 12(G)
The functional UP, for functions defined on the Cantor group was introduced and
studied in [§]. The following results are extended from the Cantor group to the Vilenkin

group without any essential changes. So we omit the proofs.
Theorem 1. Suppose f: G — C, f € Ly(G). Then the following inequality holds true

UP\(f) > C, where C ~ 8.5 x 107°.

Theorem 2. Let f(x) = Ly-1j,1)(x) > pro axWi(x) be a uniformly convergent series. Denote

p"—1

fn(@) = Lx1p0,1)(T) Z apw(z)



Let Vi(f) < 400, VA(Ff) < +00. Then UP\(f) = lim, o Vi(f)VA(F f), where

ming, g5 > heo P Do mea-t oy |2 (R + 1)° — k) /3

V)\(fn) = n_ )
Z:o |ag|?
) n_q 3
ming, g1 D peo |GG Rar—1 k)P (K +1)° = k%) /3
WW(Ffn) = R p”_l |ak|2 :

and b, 0 < k < p" — 1, is the inverse discrete Vzlenkm—Chrestenson transform (7).
The following Lemma shows that the functionals U P, and U P have the same order.
Lemma 1. Suppose f € Ly(G), then p~*UPq(f) < UP\(f) < UPs(f).

Proof. It is sufficient to note that p~!{|z|¢ < AMz) < ||zl O
Taking into account Theorem [I we conclude that U P has a positive lower bound. So,
U Py satisfies the uncertainty principle.
Example 1. Let us illustrate a definition of UP; for p = 2 using functions fi, g1, fo,
and g, taken from [8, Example 1. Recall fi(xz) = Ly-1j9,1/40)(2), g1(2) = Ly-1j3/41)(),
fa(x) = Ly-1p0,3/8)(x), and ga(x) = Lx-1[3/4,9/8)(x). Their Walsh-Fourier transforms are
Ffi = 1x-104/4, Fgr = w3 (-/4) 1x-10,9/4, Ffa = Ly1p0,9/4 + Wi (-/4) Lx-1p0,8)/8, and
Fgy = w3 (-/4) Ix-1j0,4/4 + wi(-)Lx-1)0,8)/8. Given a € [0, o), since the mapping o
|A7!(a)||g is increasing and a measure of the set )\_1[CL, b) © & does not depend on Z, it
follows that

wmin / e & ¢ de = min / Il dr = / 7l dr,
roJx10, 1) T Jx-1o, Hes =10, 1)

and A\710, 1/4) is a set of minimizing 7’s as well. So, taking into account ||f1]|%2(G)
HFle%Q(G) = 1/4, we get

1
4

Valfy) = min / e & #131f1 (x)Pde = 4min / e & #|%de
||fl||L2(G r Ja z

A=10,%)
:4/ ||7'|| d7—45 /
A-1[0,4 “

Analogously, we obtain

|
=4 E __ ) 27¥ =

1 -
Va(Ff) = min / le & ZI3IF fi(2)Pde = - min / e & &% de
||Ff1||L2G ¢ Ja 43 Ja-1j04
(@)
1 1N /1 1 64
- - d - d = — —_— — - 2_2Z = —.
. / L, Il = Z / , Irlbir =53 (w 2) -

Thus, UPg(f1) = 16/49. Using the same arguments, we calculate UPg for the remaining

functions. We collect all the information in Table [[I Values of UP\ we extract from [8]
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Example 1]. Columns named Z(f) and #o(f) contain sets of Z and ¢ minimizing the functionals
WA(f), Va(f) and V(F'f), Va(F f) respectively. With respect both uncertainty products U Pg
and U Py, functions f; and g; have the same localization, while function f, is more localized
then gy, that is adjusted with a naive idea of localization as a characteristic of a measure for

a function support.

Table 1: UPg and U Py: Example 1.

f To(f) olf) W) WES) UR(f) Vaelf) Va(Ff) UPs(f)
A0, 149 [0,4) 1/48 16/3  1/9  1/28  64/7  16/49
g [3/41) [0,4) 1/48 16/3  1/9  1/28  64/T  16/49
£ [0,1/8) [0,2) 3/64 8 3/8  4/21  96/7 12849
g [3/4,7/8) [0,4) TI/64 32/3  TI/6 19/14 255/14 4845/196

Example 2. Here we discuss a dependence of a localization for a fixed function on a
parameter p of the Vilenkin group G,,. Let us consider a function fi(x) = 1y-1)9,1/4)(x) and
p=2% k€ N. We calculate UP5(f).

(1) If k =1, then UP;(f1) = g (see Example 1.);

(2) If k = 2, then

Vol = o min [ 0 HEAGI = tmin [ o Fbde
Uye * Ja T Ja-1 [0
4 1
=4 =4 =4 — - 472 = —
[, Il Z [, Il Z(, )
) _ 1 . ~
Va(Ffr) = i | o @ 3| F fo)Pde = Juin [ o0 F3ds
||Ff1||L2(G r Ja 4 z A—1[0,4)
1 I (1 1\ o 256
-5/, Il = Z / L Irlar=5 3 (5-7) % -2
2
Hence, UP;(f1) = 42615
(3) If k > 2, then
Valfi) = i | o © 33| fu(o)Pde = 4min [ e alids
||fl||L2(G r Ja roJao,4
- 1 1 . 11
=4 dr =4 — ) (2 4 (- — =
/Al[o,ﬁc)@w) e <;<<2k> ) @7+ (] 2))
4 4
—1——

2k 2k(2%k -2k 1 1)
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1 . - 1 . N
Va(Ffi) = min / le & #1341 f(2)Pde = * min / e & |3 dz
||Ff1||L2(G) rJa 4z A—1]0,4)
1/ 2 Ly 1 1 ky\—2i 2k
=~ Irl2dr = 1 ( L )<2> 1) 2
4 ey 4 ; (28)F (2F)
= § .92k 1 . 27%
4 4 922k 49k 41
4

4 3 1 22k
Therefore, UPg(f1) = (1 — — 3 gm 1 .
erefore, UPg(f1) ( e pE T 1)) (4 T4y 1)
It is easy to see that time variance Vi (f1) goes to 1, and frequency variance Vg (F fi)

goes to infinity as k — oo.

4 Uncertainty product UFg.

In this section we concentrate on the uncertainty product corresponding to the metric ds. It
turns out that the modified Gibbs derivative D plays a role of a usual derivative in this case.
And since the Haar functions are the eigenfunctions of D, it is possible to get representation

for U Pg using the Haar coefficients.

Theorem 3. Suppose f € Lo(G)NLy(G), |- ||af € L2(G), where “dot” - means the argument

p—1
x € G of a function f, and f(x) = ZZ Z (). Then

v=1 jEZ ke,

/G 112 £ (1) dt = /G DO =353 [Pl (9)

v=1 jEZ ke,

/G el () di = /G DEf P =53 S . (10)

v=1 jeZ keZy
where d¥,, j € Z, k € Zy, v =1,...,p— 1, are the coefficients in the Haar series for the
-1
function Ff, that is F f(t) = pz Z Z ds %1 (1).
v=1 jeZ kel
Proof. By the definition of the modified Gibbs derivative and the Plancherel equality

we get
/ VEIBIEF(0)P dt = / [FDf(t)P dt = / DI dr.
G G G

Expanding a function in the Haar series and applying Corollary [Il, we get

2

[iostyra= [ S et ) dr

v=1 jeZ keZ4
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/ ZZZ Jkpjwyk Z;ZZ‘pycgykP

v=1 ]EZ k€Z+ EZ k€Z+

The last equality follows from the orthonormality of the Haar system. Equality (I0) is proved
analogously to ([@). O

Remark 1. Formally, it is possible to write [, \*(z)|F f(z)|*dz = [, |fM(z)]> dz and to try
to represent UCy in terms of eigenfunctions of the Gibbs derivative f in the case of the
Cantor group. (The Gibbs derivative is defined for functions defined on the Cantor group
only.) However, the Gibbs differentiation is not a local operation, that is (f1g) # fl1g,
see also discussion in [10[. So, usage of Walsh functions instead of Haar basis might give

interesting results for periodic functions only.

We did not found in the literature a formula expressing d/, in terms of cf;. So we
obtain this formula in the following lemma.

Lemma 2. Suppose f € Ly(G) and the coefficients ]
are defined in Theorem[3. Then

p—1 p—1 —j—2 p—1
y ; Y 2mivp
A= PP+ PPy e gexp ( ) Sro+ 72 3 3 Fobor (1)
v=1 v=1

i=—o0 v=1

k;dl;,kﬂjEZ7k€Z+7V7/~L:17"'7p_17

p70—1

where b = p™%° Z CZO_jer(p_M)pqoX()\_l(n),D_q‘))\_l(k)) is the k-th term of the discrete

n=0
k
Py _
Vilenkin-Chrestenson transform of (c” do—jin+(p—p)pd ¢ ) 0 y Qo = [logp - V} , and oo = 1, and

S0 =0, if k # 0.

Proof. Using the Plancherel equality and (), we get

dﬁt’“:/Ff”W dx—/f FLae-SY Y /w ) PO (@) du

v=1 {€Z nel

p—1
- Z Z Czl'j,n wZn(z)p_]/2X(A_l(k)> D_jx)]llijB)\*l((p—u)pj)(x) dr.
v=1 i€Z neZy G
Since supp ¢y, = A~ A Y [np~i (n+ 1)p™)), it follows that the last expression takes the form

p—1 oo (p—p+1)pti-1

Y3y [ smm

v=11=—j n= )Z+J

i = 27m/,u Lt i
+p Z;C—j—l,oeXP Z Z Cio

v=1 i=—00




X/X()\_l(k’) D- 91’)]11 BN ((p— “p]( )d!L’— Sl‘I’SQ
G

For the first sum by (@) we note that

| @R DT e = Pt (07X (k)

= p~2xX(n, DN R) L ga-1 (v (DA (R)).
Therefore, the first sum takes the form

p—1 oo (p—p+1)pti—1

=0 > IR X ), DTN )L en (evptiain AT (R))

v=1i=—j n= (p—p)p i+

p—1 oo pi-1
=33 > i XA (), DTN ()L enr oy (AT (R)).
v=1 q=0 n=0

Since 17 ar—1((p-wype) (A1 (k) = Lfor (p—v)p? < k < (p—v+1)p?and 11 gx—1((poypn) (A (F)) =
0 for the remaining &, and since the inequality (p —v)p? < k < (p—v+1)p?, q € Z, is equiv-

k
alent to ¢ = {logp —}, it follows that the only nonzero term in the sum 2210 has the
p—v

number qq := [logp k ] So
p

— VUV

p?0—1

Zp_q()/z Z Cq() —j,n+(p— upqOX()\ ( )?D_qo)\_l(k))‘

By ([B) we notice that up to the multiplication by a constant the inner sum in the last
expression is the k-th term of the discrete Vilenkin-Chrestenson transform of the vector

(CZO_j ()l )ZOZ_Ol. Denote this term by b;. Finally, for S; we get
) 0

p—1

Si(x) = qu0/2bZ-

v=1
Thus, the first sum takes the desired form. To conclude the proof it remains to calculate the

following part of the second sum

/X(kaD_jx)]llj@)\1((p—u)pj)(x)d$:pj/X(kaz)11®A1(p—u)(I)dx
G G

_p /I T 3T~ ) de = pf /I (ko2) dx = P,

where 09 = 1, and 90 = 0, if £ # 0. O
It is easy to see from (@) that min [, [[t|&]Ff(¢)]* dt = 0 and max [, |[t|&]F f(t)]* dt =
oo under the restriction || f| 1, = 1.
Formulas ([@) and ([I0) allow for the following result on estimation of Fourier-Haar coef-

ficients for functions defined on the Vilenkin group.
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Corollary 2. Suppose ||-||cFf € La(G), and f(x ZZ Z el % (x). Then the series

p—1
ZZ Z |P70;k|2 18 convergent.

v=1 jGZ k)EZ+
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