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Abstract

We study a localization of functions defined on Vilenkin groups. To measure the

localization we introduce two uncertainty products UPλ and UPG that are similar to the

Heisenberg uncertainty product. UPλ and UPG differ from each other by the metric used

for the Vilenkin group G. We discuss analogs of a quantitative uncertainty principle.

Representations for UPλ and UPG in terms of Walsh and Haar basis are given.

Keywords Vilenkin group; uncertainty product; Haar wavelet; modified Gibbs deriva-

tive; generalized Walsh function.
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1 Introduction

An uncertainty product for a function characterizes how concentrated is the function in

time and frequency domain. Initially the notion of uncertainty product was introduced for

f ∈ L2(R) by W. Heisenberg [6] and E. Schrödinger [12]. Later on extensions of this no-

tion appeared for various algebraic and topological structures. For periodic functions, it

was suggested by E. Breitenberger [1]. For some particular cases of locally compact groups

(namely a euclidean motion groups, non-compact semisimple Lie groups, Heisenberg groups)

the counterpart was derived in [11]. Uncertainty products on compact Riemannian manifolds

was discussed in [4]. In [8], this concept was introduced for functions defined on the Cantor

group. In this paper, we discuss localization of functions defined on Vilenkin groups.

To measure the localization we introduce a functional that is similar to the Heisenberg

uncertainty product (see Definition 1). It depends on the metric used for the Vilenkin group

G. Two equivalent metrics are in common use for the group G. So we discuss two uncertainty
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products UPλ and UPG. The first one is a strict counterpart of “dyadic uncertainty constant”

introduced in [8] (see Theorems 1 and 2). Usage of another metric in the second uncertainty

product allows for exploitation of a modified Gibbs derivative that plays a role of usual

derivative for the Heisenberg uncertainty product. At the same time it turns out that usage

of Haar basis is a good approach for evaluation of UPG (see Theorem 3). In particular, it

allows for an estimate of Fourier-Haar coefficients for functions defined on the Vilenkin group

(see Corollary 2). The connection between UPλ and UPG is showed in Lemma 1.

2 Auxiliary results

We recall necessary facts about the Vilenkin group. More details can be found in [3, 13]. The

Vilenkin group G = Gp, p ∈ N, p 6= 1, is a set of the sequences

x = (xj) = (. . . , 0, 0, x−k, x−k+1, x−k+2, . . . ),

where xj ∈ {0, . . . , p− 1} for j ∈ Z. The operation on G is denoted by ⊕ and defined as the

coordinatewise addition modulo p :

(zj) = (xj)⊕ (yj) ⇐⇒ zj = xj + yj (mod p) for j ∈ Z.

The inverse operation of ⊕ is denoted by ⊖. The symbol ⊖x denotes the inverse element of

x ∈ G. The sequence 0 = (. . . , 0, 0, . . . ) is a neutral element of G. If x 6= 0, then there exists

a unique number N = N(x) such that xN 6= 0 and xj = 0 for j < N . The Vilenkin group Gp,

where p = 2 is called the Cantor group. In this case the inverse operation ⊖ coicides with the

group operation ⊕.

Define a map λ : G→ [0,+∞)

λ(x) =
∑

j∈Z

xjp
−j−1, x = (xj) ∈ G.

The mapping x 7→ λ(x) is a bijection taking G \ Q0 onto [0, ∞), where Q0 is a set of all

elements terminating with p− 1’s.

Two equivalent metrics are in common use for the group G. One metric is defined by

d1(x, y) := λ(x⊖ y) for x, y ∈ G. To define another one d2 we consider a map ‖ · ‖G : G →

[0,∞), where ‖0‖G := 0 and ‖x‖G := p−N(x) for x 6= 0. Then d2(x, y) := ‖x⊖ y‖G, x, y ∈ G.

Given n ∈ Z and x ∈ G, denote by In(x) the ball of radius 2−n with the center at x, i.e.

In(x) = {y ∈ G : d(x, y) < 2−n}.

For brevity we set Ij := Ij(0) and I := I0.

We denote dilation on G by D : G → G, and set (Dx)k = xk+1 for x ∈ G. Then

D−1 : G → G is the inverse mapping (D−1x)k = xk−1. Set Dk = D ◦ · · · ◦ D (k times) if

k > 0, and Dk = D−1 ◦ · · · ◦D−1 (−k times) if k < 0; D0 is the identity mapping.
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We deal with functions taking G to C. Denote 1E the characteristic function of a set

E ⊂ G. Given a function f : G → C and a number h ≥ 0, for every x ∈ G we define

f0,h(x) = f(x⊕ λ−1(h)). Finally, we set for j ∈ Z

fj,h(x) = pj/2f0,h(D
jx), x ∈ G.

The functional spaces Lq(G) and Lq(E), where E is a measurable subset of G, are

derived using the Haar measure (see [7]).

Given ξ ∈ G, a group character of G is defined by

χξ(x) = χ(x, ξ) := exp

(
2πi

p

∑

j∈Z

xj ξ−1−j

)
.

The functions wn(x) := χ(λ−1(n), x) are called the generalized Walsh functions. If p = 2,

than wn are called the Walsh functions.

The Fourier transform of a function f ∈ L1(G) is defined by

Ff(ω) =

∫

G

f(x)χ(x, ω)dµ(x), ω ∈ G. (1)

The Fourier transform is extended to L2(G) in a standard way, and the Plancherel equality

takes place

〈f, g〉 :=

∫

G

f(x)g(x) dx =

∫

G

Ff(ξ)Fg(ξ)dξ = 〈Ff, Fg〉, f, g ∈ L2(G).

The inversion formula is valid for any f ∈ L2(G)

F−1Ff(x) =

∫

G

Ff(ω)χ(x, ω)dµ(ω) = f(x).

It is straightforward to see that

F (fj,n)(ξ) = p−j/2χ(k, D−jξ)Ff(D−jξ), n ∈ Z+, j ∈ Z. (2)

The discrete Vilenkin-Chrestenson transform of a vector x = (xk)k=0,pn−1 ∈ Cpn is a

vector y = (yk)k=0,pn−1 ∈ Cpn, where

yk = p−n

pn−1∑

s=0

xswk(λ
−1(s/pn)), 0 ≤ k ≤ pn − 1. (3)

The inverse transform is

xk =

pn−1∑

s=0

yswk(λ−1(s/pn)). 0 ≤ k ≤ pn − 1. (4)
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Given f : G2 → C, the function

f [1](x) := lim
n→∞

n∑

j=−n

2j−1(f(x)− f0,2−j−1(x))

is called the Gibbs derivative of a function f . The following properties hold true

Ff [1](ξ) = λ(ξ)Ff(ξ), w[1]
n (x) = nwn(x). (5)

Set ϕ = 1I . The Haar functions ψν , ν = 1, . . . , p− 1 are defined by

ψν(x) =

p−1∑

n=0

exp

(
2πiνn

p

)
ϕ(Dx⊕ λ−1(n)). (6)

The system ψν
j,k, ν = 1, . . . , p − 1, j ∈ Z, k ∈ Z+, forms an orthonormal basis (Haar basis)

for L2(G), see [5, 9].

It follows from (1) that Fϕ = ϕ = 1I and Fψ = 1I0⊕λ−1(p−ν). Taking into account (2),

we get

Fψν
j,k(ξ) = p−j/2χ(k, D−jξ)1I

−j⊕λ−1((p−ν)pj). (7)

Given f ∈ L1(G), the modified Gibbs derivative D is defined by

FDf = ‖ · ‖GFf. (8)

It was introduced in [2] for L1(G2). Such kind of operators are often called pseudo-differential.

Proposition 1. Suppose g, Fg, ‖·‖GFg are locally integrable on G, j ∈ Z. Then the assertion

supp ĝ ⊂ I−j−1\I−j is necessary and sufficient for g to be an eigenfunction of D corresponding

to the eigenvalue pj.

The proof can be rewritten from Proposition 1 [10], where it is proved for the Cantor

group.

Corollary 1. Any Haar function ψν
j,k is an eigenfunction of Dα corresponding to the eigen-

value pj.

Proof. The statement follows from Proposition 1 and (7). �

3 Uncertainty product and metrics

Originally, the concept of an uncertainty product was introduced for the real line case in 1927.

The Heisenberg uncertainty product of f ∈ L2(R) is the functional UCH(f) := ∆f∆f̂ such

that

∆2
f := ‖f‖−2

L2(R)

∫

R

(x− xf )
2|f(x)|2 dx, ∆2

f̂
:= ‖f̂‖−2

L2(R)

∫

R

(t− tf̂ )
2|f̂(t)|2 dt,
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xf := ‖f‖−2
L2(R)

∫

R

x|f(x)|2 dx, tf̂ := ‖f̂‖−2
L2(R)

∫

R

t|f̂(t)|2 dt,

where f̂ denotes the Fourier transform of f ∈ L2(R). It is well known that UCH(f) ≥ 1/2

for a function f ∈ L2(R) and the minimum is attained on the Gaussian. To motivate the

definition of a localization characteristic for the Vilenkin group we note that on one hand xf

is the solution of the minimization problem

min
x̃

∫

R

(x− x̃)2|f(x)|2 dx,

and on another hand the sense of the sign “-” in the definition of ∆f is the distance between

x and xf . So we come to the main definition.

Definition 1. Suppose f : G→ C, f ∈ L2(G), and d is a metric on G, then a functional

UP (f) := V (f)V (Ff), where

V (f) :=
1

‖f‖2L2(G)

min
x̃

∫

G

(d(x, x̃))2|f(x)|2 dx

is called the uncertainty product of a function f defined on the Vilenkin group.

Thus, we study two uncertainty products UPλ and UPG that corresponds to the metric

d1(x, y) := λ(x⊖ y) and d2(x, y) := ‖x⊖ y‖G. More precisely,

UPλ(f) := Vλ(f)Vλ(Ff), where

Vλ(f) :=
1

‖f‖2L2(G)

min
x̃

∫

G

(λ(x⊖ x̃))2|f(x)|2 dx.

The functional UPG is defined as

UPG(f) := VG(f)VG(Ff), where

VG(f) :=
1

‖f‖2L2(G)

min
x̃

∫

G

‖x⊖ x̃‖2G|f(x)|
2 dx.

The functional UPλ for functions defined on the Cantor group was introduced and

studied in [8]. The following results are extended from the Cantor group to the Vilenkin

group without any essential changes. So we omit the proofs.

Theorem 1. Suppose f : G→ C, f ∈ L2(G). Then the following inequality holds true

UPλ(f) ≥ C, where C ≃ 8.5× 10−5.

Theorem 2. Let f(x) = 1λ−1[0, 1)(x)
∑

∞

k=0 akwk(x) be a uniformly convergent series. Denote

fn(x) = 1λ−1[0, 1)(x)

pn−1∑

k=0

akwk(x).
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Let Vλ(f) < +∞, Vλ(Ff) < +∞. Then UPλ(f) = limn→∞ Vλ(fn)Vλ(Ffn), where

Vλ(fn) =
mink0=0,pn−1

∑pn−1
k=0 p−n|bλ(λ−1(k)⊕λ−1(k0))|

2((k + 1)3 − k3)/3
∑pn−1

k=0 |ak|2
,

Vλ(Ffn) =
mink1=0,pn−1

∑pn−1
k=0 |aλ(λ−1(k)⊕λ−1(k1))|

2((k + 1)3 − k3)/3
∑pn−1

k=0 |ak|2
,

and bk, 0 ≤ k ≤ pn − 1, is the inverse discrete Vilenkin-Chrestenson transform (4).

The following Lemma shows that the functionals UPλ and UPG have the same order.

Lemma 1. Suppose f ∈ L2(G), then p−4UPG(f) ≤ UPλ(f) < UPG(f).

Proof. It is sufficient to note that p−1‖x‖G ≤ λ(x) < ‖x‖G. �

Taking into account Theorem 1, we conclude that UPG has a positive lower bound. So,

UPG satisfies the uncertainty principle.

Example 1. Let us illustrate a definition of UPG for p = 2 using functions f1, g1, f2,

and g2 taken from [8, Example 1]. Recall f1(x) = 1λ−1[0, 1/4)(x), g1(x) = 1λ−1[3/4, 1)(x),

f2(x) = 1λ−1[0, 3/8)(x), and g2(x) = 1λ−1[3/4, 9/8)(x). Their Walsh-Fourier transforms are

Ff1 = 1λ−1[0, 4)/4, F g1 = w3 (·/4)1λ−1[0, 4)/4, Ff2 = 1λ−1[0, 4)/4 + w1 (·/4)1λ−1[0, 8)/8, and

Fg2 = w3 (·/4)1λ−1[0, 4)/4 + w1(·)1λ−1[0, 8)/8. Given α ∈ [0, ∞), since the mapping α 7→

‖λ−1(α)‖G is increasing and a measure of the set λ−1[a, b) ⊖ x̃ does not depend on x̃, it

follows that

min
x̃

∫

λ−1[0, 1
4
)

‖x⊖ x̃‖G dx = min
x̃

∫

λ−1[0, 1
4
)⊖x̃

‖τ‖G dτ =

∫

λ−1[0, 1
4
)

‖τ‖G dτ,

and λ−1[0, 1/4) is a set of minimizing x̃’s as well. So, taking into account ‖f1‖
2
L2(G) =

‖Ff1‖
2
L2(G) = 1/4, we get

VG(f1) =
1

‖f1‖2L2(G)

min
x̃

∫

G

‖x⊖ x̃‖2G|f1(x)|
2dx = 4min

x̃

∫

λ−1[0, 1
4
)

‖x⊖ x̃‖2Gdx

= 4

∫

λ−1[0, 1
4
)

‖τ‖2Gdτ = 4
∞∑

i=2

∫

λ−1[ 1
2i+1 ,

1
2i

)

‖τ‖2Gdτ = 4
∞∑

i=2

(
1

2i
−

1

2i+1

)
2−2i =

1

28
.

Analogously, we obtain

VG(Ff1) =
1

‖Ff1‖
2
L2(G)

min
x̃

∫

G

‖x⊖ x̃‖2G|Ff1(x)|
2dx =

1

4
min
x̃

∫

λ−1[0,4)

‖x⊖ x̃‖2Gdx

=
1

4

∫

λ−1[0,4)

‖τ‖2Gdτ =
1

4

∞∑

i=−2

∫

λ−1[ 1

2i+1 ,
1

2i
)

‖τ‖2Gdτ =
1

4

∞∑

i=−2

(
1

2i
−

1

2i+1

)
2−2i =

64

7
.

Thus, UPG(f1) = 16/49. Using the same arguments, we calculate UPG for the remaining

functions. We collect all the information in Table 1. Values of UPλ we extract from [8,
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Example 1]. Columns named x̃0(f) and t̃0(f) contain sets of x̃ and t̃minimizing the functionals

Vλ(f), VG(f) and Vλ(Ff), VG(Ff) respectively. With respect both uncertainty products UPG

and UPλ, functions f1 and g1 have the same localization, while function f2 is more localized

then g2, that is adjusted with a naive idea of localization as a characteristic of a measure for

a function support.

Table 1: UPG and UPλ: Example 1.

f x̃0(f) t̃0(f) Vλ(f) Vλ(Ff) UPλ(f) VG(f) VG(Ff) UPG(f)

f1 [0, 1/4) [0, 4) 1/48 16/3 1/9 1/28 64/7 16/49

g1 [3/4, 1) [0, 4) 1/48 16/3 1/9 1/28 64/7 16/49

f2 [0, 1/8) [0, 2) 3/64 8 3/8 4/21 96/7 128/49

g2 [3/4, 7/8) [0, 4) 71/64 32/3 71/6 19/14 255/14 4845/196

Example 2. Here we discuss a dependence of a localization for a fixed function on a

parameter p of the Vilenkin group Gp. Let us consider a function f1(x) = 1λ−1[0, 1/4)(x) and

p = 2k, k ∈ N. We calculate UPG(f1).

(1) If k = 1, then UPG(f1) =
16

49
(see Example 1.);

(2) If k = 2, then

VG(f1) =
1

‖f1‖2L2(G)

min
x̃

∫

G

‖x⊖ x̃‖2G|f1(x)|
2dx = 4min

x̃

∫

λ−1[0, 1
4
)

‖x⊖ x̃‖2Gdx

= 4

∫

λ−1[0, 1
4
)

‖τ‖2Gdτ = 4

∞∑

i=1

∫

λ−1[ 1
4i+1 ,

1
4i

)

‖τ‖2Gdτ = 4

∞∑

i=1

(
1

4i
−

1

4i+1

)
4−2i =

1

21
.

VG(Ff1) =
1

‖Ff1‖2L2(G)

min
x̃

∫

G

‖x⊖ x̃‖2G|Ff1(x)|
2dx =

1

4
min
x̃

∫

λ−1[0,4)

‖x⊖ x̃‖2Gdx

=
1

4

∫

λ−1[0,4)

‖τ‖2Gdτ =
1

4

∞∑

i=−1

∫

λ−1[ 1
4i+1 ,

1
4i

)

‖τ‖2Gdτ =
1

4

∞∑

i=−1

(
1

4i
−

1

4i+1

)
4−2i =

256

21
.

Hence, UPG(f1) =
256

441
.

(3) If k > 2, then

VG(f1) =
1

‖f1‖2L2(G)

min
x̃

∫

G

‖x⊖ x̃‖2G|f1(x)|
2dx = 4min

x̃

∫

λ−1[0, 1
4
)

‖x⊖ x̃‖2Gdx

= 4

∫

λ−1[0, 1

2k
)⊕[ 1

2k
, 1
4)
‖τ‖2Gdτ = 4

(
∞∑

i=1

(
1

(2k)i
−

1

(2k)i+1

)
(2k)−2i +

(
1

4
−

1

2k

))

= 1−
4

2k
+

4

2k(22k + 2k + 1)
.
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VG(Ff1) =
1

‖Ff1‖
2
L2(G)

min
x̃

∫

G

‖x⊖ x̃‖2G|f1(x)|
2dx =

1

4
min
x̃

∫

λ−1[0,4)

‖x⊖ x̃‖2Gdx

=
1

4

∫

λ−1[0,1)⊕[1,4)

‖τ‖2Gdτ =
1

4

(
∞∑

i=0

(
1

(2k)i
−

1

(2k)i+1

)
(2k)−2i + (4− 1) · 22k

)

=
3

4
· 22k +

1

4
·

22k

22k + 2k + 1
.

Therefore, UPG(f1) =

(
1−

4

2k
+

4

2k(22k + 2k + 1)

)(
3

4
· 22k +

1

4
·

22k

22k + 2k + 1

)
.

It is easy to see that time variance VG(f1) goes to 1, and frequency variance VG(Ff1)

goes to infinity as k → ∞.

4 Uncertainty product UPG.

In this section we concentrate on the uncertainty product corresponding to the metric d2. It

turns out that the modified Gibbs derivative D plays a role of a usual derivative in this case.

And since the Haar functions are the eigenfunctions of D, it is possible to get representation

for UPG using the Haar coefficients.

Theorem 3. Suppose f ∈ L2(G)∩L1(G), ‖ · ‖Gf ∈ L2(G), where “dot” · means the argument

x ∈ G of a function f , and f(x) =

p−1∑

ν=1

∑

j∈Z

∑

k∈Z+

cνj,kψ
ν
j,k(x). Then

∫

G

‖t‖2G|Ff(t)|
2 dt =

∫

G

|Df(t)|2 dt =

p−1∑

ν=1

∑

j∈Z

∑

k∈Z+

|pjcνj,k|
2 (9)

∫

G

‖x‖2G|f(x)|
2 dx =

∫

G

|DFf(x)|2 dx =

p−1∑

ν=1

∑

j∈Z

∑

k∈Z+

|pjdνj,k|
2, (10)

where dνj,k, j ∈ Z, k ∈ Z+, ν = 1, . . . , p − 1, are the coefficients in the Haar series for the

function Ff, that is Ff(t) =

p−1∑

ν=1

∑

j∈Z

∑

k∈Z+

dνj,kψ
ν
j,k(t).

Proof. By the definition of the modified Gibbs derivative and the Plancherel equality

we get ∫

G

‖t‖2G|Ff(t)|
2 dt =

∫

G

|FDf(t)|2 dt =

∫

G

|Df(t)|2 dt.

Expanding a function in the Haar series and applying Corollary 1, we get

∫

G

|Df(t)|2 dt =

∫

G

∣∣∣∣∣∣

p−1∑

ν=1

∑

j∈Z

∑

k∈Z+

cνj,kDψ
ν
j,k(t)

∣∣∣∣∣∣

2

dt

8



=

∫

G

∣∣∣∣∣∣

p−1∑

ν=1

∑

j∈Z

∑

k∈Z+

cνj,kp
jψν

j,k(t)

∣∣∣∣∣∣

2

dt =

p−1∑

ν=1

∑

j∈Z

∑

k∈Z+

|pjcνj,k|
2

The last equality follows from the orthonormality of the Haar system. Equality (10) is proved

analogously to (9). �

Remark 1. Formally, it is possible to write
∫
G
λ2(x)|Ff(x)|2 dx =

∫
G
|f [1](x)|2 dx and to try

to represent UCλ in terms of eigenfunctions of the Gibbs derivative f [1] in the case of the

Cantor group. (The Gibbs derivative is defined for functions defined on the Cantor group

only.) However, the Gibbs differentiation is not a local operation, that is (f1E)
[1] 6= f [1]

1E,

see also discussion in [10]. So, usage of Walsh functions instead of Haar basis might give

interesting results for periodic functions only.

We did not found in the literature a formula expressing dµj,k in terms of cνj,k. So we

obtain this formula in the following lemma.

Lemma 2. Suppose f ∈ L2(G) and the coefficients cνj,k, d
µ
j,k, j ∈ Z, k ∈ Z+, ν, µ = 1, . . . , p−1,

are defined in Theorem 3. Then

dµj,k =

p−1∑

ν=1

pq0/2bνk + pj/2
p−1∑

ν=1

cν
−j−1,0exp

(
−
2πiνµ

p

)
δk,0 + pj/2

−j−2∑

i=−∞

p−1∑

ν=1

cνi,0δk,0, (11)

where bνk = p−q0

pq0−1∑

n=0

cνq0−j,n+(p−µ)pq0χ(λ
−1(n), D−q0λ−1(k)) is the k-th term of the discrete

Vilenkin-Chrestenson transform of (cνq0−j,n+(p−µ)pq0
)
pq0−1
n=0 , q0 =

[
logp

k

p− ν

]
, and δ0,0 = 1, and

δk,0 = 0, if k 6= 0.

Proof. Using the Plancherel equality and (7), we get

dµj,k =

∫

G

Ff(x)ψµ
j,k(x) dx =

∫

G

f(x)Fψµ
j,k(x) dx =

p−1∑

ν=1

∑

i∈Z

∑

n∈Z+

cνi,n

∫

G

ψν
i,n(x)Fψ

µ
j,k(x) dx

=

p−1∑

ν=1

∑

i∈Z

∑

n∈Z+

cνi,n

∫

G

ψν
i,n(x)p

−j/2χ(λ−1(k), D−jx)1I
−j⊕λ−1((p−µ)pj)(x) dx.

Since suppψν
i,n = λ−1([np−i, (n+ 1)p−i)), it follows that the last expression takes the form

p−1∑

ν=1

∞∑

i=−j

(p−µ+1)pi+j
−1∑

n=(p−µ)pi+j

cνi,n

∫

G

ψν
i,n(x)p

−j/2χ(λ−1(k), D−jx) dx

+p−j/2

(
p−1∑

ν=1

cν
−j−1,0exp

(
−
2πiνµ

p

)
+

p−1∑

ν=1

−j−2∑

i=−∞

cνi,0

)
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×

∫

G

χ(λ−1(k), D−jx)1I
−j⊕λ−1((p−µ)pj)(x) dx =: S1 + S2.

For the first sum by (7) we note that
∫

G

ψν
i,n(x)χ(λ

−1(k), D−jx) dx = Fψν
i,n(D

−jλ−1(k))

= p−i/2χ(n,D−i−jλ−1(k))1I
−i⊕λ−1((p−ν)pi)(D

−jλ−1(k)).

Therefore, the first sum takes the form

S1 =

p−1∑

ν=1

∞∑

i=−j

(p−µ+1)pi+j−1∑

n=(p−µ)pi+j

p−(j+i)/2cνi,nχ(λ
−1(n), D−i−jλ−1(k))1I

−i−j⊕λ−1((p−ν)p(i+j))(λ
−1(k))

=

p−1∑

ν=1

∞∑

q=0

p−q/2

pq−1∑

n=0

cνq−j,n+(p−µ)pqχ(λ
−1(n), D−qλ−1(k))1I

−q⊕λ−1((p−ν)pq)(λ
−1(k)).

Since 1I
−q⊕λ−1((p−ν)pq)(λ

−1(k)) = 1 for (p−ν)pq ≤ k < (p−ν+1)pq and 1I
−q⊕λ−1((p−ν)pq)(λ

−1(k)) =

0 for the remaining k, and since the inequality (p− ν)pq ≤ k < (p− ν +1)pq, q ∈ Z+ is equiv-

alent to q =

[
logp

k

p− ν

]
, it follows that the only nonzero term in the sum

∑
∞

q=0 has the

number q0 :=

[
logp

k

p− ν

]
. So

S1 =

p−1∑

ν=1

p−q0/2

pq0−1∑

n=0

cνq0−j,n+(p−µ)pq0χ(λ
−1(n), D−q0λ−1(k)).

By (3) we notice that up to the multiplication by a constant the inner sum in the last

expression is the k-th term of the discrete Vilenkin-Chrestenson transform of the vector

(cν
q0−j,n+(p−µ)pq0

)
pq0−1
n=0 . Denote this term by bνk. Finally, for S1 we get

S1(x) =

p−1∑

ν=1

pq0/2bνk.

Thus, the first sum takes the desired form. To conclude the proof it remains to calculate the

following part of the second sum
∫

G

χ(k,D−jx)1I
−j⊕λ−1((p−µ)pj)(x) dx = pj

∫

G

χ(k, x)1I⊕λ−1(p−µ)(x) dx

= pj
∫

I

χ(k, x⊖ λ−1(p− µ)) dx = pj
∫

I

χ(k, x) dx = pjδk,0,

where δ0,0 = 1, and δk,0 = 0, if k 6= 0. �

It is easy to see from (9) that min
∫
G
‖t‖2G|Ff(t)|

2 dt = 0 and max
∫
G
‖t‖2G|Ff(t)|

2 dt =

∞ under the restriction ‖f‖L2(G) = 1.

Formulas (9) and (10) allow for the following result on estimation of Fourier-Haar coef-

ficients for functions defined on the Vilenkin group.
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Corollary 2. Suppose ‖ · ‖GFf ∈ L2(G), and f(x) =

p−1∑

ν=1

∑

j∈Z

∑

k∈Z+

cνj,kψ
ν
j,k(x). Then the series

p−1∑

ν=1

∑

j∈Z

∑

k∈Z+

|pjcνj,k|
2 is convergent.
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