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We investigate the existence of embeddings of shearlet coorbit spaces associated to
weighted mixed L

p-spaces into classical Sobolev spaces in dimension three by using
the description of coorbit spaces as decomposition spaces. This different perspective on

these spaces enables the application of embedding results that allow the complete char-
acterization of embeddings for certain integrability exponents, and thus provides access
to a deeper understanding of the smoothness properties of coorbit spaces, and of the
influence of the choice of shearlet groups on these properties. We give a detailed analy-
sis, identifying which features of the dilation groups have an influence on the embedding
behavior, and which do not. Our results also allow to comment on the validity of the
interpretation of shearlet coorbit spaces as smoothness spaces.
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1. Introduction

This paper is a study of approximation-theoretic properties of generalized wavelet

systems arising from the action of certain matrix groups by dilation, combined with

arbitrary translations. Starting with the paper by Murenzi,26 soon after generalized

by Bernier and Taylor,2 it was realized that the theory of square-integrable group

representations provides access to a large variety of possible wavelet constructions,

see e.g. Refs. 14, 15. An important addition to this class were the shearlets intro-

duced for dimension two in Ref. 7, and for higher dimensions in Ref. 8. It was later

realized that in dimensions ≥ 3, several distinct choices of shearing operations can
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be employed, by introducing the Toeplitz shearlet construction.6 A general scheme

for the construction of shearlet dilation groups, which leads to a vast choice of

different groups in higher dimensions, was then developed in Refs. 1, 19.

The interest in shearlets comes from the fact that the combination of anisotropic

scaling and shearing results in a system of functions that is better equipped for the

resolution of oriented singularities such as edges in images. This statement can be

formalized by showing that the wavefront set of a signal can be characterized in

terms of shearlet coefficients, which was first shown for two-dimensional wavelets in

Ref. 23, and later extended to more general shearlet groups in arbitrary dimensions.1

An alternative way of understanding how coefficient decay and smoothness of

the analyzed signal are connected uses the theory of coorbit spaces. These spaces,

introduced by Feichtinger and Gröchenig,11, 12 are based on the idea of introducing

norms that quantify coefficient decay of a signal f with respect to a given generalized

wavelet system, and it is known that this theory applies to shearlet dilation groups

in arbitrary dimensions.19 Hence, each of these groups induces its own scale of

coorbit spaces, defined in terms of the speed of coefficient decay. In view of the

large pool of possible choices of such groups, this raises the question of analyzing and

understanding coorbit spaces associated to a given shearlet dilation group, or more

pointedly, understanding the influence that the choice of shearlet dilation group has

on its scale of coorbit spaces. This paper can be seen as a case study for such an

endeavor: We consider two families of shearlet dilation groups in dimension three,

and analyze in a systematical fashion how coorbit spaces associated to weighted

mixed Lp-spaces over these groups embed into Sobolev spaces. This question is

interesting for several reasons. The first reason originates from the interpretation of

coorbit spaces as smoothness spaces, as done, e.g., for shearlets in the introduction

of Ref. 8. This point of view seems natural given the fact that, for all shearlet

dilation groups, there exist shearlet systems consisting of compactly supported,

smooth functions.8, 19 Hence, one might expect that the elements of a coorbit space

requiring fast decay of the coefficients inherit fast decay and smoothness properties

from the elements of the shearlet system that efficiently approximate them. Clearly,

studying the embedding behaviour of coorbit spaces into Sobolev spaces is one way

of putting this general intuition to the test, and our analysis will reveal the extent

to which it is justified, and how different features of the dilation groups influence

its validity.

Furthermore, the project of understanding the relationship between shearlet

coorbit spaces and classical smoothness spaces is also motivated by work analyzing

Fourier integral or pseudo-differential operators using shearlets,21, 29 with a view to

characterizing the mapping properties of these operators on the various function

spaces. The embeddings of the type studied here fit well into this general endeavor.

The last source of motivation that we want to mention comes from the method of

proof, which largely relies on the machinery of decomposition spaces. These spaces

were first introduced by Feichtinger and Gröbner10 as a unified approach to both
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Besov and modulation spaces, with the scale of α-modulation spaces as intermediate

construction. Decomposition space applications and techniques were later extended

by Borup and Nielsen,3 who pointed out (among other things) that curvelets could

also be included in this setting. These ideas were further developed by the work of

Voigtlaender, who introduced a powerful embedding theory between decomposition

spaces of different kinds,30 and of decomposition spaces into Sobolev spaces.31 The

scope of these results is truly remarkable: Among the function spaces that have a

decomposition space description are (homogeneous) isotropic Besov spaces, or more

generally, α-modulation spaces,10 inhomogeneous Besov spaces30 and anisotropic

Besov spaces (both homogeneous and inhomogeneous).4 Another class of examples,

which is of particular relevance for this paper, are the coorbit spaces associated to

general dilation groups, introduced in full generality in Ref. 17, and identified as

decomposition spaces in Refs. 20, 30. In particular, all of the previously mentioned

shearlet coorbit spaces fall in this category.

Hence the embedding theory developed in Ref. 31 is applicable to our problem,

and our paper is both a sample application of the methods developed in the cited

paper, and an illustration of the remarkable power of these methods. Prior to the

work of Voigtlaender, an analysis of comparable depth and scope had simply been

out of reach.

Overview and summary of the paper

The paper is structured as follows: Sections 2 through 4 introduce the objects and

results necessary to formulate and prove our main result. The class of shearlet trans-

forms that we study is introduced in Section 2. Coorbit spaces, and their decompo-

sition space description, are introduced and explained in Section 3. Voigtlaender’s

embedding result is then formulated in Section 4. Theorem 4.1 shows that a de-

composition space of the type D(P , Lp, ℓqv) embeds into a Sobolev space if a certain

sequence, that is explicitly derived from the data P , p, q, v entering the definition of

the decomposition space, is summable in a suitable sense. For summability indices

p, q ≤ 2, this statement in fact becomes an equivalence. The systematic application

of this result to the setting of shearlet coorbit spaces is then the subject of Section

5. The main technical results of our paper are the Theorems 5.1, containing a pre-

cise and exhaustive characterization of embeddings into Sobolev spaces for coorbit

spaces associated to the standard shearlet groups in dimension three, and Theorem

5.3, which formulates an analog for Toeplitz shearlet groups. For two-dimensional

shearlet groups, this analysis had been performed in Ref. 31, but for the three-

dimensional cases, the results are completely new. They are also substantially more

complicated than those for the two-dimensional case, due to the additional param-

eter describing the anisotropic scaling in the third dimension, and the additional

variation in the shearing subgroup of the Toeplitz shearlet group.

In particular, while the Theorems 5.1 and 5.3 contain essentially complete in-

formation, the interpretation of these results, say with a view to investigating the
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smoothness space interpretation of coorbit spaces, and the influence of the dila-

tion group on this issue, becomes a separate nontrivial problem, which we address

in Section 6. We restrict the discussion to certain pertinent subcases, and analyze

more closely the influence of the different components of the shearlet dilation group

on the embedding behavior. Specifically, we investigate the role of the exponents de-

scribing the scaling subgroup on the one hand, and the choice of shearing subgroup

on the other.

This allows to draw the following conclusions: For the important subcase of

coorbit spaces of the kind Co(Lp), where 0 < p < 2, there exists no embedding

into Sobolev spaces with nontrivial smoothness exponent k > 0, regardless of the

choice of shearlet dilation group; see Corollary 6.1. Elements of these spaces can

be understood as functions in L2 with a non-trivial approximation rate – in the

L2-norm – with respect to any discrete shearlet system obtained by discretizing the

continuous shearlet transform; see e.g. the discussion in Ref. 18 . Our observation

makes clear that this type of decay alone does not guarantee smoothness. We then

resort to (mostly) analyzing embeddings of Co(Lpv) for suitable weights, and 0 <

p < 2. Here, it turns out that the embedding behavior depends on certain features

of the shearlet dilation groups, and is independent of others. More precisely, the

shearing subgroup has no influence (Corollary 6.2), whereas the scaling subgroup

is critically influential (Theorem 6.1). The fact that the shearing subgroup has no

influence is interesting because the coorbit spaces associated to different shearing

subgroups do not coincide, by the results in Ref. 22. Thus the embedding behaviour

into Sobolev spaces does not allow to distinguish different scales of shearlet coorbit

spaces. This fact could probably have been expected, but it has been brought to

light and rigourously established by our analysis.

As a further byproduct of our analysis, we obtain that anisotropic scaling is re-

quired to guarantee the existence of embeddings into Sobolev spaces with nontrivial

smoothness parameter. This means that using multiples of the identity operator as

the scaling subgroup never works, see Corollary 6.4 and the following Remark 6.3

(2). On the one hand, this observation is slightly surprising, as the target spaces

W k,p of the embedding results exhibit no anisotropies. On the other hand, it is well

in line with the fact that anisotropy is needed for the study of singularities, such as

the wavefront set, via the decay behaviour of shearlet transforms. Here, anisotropic

scaling is generally necessary,13 and – with additional restrictions – also sufficient.1

Finally, we study for which groups the smoothness of elements of coorbit spaces

improve as the decay requirements imposed by the coorbit spaces become more

restrictive. This can be done by asking how the best possible parameter k in the

embedding Co(Lpv) →֒ W k,q scales as p goes to zero. Again, our results show that

this can be attributed to properties of the scaling subgroup alone; see Corollary 6.5

and the subsequent Remark.
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2. Generalized Wavelet Transform and Shearlet Groups

In this section, we recall basic definitions underlying the continuous wavelet trans-

form and generalized shearlet dilation groups.

2.1. Generalized Wavelet Transform

For a closed matrix group H ≤ GL(Rd), which we also call dilation group in the

following, we define the group G := Rd ⋊H generated by dilations with elements

of H and translations with the group law (x, h) ◦ (y, g) := (x + hy, hg). We denote

integration with respect to a left Haar measure on H with dh, the associated left

Haar measure on G is then given by d(x, h) = |deth|−1
dxdh. The Lebesgue spaces

on G are always defined through integration with respect to a Haar measure. The

group G acts on the space L2(Rd) through the quasi-regular representation π de-

fined by [π(x, h)f ](y) := |deth|−1/2f(h−1(y − x)) for f ∈ L2(Rd). The generalized

continuous wavelet transform (with respect to ψ ∈ L2(Rd)) of f is then given as the

function Wψf : G → C : (x, h) 7→ 〈ψ, π(x, h)f 〉 . Important properties of the map

Wψ : f 7→Wψf depend on H and the chosen ψ. If the quasi-regular representation

is square-integrable, which means that there exists a 0 6= ψ with Wψψ ∈ L2(G),

and irreducible, then we call H admissible and the map Wψ : L2(Rd) → L2(G) is a

multiple of an isometry, which gives rise to the (weak-sense) inversion formula

f =
1

Cψ

∫

G

Wψf(x, h)π(x, h)ψd(x, h) , (2.1)

i.e., each f ∈ L2(Rd) is a continuous superposition of the wavelet system. According

to results in Refs. 14, 16, the admissibility of H can be characterized by the dual

action defined by G 7→ Rd, (ξ, h) 7→ pξ(h) := h−T ξ, where pξ denotes the associated

orbit map. In fact, H is admissible iff the dual action has a single open orbit

O := H−T ξ0 ⊂ R
d of full measure for some ξ0 ∈ R

d and additionally the isotropy

group Hξ0 := { h : pξ0(h) = ξ0 } is compact.

2.2. Shearlet Groups

In order to state the definition given in Ref. 1, we use the notation of gl(Rd) for

the set of all d× d-matrices and let exp : gl(Rd) → GL(Rd) be the exponential map

defined by the series exp(A) :=
∑∞
k=0

Ak

k! for every A ∈ gl(Rd). We consider conver-

gence of this series with respect to the norm ‖A‖op := sup|x|≤1|Ax|. Furthermore,

we denote with T (Rd) the set of upper triangular d× d-matrices with one on their

diagonals.

Definition 2.1 (Ref. 1 Definition 1.). Let H ⊂ GL(Rd) be a closed, admissible

dilation group. The group H is called generalized shearlet dilation group if there

exist two closed subgroups S,D ⊂ GL(Rd) such that

(1) S is a connected abelian subgroup of T (Rd),
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(2) D = { exp(rY ) | r ∈ R } is a one-parameter group, where Y ∈ gl(Rd) is a diago-

nal matrix and

(3) every h ∈ H has a unique representation as h = ±ds for some d ∈ D and s ∈ S.

S is called the shearing subgroup of H, D is called the scaling subgroup of H, and

Y is called the infinitesimal generator of D.

We denote the canonical basis of Rd with e1, . . . , ed and the identity matrix in

GL(Rd) with Ed or just E if the dimension is clear from the context. The next result

contains information about the structure of shearing subgroups. All generalized

shearlet dilation groups in dimension d share the same open dual orbit and isotropy

group.

Lemma 2.1 (Ref. 1 Proposition 11.). For a generalized shearlet dilation group

H, the unique open dual orbit of H is given by O = R
∗ × R

d−1 and the isotropy

group of ξ ∈ O with respect to the dual action is given by Hξ = { Ed }.

Now, we introduce some concrete classes of shearlet groups, which we will further

investigate in the next sections. The class of standard shearlet groups

Hλ1,λ2 :=



 ǫ



a ab ac

0 aλ1 0

0 0 aλ2



∣∣∣∣∣∣

a > 0,

b, c ∈ R,

ǫ ∈ { ±1 }





for λ1, λ2 ∈ R and the class of Toeplitz shearlet groups

Hδ :=



 ǫ



a ab ac

0 a1−δ a1−δb

0 0 a1−2δ



∣∣∣∣∣∣

a > 0,

b, c ∈ R,

ǫ ∈ { ±1 }





for δ ∈ R.

Remark 2.1. In dimension three, these are the only possible generalized shearlet

dilation groups (see Ref. 1 remark 19).

3. Coorbit Spaces and Decompositions Spaces

Coorbit spaces are defined in terms of decay behavior of generalized wavelet trans-

forms. To give a precise definition, we introduce weighted mixed Lp-spaces on G,

denoted by Lp,qv (G) . By definition, this space is the set of functions
{
f : G→ C :

∫

H

(∫

Rd

|f(x, h)|p v(x, h)pdx

)q/p
dh

| det(h)|
<∞

}
,

with natural (quasi-)norm ‖ · ‖Lp,q
v

. This definition is valid for 0 < p, q < ∞, for

p = ∞ or q = ∞ the essential supremum has to be taken at the appropriate

place instead. The function v : G → R>0 is a weight function that fulfills the

condition v(ghk) ≤ v0(g)v(h)v0(k) for some submultiplicative weight v0. If the last
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condition is satisfied, we call v left- and right moderate with respect to v0. Thus,

the expression ‖Wψf‖Lp,q
v

can be read as a measure of wavelet coefficient decay of

f . We will exclusively consider weights which only depend on H . The coorbit space

Co
(
Lp,qv (Rd ⋊H)

)
is then defined as the space

{
f ∈ (H1

w)
¬ :Wψf ∈W (Lp,qv (G))

}
(3.1)

for some suitable wavelet ψ and some control weight w associated to v.

The space (H1
w)

¬ denotes the space of antilinear functionals on H1
w :={

f ∈ L2(Rd) :Wψf ∈ L1
w(G)

}
and W (Y ) for a function space Y on G denotes

the Wiener amalgam space defined by WQ(Y ) := {f ∈ L∞
loc(G)|MQf ∈ Y } with

quasi-norm ‖f‖WQ(Y ) := ‖MQf‖Y for f ∈ WQ(Y ), where the maximal function

MQf for some suitable unit neighborhood Q ⊂ G is MQf : G → [0,∞], x 7→

ess supy∈xQ |f(y)|.

The appearance of the Wiener amalgam space in (3.1) is necessary to guarantee

consistently defined quasi-Banach spaces in the case {p, q} ∩ (0, 1) 6= ∅, see Ref. 28

and Ref. 30. In the classical coorbit theory for Banach spaces, which was developed

in Refs. 11, 12, the Wiener amalgam space can be replaced by the simpler space

Lp,qv (G), see Ref. 28.

Many useful properties of these spaces are known and hold in the quasi-Banach

space case as well as in the Banach space case. The most prominent examples of

coorbit spaces associated to generalized wavelet transforms are the homogeneous

Besov spaces and the modulation spaces. However, each shearlet group gives rise to

its scale of coorbit spaces, as well; see Refs. 6, 17, 24.

The starting point for the definition of decomposition spaces is the notion of

an admissible covering Q = (Qi)i∈I of some open set O ⊂ Rd (Ref. 10) which is a

family of nonempty sets such that

(1)
⋃
i∈I Qi = O and

(2) supi∈I |{j ∈ I : Qi ∩Qj 6= ∅}| <∞.

The main tool for the localization is a special partition of unity Φ = (ϕi)i∈I sub-

ordinate to Q, also called Lp-BAPU (bounded admissible partition of unity), with

the following properties

(1) ϕi ∈ C∞
c (O) ∀i ∈ I,

(2)
∑
i∈I ϕi(x) = 1 ∀x ∈ O,

(3) ϕi(x) = 0 for x ∈ Rd \Qi and i ∈ I,

(4) if 1 ≤ p ≤ ∞: supi∈I ‖F
−1ϕi‖L1 <∞

if 0 < p < 1: supi∈I | det(Ti)|
1
p
−1‖F−1ϕi‖Lp <∞,

where we have to further assume in the case 0 < p < 1 that the covering Q has the

structure Qi = TiQ+ bi with Ti ∈ GL(Rd), bi ∈ Rd and an open, precompact set Q

(Q is then called a structured admissible covering). The definition of decomposition

spaces requires one last ingredient, namely a weight (ui)i∈I such that there exists
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C > 0 with ui ≤ Cuj for all i, j ∈ I : Qi ∩ Qj 6= ∅, a weight with this property

is also called Q-moderate. The interpretation of this property is that the value of

(ui)i∈I is comparable for indices corresponding to sets which are ”close” to each

other. Finally, we define the decomposition space with respect to the covering Q

and the weight (ui)i∈I with integrability exponents 0 < p, q ≤ ∞ as

D(Q,Lp, ℓqu) := {f ∈ D′(O) : ‖f‖D(Q,Lp,ℓqu) <∞} (3.2)

for

‖f‖D(Q,Lp,ℓqu) :=
∥∥∥
(
ui · ‖F

−1(ϕif)‖Lp(Rd)

)
i∈I

∥∥∥
ℓq(I)

. (3.3)

As the notation suggests, the decomposition spaces are independent of the precise

choice of Φ (Ref. 30 Corollary 3.4.11).

In order to describe coorbit spaces as decomposition spaces, we need to associate

a covering of the frequencies to a given dilation group. This is done using the dual

action H × Rd ∋ (h, ξ) 7→ h−T ξ.

We then pick a well-spread family in H , i.e. a family of elements (hi)i∈I with

the properties

(1) there exists a relatively compact neighborhood U ⊂ H of the identity such that⋃
i∈I hiU = H – we say (hi)i∈I is U -dense in this case – and

(2) there exists a neighborhood V ⊂ H of the identity such that hiV ∩ hjV = ∅ for

i 6= j – we say (hi)i∈I is V -separated in this case.

The dual covering induced by H is then given by the family Q = (Qi)i∈I , where

Qi = pξ0(hiU) for some ξ0 with H−T ξ0 = O. It can be shown that well-spread

families always exist, and that the induced covering is indeed an admissible covering

in the sense of decomposition space theory, for which Lp-BAPUs exist according to

Ref. 30. Furthermore, there always exist induced coverings consisting of open and

connected sets, an additional feature which can facilitate the investigations in some

cases, see Ref. 22 Corollary 2.5.9.

There always exists a discretization of the weight v, which enables a decompo-

sition space description of the coorbit space.

Definition 3.1 (Ref. 30 Definition 4.5.3.). For q ∈ (0,∞] and a weight v :

H → (0,∞), we define the weight v(q) : H → (0,∞), h 7→ |det(h)|
1
2−

1
q v(h). Here,

we set 1
∞ := 0.

Theorem 3.1 (Ref. 30 Theorem 4.6.3). Let Q be a covering of the dual orbit

O induced by H, 0 < p, q ≤ ∞ and u = (ui)i∈I a suitable weight, then the Fourier

transform F : Co
(
Lp,qv (Rd ⋊H)

)
→ D(Q,Lp, ℓqu) is an isomorphism of (quasi-)

Banach spaces. The weight (ui)i∈I can be chosen as ui := v(q)(hi), where (hi)i∈I
is the well-spread family used in the construction of Q and we call such a weight a

Q−discretization of v.
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In order to apply the embedding results in Ref. 31, we need explicitly given

well-spread families in standard and Toeplitz shearlet groups.

Lemma 3.1. Define

Bλ1,λ2
n,m1,m2,ǫ := ǫ



2n m12

n m22
n

0 2nλ1 0

0 0 2nλ2


 ∈ Hλ1,λ2

for n,m1,m2 ∈ Z and ǫ ∈ {±1}. Then the family Γλ1,λ2 :=(
Bλ1,λ2
n,m1,m2,ǫ

)
(n,m1,m2,ǫ)∈I

for I := Z3 × {±1} is Uλ1,λ2 -dense and -separated, with

Uλ1,λ2 :=







α αβ αγ

0 αλ1 0

0 0 αλ2




∣∣∣∣∣∣∣

2
3 < α ≤ 4

3 ,

−αλ1

2 < αβ ≤ αλ1

2 ,

−αλ2

2 < αγ ≤ αλ2

2





⊂ Hλ1,λ2 .

Furthermore, this well-spread family induces a covering Cλ1,λ2 of the associated dual

orbit. For later reference, we define Aλ1,λ2
n,m1,m2,ǫ :=

(
Bλ1,λ2
n,m1,m2,ǫ

)−T
.

Lemma 3.2. Define

Bδn,m1,m2,ǫ := ǫ



2n m12

n m22
n

0 2n(1−δ) m12
n(1−δ)

0 0 2n(1−2δ)


 ∈ Hδ

for n,m1,m2 ∈ Z and ǫ ∈ {±1}. Then the family Γδ :=
(
Bδn,m1,m2,ǫ

)
(n,m1,m2,ǫ)∈I

is U δ -dense and -separated, with

U δ :=







α αβ αγ

0 α1−δ α1−δβ

0 0 α1−2δ




∣∣∣∣∣∣∣

2
3 < α ≤ 4

3 ,

−α1−δ

2 < αβ ≤ α1−δ

2 ,

−α1−2δ

2 < αγ ≤ α1−2δ

2





⊂ Hδ.

Furthermore, this well-spread family induces a covering Cδ of the associated dual

orbit. For later reference, we define Aδn,m1,m2,ǫ :=
(
Bδn,m1,m2,ǫ

)−T
.

For the following investigation of the existence of embeddings of the associated

shearlet coorbit into Sobolev spaces, it is not necessary to have an explicit descrip-

tion of these induced coverings, but the reader can find one in Ref. 22.

4. Embeddings into Sobolev spaces

Our goal in this section is to study the embedding behavior of the coorbit spaces

Co
(
Lp,qm (R3 ⋊Hδ)

)
and Co

(
Lp,qm (R3 ⋊Hλ1,λ2)

)
associated to three dimensional

shearlet groups into Sobolev spaces for p, q ∈ (0,∞] and a specific class of weights

m on GL(R3).
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This section is based on methods developed in Ref. 31. There, the two dimen-

sional case was considered and characterized to a large extent. Similar questions

related to the embedding of (subspaces) of certain shearlet coorbit spaces into clas-

sical smoothness spaces were also investigated in Ref. 9 (also in two dimensions).

At first, we introduce the necessary tools, in particular, a definition of Sobolev

spaces for integrability exponents 0 < p < 1, and another type of partition of unity.

Afterwards, we explain what we precisely mean by an embedding of a coorbit space

into a Sobolev space, which will depend on the identification of the coorbit space

with a suitable decomposition space, and present the result in Ref. 31 which is a

crucial tool in this chapter.

In the following sections, we apply the result and will compare coorbit spaces as-

sociated to different groups with regards to their embedding behavior. Surprisingly,

the embedding behavior of shearlet groups in dimension three into Sobolev spaces

is determined by the scaling subgroup of the group, which means the shearing part

has no influence on the embedding behavior for parameters in a suitable range and

the class of weights we consider.

We will also see how the group parameters influence the smoothness of the

elements in the associated coorbit spaces.

We start by giving a definition of Sobolev spaces, which is completely classical

in the Banach space case. The definition in the quasi-Banach space case used in

Ref. 31 is inspired by the definition by Peetre27 and the resulting spaces exhibit

quite unexpected properties. For example, the definition as tuple of functions is

motivated by the fact that (∂αf)α∈Nd
0 ,|α|1≤k

7→ f0 is not injective in general. Since

we heavily rely on the results in Ref. 31 , we adhere to the definition employed

there.

Definition 4.1 (Ref. 31 Subsection 2.1). We define

W k,q(Rd) :=

{
f ∈ Lq(Rd)

∣∣∣∣
∂αf ∈ Lq(Rd) for all

α ∈ Nd0, |α|1 ≤ k

}

for q ∈ [1,∞], where ∂αf denotes the weak partial derivative of f and for 0 < q < 1,

let W k,q(Rd) be the closure of

W k,q
∗ (Rd) :=

{
(∂αf)α∈Nd

0,|α|1≤k

∣∣∣∣
f ∈ C∞(Rd), ∂αf ∈ Lq(Rd)

for all α ∈ Nd0, |α|1 ≤ k

}

in the product
∏
α∈Nd

0 , |α|1≤k
Lq(Rd).

We will define suitable differentiation operators on decomposition spaces by

resorting to special partitions of unity.

Definition 4.2 (Ref. 31 Definition 2.4.). Let Q = (TiQ+ bi)i∈I be a structured

admissible covering of some open set O ⊂ R
d and let (φi)i∈I be a partition of

unity subordinate to Q with φi ∈ C∞
c (O). The normalized version of φi is given by

φ#i : Rd → C, x 7→ φi(Tix + bi) for i ∈ I. Additionally, we say that (φi)i∈I is a

regular partition of unity if supi∈I

∥∥∥∂αφ#i
∥∥∥
sup

<∞ for all α ∈ Nd0.
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The connection between regular partitions of unity and Lp-BAPUs as well as

their existence for our preferred type of covering are given by the next lemmata.

Lemma 4.1 (Ref. 31 Corollary 2.7.). If (φi)i∈I is a regular partition of unity

subordinate to a structured admissible covering Q, then (φi)i∈I is an Lp-BAPU for

every p ∈ (0,∞].

Lemma 4.2 (Ref. 31 Theorem 2.8.). Every structured admissible covering ad-

mits a subordinate regular partition of unity.

These preparations allow us to define differentiation operators on decomposition

spaces and to specify what we mean by an embedding of a decomposition space or

coorbit space into a Sobolev space.

Definition 4.3. Let Q = (Qi)i∈I be a structured admissible covering of some open

set O ⊂ Rd and (ui)i∈I a Q-moderate weight on I. For p, r ∈ (0,∞], let (φi)i∈I be

a regular partition of unity for Q.

(1) We say that D(Q,Lp, ℓru) admits a partial differential operator (with respect to

q) for α ∈ N
k
0 with k ∈ N0 if the map

∂α∗ : D(Q,Lp, ℓru) → Lq(Rd)

f 7→
∑

i∈I

∂α
[
F−1(φif)

]

is well-defined, bounded, with unconditional convergence of the series.

(2) We write D(Q,Lp, ℓru) →֒ W k,q(Rd) if D(Q,Lp, ℓru) admits a partial differential

operator in the sense of i) and

ι(k)q :D(Q,Lp, ℓru) → W k,q(Rd)

f 7→ ∂0∗f

is well-defined, bounded and injective for q ≥ 1.

In the case 0 < q < 1, we require that the map

ι(k)q :D(Q,Lp, ℓru) → W k,q(Rd)

f 7→ (∂α∗ f)|α|1≤k

is well-defined and bounded.

(3) We write Co
(
Lp,rm (Rd ⋊H)

)
→֒ W k,q(Rd) for r, q ∈ (0,∞], where H is an ad-

missible group with dual orbit O and m is a weight on H that is right moderate

with respect to a locally bounded weight on H if the associated isomorphic decom-

position space in the sense of Theorem 3.1 satisfies D(Q,Lp, ℓru) →֒W k,q(Rd).

Remark 4.1.

(1) This definition is inspired by Theorem 3.4. and Corollary 4.5. in Ref. 31. We had

to adapt the definition of the partial differential operator slightly (by changing f̂

to f) because Ref. 31 works with space-side decomposition spaces. Despite this
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change, all the results and proofs in Ref. 31 can be applied to our setting by just

interchanging f̂ to f at the appropriate place.

(2) A motivation for this definition is the fact that if D(Q,Lp, Y ) admits a partial

differential operator ∂α∗ , then ∂
α
∗ f = ∂α

(
F−1f

)
for all f ∈ D(Q,Lp, Y )∩C∞

c (O),

according to Ref. 31 Theorem 3.4. Furthermore,D(Q,Lp, Y ) →֒ W k,q(Rd) implies

∂α(ι
(k)
q f) = ∂α∗ f for f ∈ D(Q,Lp, Y ) and |α|1 ≤ k, according to Corollary 3.5 in

Ref. 31. Hence, Co(Lp,qm (Rd ⋊H) →֒ W k,q(Rd) implies

Co
(
Lp,qm (Rd ⋊H)

) F
−→D(Q,Lp, ℓqu)

∂α
∗−−→ Lq(Rd)

f
F
7−→f̂

∂α
∗7−−→ ∂α∗ f̂ = ∂αf

for f ∈ Co(Lp,qm (Rd ⋊ H) ∩ F−1(C∞
c (O)) and |α| ≤ k, where we used that

Ff = f̂ for f ∈ F−1(C∞
c (O)) ⊂ L2(Rd), according to Ref. 30 Theorem 3.2.1.

Here, f̂ denotes the usual Fourier transform of a function.

(3) The phrase the associated isomorphic decomposition space in (3) is justified, be-

cause the same reasoning as in the proof of Corollary 3.6.4 in Ref. 22 shows that

this space is uniquely determined.

We will employ the following theorem to obtain sufficient and necessary condi-

tions for the embedding of shearlet coorbit spaces in three dimensions into Sobolev

spaces in the sense of the last definition. Here, we define p▽ := min {p, p′}, where

p′ = ∞ for 0 < p < 1 and p′ is the usual conjugate exponent for p ≥ 1.

Theorem 4.1 (Ref. 31 Corollary 5.2). Let Q = (TiQ + bi)i∈I be a structured

admissible covering of some open set O ⊂ R
d. Let p, q, r ∈ (0,∞], k ∈ N0 and let

u = (ui)i∈I be a Q-moderate weight on I. Define the weight

w
{q}
i := |det (Ti)|

1
p
− 1

q

(
1 + |bi|

k
+ ‖Ti‖

k
)
,

for i ∈ I, where ‖·‖ is some norm on GL(Rd). Then the following hold:

(1) If p ≤ q and w{q}

u ∈ ℓq
▽·(r/q▽)′(I), then D(Q,Lp, ℓru) →֒W k,q(Rd).

(2) If D(Q,Lp, ℓru) →֒W k,q(Rd), then p ≤ q and

w{q}

u
∈ ℓq·(r/q)

′

(I) for q <∞ and
w{q}

u
∈ ℓr

′

(I) for q = ∞.

Remark 4.2. Since the necessary and sufficient conditions coincide for q ∈ (0, 2]∪

{∞}, this theorem provides a characterization for the embedding

D(Q,Lp, ℓru) →֒W k,q(Rd)

for q in this range.

Our computations will make repeated use of the symbol ≍ denoting equivalence

between families of scalars. More precisely, (ai)i∈I ≍ (bi)i∈I means there exist

constants C, c > 0 such that cai ≤ bi ≤ Cai for all i ∈ I. We will write this

as ai ≍ bi if the set I is clear from the context. Moreover, we denote with ⌊a⌋
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and ⌈b⌉ the biggest integer smaller than a and the smallest integer bigger than b,

respectively.

We note the following elementary but useful observations. The proof is omitted.

Lemma 4.3. We have the asymptotic relation
∑∞
m=m0

mρ ≍ m1+ρ
0 for m0 ∈ N

and ρ < −1.

If (ai)i∈I is a family of real numbers with the property that there exists δ ≥ 0

such that ai ≥ δ for all i ∈ I, then

(1) ⌊ai⌋+ 1 ≍ ai + 1,

(2) if δ > 0, then ⌈ai⌉s ≍ asi for all s ∈ R,

(3) if δ > 0, then ⌊ai⌋+ 1 ≍ ai,

(4) if δ ≥ 1, then ⌊ai⌋s ≍ asi for all s ∈ R,

(5) if δ ≥ 1, then (⌊ai⌋+ 1) ⌊ai⌋ ≍ ⌊ai⌋
2 ≍ a2i .

The next lemma is also easily verified.

Lemma 4.4. Let (ai)i∈I , (bi)i∈I and (ci)i∈I be families of nonnegative numbers

with bi, ci ≤ ai for all i ∈ I. If there exist sets I1, I2 ⊂ I with I1 ∪ I2 = I, then

ai ≍ bi on I1 and ai ≍ ci on I2 imply ai ≍ bi + ci on I and if ai > 0 for all i ∈ I,

then asi ≍ (bi + ci)
s for i ∈ I and all s ∈ R

Furthermore, under the above assumptions, we have
∑

i∈I ai <∞ ⇔
∑
i∈I(bi+

ci) < ∞, and if ai > 0 for all i ∈ I, then
∑

i∈I a
s
i < ∞ ⇔

∑
i∈I(bi + ci)

s < ∞ for

all s ∈ R.

5. Embeddings of shearlet coorbit spaces into Sobolev spaces

Now that all preliminaries are dealt with, we can take up the task of applying the

general results described in the previous sections to the special setup of shearlet

dilation groups in dimension three. Following the programme developed above, we

now need to use, for each group under consideration, the well spread families in

Lemma 3.1 and Lemma 3.2, in order to apply Theorem 4.1. We will treat the case

of the standard shearlet groups in more or less full detail. By comparison, our treat-

ment of the Toeplitz shearlet groups is less complete. Here the central estimates,

and the way they are obtained, turn out to be very similar to the calculations made

for the standard shearlet case, which is why we refrain from including all the details.

These can be found in Ref. 22.

5.1. The standard shearlet groups

In this subsection, we consider the class of standard shearlet groups Hλ1,λ2 from

section 2 and their associated coorbit spaces in dimension three. Our first task is

to prepare the application of Theorem 4.1.

According to Theorem 3.1 and Lemma 3.1, the map

F : Co(Lp,rv (R3
⋊Hλ1,λ2)) → D(Cλ1,λ2 ,Lp, ℓru)
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is an isomorphism for p, r ∈ (0,∞] and any weight v onHλ1,λ2 that is right moderate

with respect to a locally bounded weight on Hλ1,λ2 if u is a Cλ1,λ2 -discretization of

v. Here, we set I := Z3 × {±1} and

un,m1,m2,ǫ := v(r)
(
Aλ1,λ2
n,m1,m2,ǫ

)
=
∣∣∣det

((
Aλ1,λ2
n,m1,m2,ǫ

)−T)∣∣∣
1
2−

1
r

v
((
Aλ1,λ2
n,m1,m2,ǫ

)−T)
,

where the matrices Aλ1,λ2
n,m1,m2,ǫ were defined in Lemma 3.1 and the weight v(r) is

defined as in Definition 3.1.

As in Ref. 31, we will restrict attention to weights v(α,β) : h 7→ |h1,1|
α∥∥h−T

∥∥β ,
where h1,1 denotes the component in the first row and first column of h and α ∈

R, β ≥ 0. Informally speaking, this means that α influences how we gauge the

scaling factor of the matrix and β how we weigh the shearing part. This weight is

a generalization of the weight that is considered in Ref. 9 in the two-dimensional

case.

For this specific weight, the associated weight u(α,β) for the decomposition space

is given by

u(α,β)n,m1,m2,ǫ =
∣∣∣det

((
Aλ1,λ2
n,m1,m2,ǫ

)−T)∣∣∣
1
2−

1
r

v(α,β)
((
Aλ1,λ2
n,m1,m2,ǫ

)−T)

= 2−n(1+λ1+λ2)(
1
2−

1
r
)2−nα

∥∥Aλ1,λ2
n,m1,m2,ǫ

∥∥β

according to Definition 3.1, where one has to keep in mind that the matrices

Aλ1,λ2
n,m1,m2,ǫ are the inverse transposes of a well spread family.

The weight w{q} in Theorem 4.1 is in this setting given by

w{q}
n,m1,m2,ǫ :=

∣∣det
(
Aλ1,λ2
n,m1,m2,ǫ

)∣∣ 1p− 1
q

(
1 +

∥∥Aλ1,λ2
n,m1,m2,ǫ

∥∥k
)

= 2n(1+λ1+λ2)(
1
p
− 1

q
)
(
1 +

∥∥Aλ1,λ2
n,m1,m2,ǫ

∥∥k
)
.

An application of Theorem 4.1 boils down to the study of the sequence ζλ1,λ2

defined by

ζλ1,λ2
n,m1,m2,ǫ :=

w
{q}
n,m1,m2,ǫ

u
(α,β)
n,m1,m2,ǫ

=
2n(1+λ1+λ2)(

1
p
− 1

q
)
(
1 +

∥∥Aλ1,λ2
n,m1,m2,ǫ

∥∥k
)

2−n(1+λ1+λ2)(
1
2−

1
r
)2−nα

∥∥∥Aλ1,λ2
n,m1,m2,ǫ

∥∥∥
β

= 2n[α+(1+λ1+λ2)(
1
2−

1
r
+ 1

p
− 1

q
)]
(∥∥Aλ1,λ2

n,m1,m2,ǫ

∥∥−β +
∥∥Aλ1,λ2

n,m1,m2,ǫ

∥∥k−β
)
.

More precisely, we want to characterize ζλ1,λ2 ∈ ℓθ(I) for I = Z3 × {±1}

and θ ∈ (0,∞]. Since ζλ1,λ2

n,m1,m2,1
= ζλ1,λ2

n,m1,m2,−1 ≥ 0, it is sufficient to character-

ize (ζλ1,λ2

n,m1,m2,1
)n,m1,m2 ∈ ℓθ(Z3). Furthermore, ζλ1,λ2

n,m1,m2,1
= ψ

(a,β)
n,m1,m2 + ψ

(a,β−k)
n,m1,m2

with ψ
(a,β)
n,m1,m2 := 2na

∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−β

and a := α+ (1 + λ1 + λ2)
(

1
2 − 1

r +
1
p − 1

q

)
.

Note that ψ
(a,b)
n,m1,m2 ≥ 0, which implies the equivalence

ζλ1,λ2 ∈ ℓθ(I) ⇐⇒ ψ(a,β), ψ(a,β−k) ∈ ℓθ(Z3). (5.1)
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In summary, our task is reduced to the investigation of the sequence ψ(a,b) for

a, b ∈ R with b ≥ 0 and to finding a characterization in terms of a, b, θ, λ1, λ2 for

ψ(a,b) ∈ ℓθ(Z3) with a, λ1, λ2 ∈ R, b ≥ 0 and θ ∈ (0,∞]. Since all norms on GL(R3)

are equivalent, and equivalent norms lead to the same conditions for membership

of the considered sequences in ℓθ-spaces, from now on, we will consider the norm

‖h‖ =
∑

1≤i,j≤3 |hi,j |, where hi,j are the components of the matrix h ∈ GL(R3).

The relation ψ
(a,b)
0,m1,m2

=
∥∥∥Aλ1,λ2

0,m1,m2,1

∥∥∥
−b

= (3 + |m1|+ |m2|)−b shows that b ≥ 0 is

necessary for ψ(a,b) ∈ ℓθ(Z3) ⊂ ℓ∞(Z3). This is also the reason why we restrict the

weights v(α,β) to the range of parameters α ∈ R and β ≥ 0.

In the following subsections, we will focus on the case λ1 ≤ λ2 and associated

sub-cases. Since
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥ = 2n + 2nλ1 + 2nλ2 + 2λ1 |m1| + 2λ2 |m2| is invariant

under a change of the index 1 to 2 and vice versa, the results for the case λ2 ≤ λ1
follow by interchanging λ1 and λ2 in the conditions of the appropriate sub-case.

5.2. Standard Shearlet Group: case 1 ≤ λ1 ≤ λ2

The general proof strategy consists in determining the asymptotic behavior of∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥ on suitable subsets of Z3, and then combining the different condi-

tions on the exponents and weights that arise from the requirement that summation

over each subset converges. More precisely, we break Z3 down into two discrete half

spaces and then further into eight octants, and study summation over these subsets.

Definition 5.1. We define the subsets of Z3

M+
1 :=

{
(n,m1,m2)

∣∣ n ≥ 0, 2nλ1 |m1| ≤ 2nλ2 |m2|, 2nλ2 ≤ 2nλ2 |m2|
}

M+
2 :=

{
(n,m1,m2)

∣∣ n ≥ 0, 2nλ1 |m1| ≤ 2nλ2 |m2|, 2nλ2 |m2| ≤ 2nλ2
}

M+
3 :=

{
(n,m1,m2)

∣∣ n ≥ 0, 2nλ2 |m2| ≤ 2nλ1 |m1|, 2nλ2 ≤ 2nλ1 |m1|
}

M+
4 :=

{
(n,m1,m2)

∣∣ n ≥ 0, 2nλ2 |m2| ≤ 2nλ1 |m1|, 2nλ1 |m1| ≤ 2nλ2
}

and

M−
1 :=

{
(n,m1,m2)

∣∣ n < 0, 2nλ1 |m1| ≤ 2nλ2 |m2|, 2n ≤ 2nλ2 |m2|
}

M−
2 :=

{
(n,m1,m2)

∣∣ n < 0, 2nλ1 |m1| ≤ 2nλ2 |m2|, 2nλ2 |m2| ≤ 2n
}

M−
3 :=

{
(n,m1,m2)

∣∣ n < 0, 2nλ2 |m2| ≤ 2nλ1 |m1|, 2n ≤ 2nλ1 |m1|
}

M−
4 :=

{
(n,m1,m2)

∣∣ n < 0, 2nλ2 |m2| ≤ 2nλ1 |m1|, 2nλ1 |m1| ≤ 2n
}
.

Furthermore, we let M † =
⋃
i=1,...,4M

†
i , for † ∈ {+,−}.

Note that the union of all sets in the above definition is Z3. We introduce these

sets because we want to use ψ(a,b) ∈ ℓθ(Z3) ⇐⇒ ψ(a,b) ∈ ℓθ(M †
i ) for all † ∈ {±}, i ∈

{1, . . . , 4}.

Lemma 5.1. The following asymptotic relations hold for (n,m1,m2) in the given
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sets:

∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥ ≍





2nλ2 |m2|, for (n,m1,m2) ∈M+
1

2nλ2 , for (n,m1,m2) ∈M+
2

2nλ1 |m1|, for (n,m1,m2) ∈M+
3

2nλ2 , for (n,m1,m2) ∈M+
4

2nλ2 |m2|, for (n,m1,m2) ∈M−
1

2n, for (n,m1,m2) ∈M−
2

2nλ1 |m1|, for (n,m1,m2) ∈M−
3

2n, for (n,m1,m2) ∈M−
4

Proof. We have
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥ = 2n+2nλ1 +2nλ2 +2nλ1 |m1|+2nλ2 |m2|. Hence, if

n ≥ 0, the inequality 2nλ2 ≤ 2n + 2nλ1 + 2nλ2 ≤ 3 · 2nλ2 shows that
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥ ≍ 2nλ2 + 2λ1 |m1|+ 2λ2 |m2|

holds and for n < 0, the inequality 2n ≤ 2n + 2nλ1 + 2nλ2 ≤ 3 · 2n implies∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥ ≍ 2n + 2λ1 |m1| + 2λ2 |m2|. The rest follows by observing that the

sets M †
i for i ∈ {1, . . . , 4} and † ∈ {±} are precisely chosen in a way to ensure that

one term dominates the other terms in these asymptotic norm expressions.

The next step consists in using these asymptotic relations in order to characterize

ψ(a,b) ∈ ℓθ(Z3). We first consider θ = ∞.

Lemma 5.2. For 1 ≤ λ1 ≤ λ2, a ∈ R and b ≥ 0, we have

ψ(a,b) ∈ ℓ∞(Z3) ⇐⇒ b ≤ a ≤ bλ2.

Proof. We will determine successively necessary and sufficient conditions for

ψ(a,b) ∈ ℓ∞(M †
i ) for i ∈ {1, . . . , 4} and † ∈ {±}.

(1) The set M+
1 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
ℓ∞(M+

1 )
= sup

(n,m1,m2)∈M
+
1

2na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b

≍ sup
(n,m1,m2)∈M

+
1

2na2−bnλ2 |m2|
−b

= sup
n≥0

sup
2nλ1 |m1|≤2nλ2 |m2|

1≤|m2|

2n(a−bλ2)|m2|
−b (∗)

= sup
n≥0

2n(a−bλ2) <∞

if and only if a − bλ2 ≤ 0. In (∗) we used that the expression |m2|
−b achieves

its maximum with respect to (m1,m2) with the given restriction for the choice

(m1,m2) = (0, 1).

(2) The set M+
2 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
ℓ∞(M+

2 )
= sup

(n,m1,m2)∈M
+
2

2na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b

≍ sup
(n,m1,m2)∈M

+
2

2na2−nbλ2
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= sup
n≥0

sup
2nλ1 |m1|≤2nλ2 |m2|

2nλ2 |m2|≤2nλ2

2n(a−bλ2) (∗)
= sup

n≥0
2n(a−bλ2) <∞

if and only if a−bλ2 ≤ 0. In (∗) we used that the expression we take the supremum

of is independent of (m1,m2).

(3) The set M+
3 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
ℓ∞(M+

3 )
= sup

(n,m1,m2)∈M
+
3

2na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b

≍ sup
(n,m1,m2)∈M

+
3

2na2−bnλ1 |m1|
−b

= sup
n≥0

sup
2nλ2 |m2|≤2nλ1 |m1|

2n(λ2−λ1)≤|m1|

2n(a−bλ1)|m1|
−b (∗)

= sup
n≥0

2n(a−bλ1)⌈2n(λ2−λ1)⌉−b

4.3
≍ sup

n≥0
2n(a−bλ1)2−bn(λ2−λ1) = sup

n≥0
2n(a−bλ2) <∞

if and only if a − bλ2 ≤ 0. In (∗) we used that the expression |m1|
−b achieves

its maximum with respect to (m1,m2) with the given restriction for the choice

(m1,m2) = (⌈2n(λ2−λ1)⌉, 0).

(4) The set M+
4 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
ℓ∞(M+

4 )
= sup

(n,m1,m2)∈M
+
4

2na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b

≍ sup
(n,m1,m2)∈M

+
4

2na2−nbλ2

= sup
n≥0

sup
2nλ2 |m2|≤2nλ1 |m1|

2nλ1 |m1|≤2nλ2

2n(a−bλ2) (∗)
= sup

n≥0
2n(a−bλ2) <∞

if and only if a−bλ2 ≤ 0. In (∗) we used that the expression we take the supremum

of is independent of (m1,m2).

(5) The set M+: The previous four cases and Lemma 4.4 combined with Lemma 5.1

lead to∥∥∥ψ(a,b)
∥∥∥
ℓ∞(M+)

≍ sup
(n,m1,m2)∈M+

∣∣∣2na
(
2nλ2 + 2nλ1 |m1|+ 2nλ2 |m2|

)−b∣∣∣ <∞

if and only if a− bλ2 ≤ 0.

(6) The set M−
1 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
ℓ∞(M−

1 )
= sup

(n,m1,m2)∈M
−
1

2na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b

≍ sup
(n,m1,m2)∈M

−
1

2na2−bnλ2 |m2|
−b

= sup
n<0

sup
2nλ1 |m1|≤2nλ2 |m2|

2n≤2nλ2 |m2|

2n(a−bλ2)|m2|
−b (∗)

= sup
n<0

2n(a−bλ2)⌈2n(1−λ2)⌉−b

4.3
≍ sup

n<0
2n(a−bλ2)2−bn(1−λ2) = sup

n<0
2n(a−b) <∞

if and only if a − b ≥ 0. In (∗) we used that the expression |m2|−b achieves

its maximum with respect to (m1,m2) with the given restriction for the choice

(m1,m2) = (0, ⌈2n(1−λ2)⌉).
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18 Führ, Koch

(7) The set M−
2 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
ℓ∞(M−

2 )
= sup

(n,m1,m2)∈M
−
2

2na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b

≍ sup
(n,m1,m2)∈M

−
2

2na2−nb

= sup
n≥0

sup
2nλ1 |m1|≤2nλ2 |m2|

2nλ2 |m2|≤2n

2n(a−b)
(∗)
= sup

n≥0
2n(a−b) <∞

if and only if a− b ≥ 0. In (∗) we used that the expression we take the supremum

of is independent of (m1,m2).

(8) The set M−
3 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
ℓ∞(M−

3 )
= sup

(n,m1,m2)∈M
−
3

2na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b

≍ sup
(n,m1,m2)∈M

−
3

2na2−bnλ1 |m1|
−b

= sup
n<0

sup
2nλ2 |m2|≤2nλ1 |m1|

2n≤2nλ1 |m1|

2n(a−bλ1)|m1|
−b (∗)

= sup
n<0

2n(a−bλ1)⌈2n(1−λ1)⌉−b

4.3
≍ sup

n<0
2n(a−bλ1)2−bn(1−λ1) = 2n(a−b) <∞

if and only if a − b ≥ 0. In (∗) we used that the expression |m1|−b achieves

its maximum with respect to (m1,m2) with the given restriction for the choice

(m1,m2) = (⌈2n(1−λ1)⌉, 0).

(9) The set M−
4 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
ℓ∞(M−

4 )
= sup

(n,m1,m2)∈M
−
4

2na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b

≍ sup
(n,m1,m2)∈M

−
4

2na2−nb

= sup
n≥0

sup
2nλ2 |m2|≤2nλ1 |m1|2

nλ1 |m1|≤2n
2n(a−b)

(∗)
= sup

n≥0
2n(a−b) <∞

if and only if a− b ≥ 0. In (∗) we used that the expression we take the supremum

of is independent of (m1,m2).

(10) The set M−: The previous four cases and Lemma 4.4 combined with Lemma 5.1

lead to∥∥∥ψ(a,b)
∥∥∥
ℓ∞(M−)

≍ sup
(n,m1,m2)∈M−

∣∣∣2na
(
2n + 2nλ1 |m1|+ 2nλ2 |m2|

)−b∣∣∣ <∞

if and only if a− b ≥ 0.

(11) The set Z3: To summarize our results, we have ψ(a,b) ∈ ℓ∞(Z3) <∞ if and only

if b ≤ a ≤ bλ2.

The next step is to consider the remaining θ <∞.

Lemma 5.3. For 1 ≤ λ1 ≤ λ2, a ∈ R and b ≥ 0, and θ ∈ (0,∞), we have

ψ(a,b) ∈ ℓθ(Z3) if and only if bθ > 2 and λ1+λ2−2
θ + b < a < λ1−λ2

θ + bλ2.

Proof. We proceed as in the previous proof:
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(1) The set M+
1 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
θ

ℓθ(M+
1 )

=
∑

(n,m1,m2)∈M
+
1

∣∣∣∣2
na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b
∣∣∣∣
θ

≍
∑

(n,m1,m2)∈M
+
1

(
2na2−bnλ2 |m2|

−b
)θ

=
∑

n≥0

∑

1≤|m2|

2nλ1 |m1|≤2nλ2 |m2|

2θn(a−bλ2)|m2|
−bθ ≍

∞∑

n=0

∞∑

m2=1

⌊2n(λ2−λ1)m2⌋∑

m1=0

2θn(a−bλ2)m−bθ
2

=

∞∑

n=0

∞∑

m2=1

(
⌊2n(λ2−λ1)m2⌋+ 1

)
2θn(a−bλ2)m−bθ

2

(4.3)
≍

∞∑

n=0

∞∑

m2=1

2n(λ2−λ1)m22
θn(a−bλ2)m−bθ

2

=

(
∞∑

n=0

2n(θ(a−bλ2)+λ2−λ1)

)(
∞∑

m2=1

m1−bθ
2

)
<∞

if and only if bθ > 2 and θ(a− bλ2) + λ2 − λ1 < 0.

(2) The set M+
2 : We can decompose the set M+

2 as M+
2 =M+′′

2 ∪M+′

2 , where

M+′

2 :=M+
2 ∩ { (n,m1, 0) | n,m1 ∈ Z } and

M+′′

2 :=M+
2 ∩ { (n,m1,m2) | n,m1,m2 ∈ Z and |m2| = 1 } .

Since M+′′

2 ⊂ M+
1 , the conditions bθ > 2 and θ(a − bλ2) + λ2 − λ1 < 0 ensure

also
∥∥ψ(a,b)

∥∥
ℓθ(M+′′

2 )
<∞. For the set M+′

2 , we get

∥∥∥ψ(a,b)
∥∥∥
θ

ℓθ(M+′

2 )
=

∑

(n,m1,m2)∈M
+′

2

∣∣∣∣2
na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b
∣∣∣∣
θ
5.1
≍

∑

(n,m1,m2)∈M
+′

2

(
2na2−bnλ2

)θ

=
∑

n≥0

∑

m2=0
m1=0

2θn(a−bλ2) =
∞∑

n=0

2θn(a−bλ2) <∞

if and only if θ(a−bλ2) < 0, which is weaker condition than θ(a−bλ2)+λ2−λ1 < 0

since λ2 − λ1 ≥ 0.

(3) The set M+
3 : In this case, we have for bθ > 2 the following additional condition

∥∥∥ψ(a,b)
∥∥∥
θ

ℓθ(M+
3 )

=
∑

(n,m1,m2)∈M
+
3

∣∣∣∣2
na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b
∣∣∣∣
θ

≍
∑

(n,m1,m2)∈M
+
3

(
2na2−bnλ1 |m1|

−b
)θ

=
∑

n≥0

∑

2nλ2 |m2|≤2nλ1 |m1|

2nλ2≤2nλ1 |m1|

2θn(a−bλ1)|m1|
−bθ ≍

∞∑

n=0

∞∑

m1=⌈2n(λ2−λ1)⌉

⌊2n(λ1−λ2)m1⌋∑

m2=0

2θn(a−bλ1)m−bθ
1

=

∞∑

n=0

∞∑

m1=⌈2n(λ2−λ1)⌉

(
⌊2n(λ1−λ2)m1⌋+ 1

)
2θn(a−bλ1)m−bθ

1
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4.3
≍

∞∑

n=0

∞∑

m1=⌈2n(λ2−λ1)⌉

2n(λ1−λ2)m12
θn(a−bλ1)m−bθ

1

=
∞∑

n=0

∞∑

m1=⌈2n(λ2−λ1)⌉

2n(θ(a−bλ1)+λ1−λ2)m1−bθ
1

4.3
≍

∞∑

n=0

2n(θ(a−bλ1)+λ1−λ2)⌈2n(λ2−λ1)⌉2−bθ

4.3
≍

∞∑

n=0

2n(θ(a−bλ1)+λ1−λ2)2n(λ2−λ1)(2−bθ) =

∞∑

n=0

2n(θ(a−bλ2)+λ2−λ1) <∞

if and only if θ(a− bλ2) + λ2 − λ1 < 0.

(4) The set M+
4 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
θ

ℓθ(M+
4 )

=
∑

(n,m1,m2)∈M
+
4

∣∣∣∣2
na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b
∣∣∣∣
θ

≍
∑

(n,m1,m2)∈M
+
4

(
2na2−bnλ2

)θ

=
∑

n≥0

∑

2nλ1 |m1|≤2nλ2

2nλ2 |m2|≤2nλ1 |m1|

2θn(a−bλ2) ≍
∞∑

n=0

⌊2n(λ2−λ1)⌋∑

m1=0

⌊2n(λ1−λ2)m1⌋∑

m2=0

2θn(a−bλ2)

(∗)
≍

∞∑

n=0

⌊2n(λ2−λ1)⌋∑

m1=0

2θn(a−bλ2) =

∞∑

n=0

(
⌊2n(λ2−λ1)⌋+ 1

)
2θn(a−bλ2)

4.3
≍

∞∑

n=0

2n(λ2−λ1)2θn(a−bλ2) =

∞∑

n=0

2n(θ(a−bλ2)+λ2−λ1) <∞

if and only if θ(a−bλ2)+λ2−λ1 < 0. In (∗) we used that for 0 ≤ m1 ≤ ⌊2n(λ2−λ1)⌋

the inequality 0 ≤ m2 ≤ ⌊2n(λ1−λ2)m1⌋ implies m2 ∈ {0, 1}, which means that

the value of the sum we omitted in this step is in {1, 2}.

(5) The set M+: The previous four cases and Lemma 4.4 combined with Lemma 5.1

lead to
∥∥∥ψ(a,b)

∥∥∥
θ

ℓθ(M+)
≍

∑

(n,m1,m2)∈M+

∣∣∣2na
(
2nλ2 + 2nλ1 |m1|+ 2nλ2 |m2|

)−b∣∣∣
θ

<∞

if and only if θ(a− bλ2) + λ2 − λ1 < 0 and bθ > 2 for the set M+ := ∪4
i=1M

+
i .

(6) The setM−
1 : In this case, we have under the already established condition bθ > 2

∥∥∥ψ(a,b)
∥∥∥
θ

ℓθ(M−
1 )

=
∑

(n,m1,m2)∈M
−
1

∣∣∣∣2
na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b
∣∣∣∣
θ

≍
∑

(n,m1,m2)∈M
−
1

(
2na2−bnλ2 |m2|

−b
)θ

=
∑

n<0

∑

2n≤2nλ2 |m2|

2nλ1 |m1|≤2nλ2 |m2|

2θn(a−bλ2)|m2|
−bθ ≍

∞∑

n<0

∞∑

m2=⌈2n(1−λ2)⌉

⌊2n(λ2−λ1)m2⌋∑

m1=0

2θn(a−bλ2)m−bθ
2

=

∞∑

n<0

∞∑

m2=⌈2n(1−λ2)⌉

(
⌊2n(λ2−λ1)m2⌋+ 1

)
2θn(a−bλ2)m−bθ

2
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4.3
≍

∞∑

n<0

∞∑

m2=⌈2n(1−λ2)⌉

2n(λ2−λ1)m22
θn(a−bλ2)m−bθ

2

=
∞∑

n<0

∞∑

m2=⌈2n(1−λ2)⌉

2n(θ(a−bλ2)+λ2−λ1)m1−bθ
2

4.3
≍

∞∑

n<0

2n(θ(a−bλ2)+λ2−λ1)⌈2n(1−λ2)⌉2−bθ

4.3
≍
∑

n<0

2n(θ(a−bλ2)+λ2−λ1)2n(1−λ2)(2−bθ) =
∑

n<0

2n(θ(a−b)+2−λ2−λ1) <∞

if and only if and θ(a− b) + 2− λ2 − λ1 > 0.

(7) The set M−
2 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
θ

ℓθ(M−
2 )

=
∑

(n,m1,m2)∈M
−
2

∣∣∣∣2
na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b
∣∣∣∣
θ

≍
∑

(n,m1,m2)∈M
−
2

(
2na2−bn

)θ

=
∑

n<0

∑

2nλ1 |m1|≤2nλ2 |m2|

2nλ2 |m2|≤2n

2θn(a−b) ≍
∑

n<0

⌊2n(1−λ2)⌋∑

m2=0

⌊2n(λ2−λ1)m2⌋∑

m1=0

2θn(a−b)

=
∑

n<0

⌊2n(1−λ2)⌋∑

m2=0

(
⌊2n(λ2−λ1)m2⌋+ 1

)
2θn(a−b)

4.3
≍
∑

n<0

⌊2n(1−λ2)⌋∑

m2=0

(
2n(λ2−λ1)m2 + 1

)
2θn(a−b).

We expand the sum and consider the two following series separately, first

∑

n<0

⌊2n(1−λ2)⌋∑

m2=0

2n(θ(a−b)+λ2−λ1)m2

(∗)
≍
∑

n<0

2n(θ(a−b)+λ2−λ1)⌊2n(1−λ2)⌋
(
⌊2n(1−λ2)⌋+ 1

)

=
∑

n<0

2n(θ(a−b)+λ2−λ1)⌊2n(1−λ2)⌋2 +
∑

n<0

2n(θ(a−b)+λ2−λ1)⌊2n(1−λ2)⌋

(4.3)
≍

∑

n<0

2n(θ(a−b)+λ2−λ1)22n(1−λ2) +
∑

n<0

2n(θ(a−b)+λ2−λ1)2n(1−λ2)

=
∑

n<0

2n(θ(a−b)+2−λ1−λ2) +
∑

n<0

2n(θ(a−b)+1−λ1) <∞

if and only if θ(a− b)+ 2−λ2−λ1 > 0 and θ(a− b)+ 1−λ1 > 0, where the first

inequality implies the second inequality because λ2 − 1 ≥ 0 and in (∗) we used∑n
m=1m = 1

2n(n+ 1).

Now, we consider the remaining series

∑

n<0

⌊2n(1−λ2)⌋∑

m2=0

2nθ(a−b) =
∑

n<0

2nθ(a−b)
(
⌊2n(1−λ2)⌋+ 1

) 4.3
≍
∑

n<0

2nθ(a−b)2n(1−λ2)

=
∑

n<0

2n(θ(a−b)+1−λ2) <∞
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if and only if θ(a − b) + 1 − λ2 > 0, which is implied by the already established

inequality θ(a− b) + 2− λ2 − λ1 > 0 since λ1 − 1 ≥ 0.

In summary, we have
∥∥ψ(a,b)

∥∥θ
ℓθ(M−

2 )
<∞ ⇐⇒ θ(a− b) + 2− λ2 − λ1 > 0.

(8) The setM−
3 : In this case, we have under the already established condition bθ > 2

∥∥∥ψ(a,b)
∥∥∥
θ

ℓθ(M−
3 )

=
∑

(n,m1,m2)∈M
−
3

∣∣∣∣2
na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b
∣∣∣∣
θ

≍
∑

(n,m1,m2)∈M
−
3

(
2na2−bnλ1 |m1|

−b
)θ

=
∑

n<0

∑

2nλ2 |m2|≤2nλ1 |m1|

2n≤2nλ1 |m1|

2θn(a−bλ1)|m1|
−bθ ≍

∑

n<0

∞∑

m1=⌈2n(1−λ1)⌉

⌊2n(λ1−λ2)m1⌋∑

m2=0

2θn(a−bλ1)m−bθ
1

=
∑

n<0

∞∑

m1=⌈2n(1−λ1)⌉

(
⌊2n(λ1−λ2)m1⌋+ 1

)
2θn(a−bλ1)m−bθ

1

4.3
≍
∑

n<0

∞∑

m1=⌈2n(1−λ1)⌉

2n(λ1−λ2)m12
θn(a−bλ1)m−bθ

1

=
∑

n<0

∞∑

m1=⌈2n(1−λ1)⌉

2n(θ(a−bλ1)+λ1−λ2)m1−bθ
1

4.3
≍
∑

n<0

2n(θ(a−bλ1)+λ1−λ2)⌈2n(1−λ1)⌉2−bθ

4.3
≍
∑

n<0

2n(θ(a−bλ1)+λ1−λ2)2n(1−λ1)(2−bθ) =
∑

n<0

2n(θ(a−b)+2−λ1−λ2) <∞

if and only if θ(a− b) + 2− λ2 − λ1 > 0.

(9) The set M−
4 : In this case, we have

∥∥∥ψ(a,b)
∥∥∥
θ

ℓθ(M−
4 )

=
∑

(n,m1,m2)∈M
−
4

∣∣∣∣2
na
∥∥∥Aλ1,λ2

n,m1,m2,1

∥∥∥
−b
∣∣∣∣
θ

≍
∑

(n,m1,m2)∈M
−
4

(
2na2−bn

)θ

=
∑

n<0

∑

2nλ2 |m2|≤2nλ1 |m1|

2nλ1 |m1|≤2n

2θn(a−b) <∞ ≍
∑

n<0

⌊2n(1−λ1)⌋∑

m1=0

⌊2n(λ1−λ2)m1⌋∑

m2=0

2θn(a−b)

=
∑

n<0

⌊2n(1−λ1)⌋∑

m1=0

(
⌊2n(λ1−λ2)m1⌋+ 1

)
2θn(a−b)

4.3
≍
∑

n<0

⌊2n(1−λ1)⌋∑

m1=0

(
2n(λ1−λ2)m1 + 1

)
2θn(a−b)

and this sum is finite if and only if the following two sums are finite. The first

sum is

∑

n<0

⌊2n(1−λ1)⌋∑

m1=0

2n(θ(a−b)+λ1−λ2)m1

(∗)
≍
∑

n<0

2n(θ(a−b)+λ1−λ2)⌊2n(1−λ1)⌋
(
⌊2n(1−λ1)⌋+ 1

)

4.3
≍
∑

n<0

2n(θ(a−b)+λ1−λ2)22n(1−λ1) =
∑

n<0

2n(θ(a−b)+2−λ1−λ2) <∞
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if and only if θ(a− b) + 2− λ2 − λ1 > 0, where we used in (∗) again
∑n

m=1m =
1
2n(n+ 1). The second sum is

∑

n<0

⌊2n(1−λ1)⌋∑

m1=0

2nθ(a−b) =
∑

n<0

2nθ(a−b)
(
⌊2n(1−λ1)⌋+ 1

) 4.3
≍
∑

n<0

2nθ(a−b)2n(1−λ1)

=
∑

n<0

2n(θ(a−b)+1−λ1) <∞

if and only if θ(a− b)+ 1−λ1 > 0, which is a weaker condition than for the first

sum because λ2 ≥ 1.

(10) The set M−: The previous four cases and Lemma 4.4 combined with Lemma 5.1

lead to
∥∥∥ψ(a,b)

∥∥∥
θ

ℓθ(M−)
≍

∑

(n,m1,m2)∈M−

∣∣∣2na
(
2n + 2nλ1 |m1|+ 2nλ2 |m2|

)−b∣∣∣
θ

<∞

if and only if θ(a− b) + 2− λ2 − λ1 > 0 and bθ > 2 for the set M− := ∪4
i=1M

−
i .

(11) The set Z3: To summarize our results, we have ψ(a,b) ∈ ℓθ(M−∪M+) = ℓθ(Z3) <

∞ if and only if bθ > 2 and

θ(a− bλ2) + λ2 − λ1 < 0 < θ(a− b) + 2− λ2 − λ1

⇐⇒
λ1 + λ2 − 2

θ
+ b < a <

λ1 − λ2
θ

+ bλ2.

If we put the last results together, we get a complete characterization for these

1 ≤ λ1 ≤ λ2.

Corollary 5.1. The following are equivalent to ψ(a,b) ∈ ℓθ(Z3) for 1 ≤ λ1 ≤ λ2,

a ∈ R and b ≥ 0:
{
bθ > 2, λ1+λ2−2

θ + b < a < λ1−λ2

θ + bλ2, if θ ∈ (0,∞)

b ≤ a ≤ bλ2, if θ = ∞.

5.3. Standard Shearlet Group: remaining cases

By proceeding in a completely analogous manner in the cases λ1 ≤ λ2 ≤ 1 and λ1 ≤

1 ≤ λ2, we achieve for these remaining cases similar results, which we summarize

in the next corollary.

Corollary 5.2. The following are equivalent to ψ(a,b) ∈ ℓθ(Z3) for a ∈ R and b ≥ 0:

(1) If 1 ≤ λ1 ≤ λ2:

{
bθ > 2, λ1+λ2−2

θ + b < a < λ1−λ2

θ + bλ2, if θ ∈ (0,∞)

b ≤ a ≤ bλ2, if θ = ∞.
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(2) If λ1 ≤ λ2 ≤ 1:
{
bθ > 2, λ2−λ1

θ + bλ1 < a < λ1+λ2−2
θ + b, if θ ∈ (0,∞)

bλ1 ≤ a ≤ b, if θ = ∞.

(3) If λ1 ≤ 1 ≤ λ2:
{
bθ > 2, λ2−λ1

θ + bλ1 < a < λ1−λ2

θ + bλ2, if θ ∈ (0,∞)

bλ1 ≤ a ≤ bλ2, if θ = ∞.

And the case for λ2 ≤ λ1 corresponds to the respective case for λ1 ≤ λ2 by

interchanging λ1 and λ2.

Recall that we were actually interested in conditions that characterize the finite-

ness of the norm of ζλ1,λ2

n,m1,m2,1
= ψ

(a,β)
n,m1,m2 +ψ

(a,β−k)
n,m1,m2 in order to apply Theorem 4.1

to decide and characterize the existence of an embedding Co(Lp,rm (Rd⋊Hλ1,λ2)) →֒

W k,q(Rd) in the sense of Definition 4.3.

Theorem 5.1. Let p, q, r ∈ (0,∞], k ∈ N0 and set γ :=
(

1
2 − 1

r +
1
p −

1
q

)
. The

embedding Co(Lp,r
v(α,β)(R

3
⋊Hλ1,λ2)) →֒ W k,q(R3) holds for q ∈ (0, 2] ∪ {∞}, if and

only if p ≤ q and

(1) for r ≤ q▽

(a) the inequalities

β ≤ α+ (1 + λ1 + λ2)γ ≤ (β − k)λ2

hold if 1 ≤ λ1 ≤ λ2,

(b) the inequalities

max{βλ1, (β − k)λ1} ≤ α+ (1 + λ1 + λ2)γ ≤ β − k

hold if λ1 ≤ λ2 ≤ 1,

(c) the inequalities

max{βλ1, (β − k)λ1} ≤ α+ (1 + λ1 + λ2)γ ≤ (β − k)λ2

hold if λ1 ≤ 1 ≤ λ2.

(2) for r > q▽ the inequality β > k + 2
(

1
q▽ − 1

r

)
and

(a) the inequalities

(λ1 + λ2 − 2)

(
1

q▽
−

1

r

)
+ β < α+ (1 + λ1 + λ2)γ < (λ1 − λ2)

(
1

q▽
−

1

r

)
+ (β − k)λ2

hold if 1 ≤ λ1 ≤ λ2,

(b) the inequalities

(λ2 − λ1)

(
1

q▽
−

1

r

)
+max{βλ1, (β − k)λ1} < α+ (1 + λ1 + λ2)γ
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< (λ1 + λ2 − 2)

(
1

q▽
−

1

r

)
+ (β − k)

hold if λ1 ≤ λ2 ≤ 1,

(c) the inequalities

(λ2 − λ1)

(
1

q▽
−

1

r

)
+max{βλ1, (β − k)λ1} < α+ (1 + λ1 + λ2)γ

< (λ1 − λ2)

(
1

q▽
−

1

r

)
+ (β − k)λ2

hold if λ1 ≤ 1 ≤ λ2.

For the remaining case q ∈ (2,∞), the given conditions are sufficient for the em-

bedding Co(Lp,r
v(α,β)(R

3
⋊Hλ1,λ2) →֒ W k,q(R3), and necessary for this embedding if

one replaces q▽ with q in the inequalities. The case for λ2 ≤ λ1 corresponds to the

respective case for λ1 ≤ λ2 by interchanging λ1 and λ2.

Proof. Essentially, this is an application of Theorem 4.1 and the prior discussion

in Section 5.1. Since ζλ1,λ2 ∈ ℓθ(Z3×{±1}) ⇐⇒ ψ(a,β), ψ(a,β−k) ∈ ℓθ(Z3) with

a = α+(1+λ1+λ2)γ. And the condition ζλ1,λ2 ∈ ℓ
q▽

(

r
q▽

)′

(Z3) is sufficient for the

existence of the embedding Co(Lp,r
v(α,β)(R

3 ⋊ Hλ1,λ2)) →֒ W k,q(R3) for q ∈ (2,∞)

and equivalent to it for q ∈ (0, 2] ∪ {∞}.

We just have to set θ := q▽
(
r
q▽

)′
and notice that q▽

(
r
q▽

)′
= ∞ ⇐⇒ r ≤ q▽ and

that in the case r > q▽, we get q▽
(
r
q▽

)′
= q▽

r
q▽

r
q▽

−1 = 1
1

q▽
− 1

r

. Hence θ−1 = 1
q▽ − 1

r ,

where all these computations also hold for q = ∞ or r = ∞ or p = ∞ with 1
∞ = 0.

The application of Corollary 5.2 with these parameters then leads to the given

conditions in the given cases.

5.4. Embeddings for Toeplitz shearlet groups

In this section, we consider the class of Toeplitz shearlet groups Hδ from sec-

tion 2 and their associated coorbit spaces in dimension three. Again, according to

Theorem 3.1 and Lemma 3.2, the map F : Co(Lp,rv (R3 ⋊ Hδ)) → D(Cδ, Lp, ℓru)

is an isomorphism for p, r ∈ (0,∞] and any weight v : Hδ → (0,∞) that is

right moderate with respect to a locally bounded weight on Hδ if u : I →

(0,∞) is a Cδ-discretization of a decomposition weight for the coorbit space

Co(Lp,rv (R3 ⋊ Hδ)). The associated weight has the following form un,m1,m2,ǫ :=

v(r)
(
Aδn,m1,m2,ǫ

)
=
∣∣∣det

((
Aδn,m1,m2,ǫ

)−T)∣∣∣
1
2−

1
r

v
((
Aδn,m1,m2,ǫ

)−T)
, where the ma-

trices Aδn,m1,m2,ǫ were defined in Lemma 3.2.

As in the standard shearlet case, we restrict attention to weights v(α,β) : h 7→

|h1,1|
α∥∥h−T

∥∥β, where α ∈ R and β ≥ 0. For this specific weight, the associated
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weight u(α,β) for the decomposition space is given by

u(α,β)n,m1,m2,ǫ =
∣∣∣det

((
Aδn,m1,m2,ǫ

)−T)∣∣∣
1
2−

1
r

v(α,β)
((
Aδn,m1,m2,ǫ

)−T)

= 2−3n(1−δ)( 1
2−

1
r
)2−nα

∥∥Aδn,m1,m2,ǫ

∥∥β ,

according to Definition 3.1, where one has to keep in mind that the matrices

Aδn,m1,m2,ǫ are the inverse transposes of a well spread family.

The weight w{q} in Theorem 4.1 is in this setting given by

w{q}
n,m1,m2,ǫ :=

∣∣det
(
Aδn,m1,m2,ǫ

)∣∣ 1p− 1
q

(
1 +

∥∥Aδn,m1,m2,ǫ

∥∥k
)

= 23n(1−δ)(
1
p
− 1

q
)
(
1 +

∥∥Aδn,m1,m2,ǫ

∥∥k
)
.

An application of Theorem 4.1 boils down to the study of the sequence ζδ defined

by

ζδn,m1,m2,ǫ :=
w

(q)
n,m1,m2,ǫ

u
(α,β)
n,m1,m2,ǫ

=
23n(1−δ)(

1
p
− 1

q
)
(
1 +

∥∥Aδn,m1,m2,ǫ

∥∥k
)

2−3n(1−δ)( 1
2−

1
r
)2−nα

∥∥Aδn,m1,m2,ǫ

∥∥β

= 2n[α+3(1−δ)( 1
2−

1
r
+ 1

p
− 1

q
)]
(∥∥Aδn,m1,m2,ǫ

∥∥−β +
∥∥Aδn,m1,m2,ǫ

∥∥k−β
)
.

More precisely, we want to characterize ζδ ∈ ℓθ(I) for I = Z3 × {±1} and

θ ∈ (0,∞]. Since ζδn,m1,m2,1 = ζδn,m1,m2,−1 ≥ 0, it is sufficient to characterize

(ζδn,m1,m2,1)n,m1,m2 ∈ ℓθ(Z3). Furthermore, ζδn,m1,m2,1 = ψ
(a,β)
n,m1,m2 + ψ

(a,β−k)
n,m1,m2 with

ψ
(a,β)
n,m1,m2 := 2na

∥∥Aδn,m1,m2,1

∥∥−β and a := α+ 3(1− δ)
(

1
2 − 1

r +
1
p − 1

q

)
.

Note that ψ
(a,b)
n,m1,m2 ≥ 0, which implies the equivalence

ζδ ∈ ℓθ(I) ⇐⇒ ψ(a,β), ψ(a,β−k) ∈ ℓθ(Z3).

Hence, our task is again reduced to the investigation of the sequence ψ(a,b) for

a, b ∈ R, and finding a characterization in terms of a, b, θ, δ for ψ(a,b) ∈ ℓθ(Z3) with

a, δ ∈ R, b ≥ 0 and θ ∈ (0,∞]. We consider again the norm ‖h‖ =
∑

1≤i,j≤3 |hi,j |.

For the same reason as in the standard shearlet case, we restrict the weights vα,β

to the range of parameters α ∈ R and β ≥ 0.

The details of this calculation will not be presented here. Somewhat surprisingly,

it turns out that no additional, extensive computations of the type presented in

Subsection 5.2 have to be performed. The results for the Toeplitz case can be traced

back to already established estimates for the standard shearlet case and the choice

λ1 := 1 − δ, λ2 := 1− 2δ or variations of this choice. Despite the different shearing

behavior of these two classes of groups, the process of applying the embedding

results is very similar. For details, we refer to Ref. 22.

Corollary 5.3. The following are equivalent to ψ(a,b) ∈ ℓθ(Z3) for a ∈ R and b ≥ 0:
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if δ ≥ 0
{
bθ > 2, b(1− 2δ) < a < − 3δ

θ + b, if θ ∈ (0,∞)

b(1− 2δ) ≤ a ≤ b, if θ = ∞,

if δ < 0
{
bθ > 2, − 3δ

θ + b < a < b(1− 2δ), if θ ∈ (0,∞)

b ≤ a ≤ b(1− 2δ), if θ = ∞.

These conditions can again be used to get an embedding result.

Theorem 5.2. Let p, q, r ∈ (0,∞], α ∈ R, β ≥ 0, k ∈ N0 and set

γ :=

(
1

2
−

1

r
+

1

p
−

1

q

)
.

The embedding Co(Lp,r
v(α,β)(R

3⋊Hδ)) →֒W k,q(R3) holds for q ∈ (0, 2]∪{∞}, if and

only if p ≤ q and

(1) for r ≤ q▽

(a) the inequalities

max{β(1− 2δ), (β − k)(1 − 2δ)} ≤ α+ 3(1− δ)γ ≤ β − k

hold if δ ≥ 0,

(b) the inequalities

β ≤ α+ 3(1− δ)γ ≤ (β − k)(1 − 2δ)

hold if δ < 0,

(2) for r > q▽ the inequality β > k + 2
(

1
q▽ − 1

r

)
and

(a) the inequalities

max{β(1− 2δ), (β − k)(1− 2δ)} < α+ 3(1− δ)γ < −3δ

(
1

q▽
−

1

r

)
+ β − k

hold if δ ≥ 0,

(b) the inequalities

−3δ

(
1

q▽
−

1

r

)
+ β < α+ 3(1− δ)γ < (β − k)(1− 2δ)

hold if δ < 0.

For the remaining case q ∈ (2,∞), the given conditions are sufficient for the

embedding Co(Lp,r
v(α,β)(R

3 ⋊ Hδ) →֒ W k,q(R3), and necessary for this embedding if

one replaces q▽ with q in the inequalities.
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6. Interpretation of embedding results. Coorbit spaces as

smoothness spaces

In this section, we give a sample application of the results attained in Subsection

5.1 and Section 5.4 and compare the embedding behavior of the spaces

Co(Lp
v(α,β)(R

3
⋊Hδ)) and Co(Lp

v(α,β)(R
3
⋊Hλ1,λ2))

for q ∈ (0, 2]. We choose p = r in this section to illustrate some consequences of

these embedding results in a particularly transparent case.

To make precise what we mean by the embedding behavior of different groups,

we make the following definition.

Definition 6.1. We say that two shearlet dilation groups H1, H2 ⊂ GL(R3) have

the same embedding behavior if for all q ∈ (0, 2], p ∈ (0,∞], α, β ∈ R with β ≥ 0

and k ∈ N0, the following equivalence holds

Co(Lp
v(α,β)(R

3
⋊H1)) →֒W k,q(R3) ⇐⇒ Co(Lp

v(α,β)(R
3
⋊H2)) →֒W k,q(R3).

If this does not hold, we say H1, H2 have different embedding behavior.

Remark 6.1.

(1) We restrict this definition to q ∈ (0, 2] because the inequalities in Theorem 5.1

and Theorem 5.2 provide sufficient and necessary conditions for the existence

of such an embedding. It is worth noting again that p has no influence on the

existence of such an embedding for q in this range, except that the condition

p ≤ q has to be fulfilled.

(2) The relation of having the same embedding behavior is clearly an equivalence

relation on the set of shearlet dilation groups in three dimensions.

As simple example for the kind of result we are interested in establishing in this

section, we show that there does not hold an embedding into Sobolev spaces with

at least one weak derivative for constant weights (i.e. α = β = 0).

Corollary 6.1. Let p, q ∈ (0, 2], k ∈ N0 be arbitrary. Necessary for the embedding

Co(Lp
v(α,β)(R

3
⋊Hλ1,λ2)) →֒ W k,q(R3)

is β ≥ k.

Proof. This follows from the earlier observation regarding the sequence ζλ1,λ2 after

the equivalence in (5.1).

The above Corollary has the consequence that in the unweighted case v ≡ 1,

there are not any smooth functions in the space Co(Lp(R3 ⋊Hλ1,λ2)) if we restrict

the search for smooth functions to W k,q(R3) for p, q ∈ (0, 2] and k ≥ 1. This

is somewhat remarkable since smaller integrability exponents guarantee a sharper

decay condition on the coefficients in the atomic decomposition of f ∈ Co(Lp(R3
⋊
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Hλ1,λ2)) (see Ref. 30 Theorem 2.4.19) and this leads in many instances to higher

regularity properties of the functions in the space. However, for some parameters,

the intuition that smaller p leads to higher regularity is indeed true as we see in

Remark 6.4.

6.1. Characterizing groups by their embedding behavior

In this subsection, we clarify when coorbit spaces associated to two different shear-

let dilation groups have the same embedding behavior. This question is interesting

for three reasons: It allows to determine which components of shearlet groups are

truly relevant for embedding theorems; as it turns out, the shearing parts are not

relevant (see the remark below). Secondly, these results contrast nicely to the fact,

established in Ref. 22, that for any pair of distinct shearlet groups in dimension

three, the induced scales of coorbit spaces do differ. Hence the embedding behavior

into Sobolev spaces does not generally allow to distinguish between shearlet groups.

Thirdly, understanding when two shearlet groups induce the same embedding be-

havior simplifies the subsequent further discussion, by allowing to concentrate on

certain subcases.

We first observe that we can actually restrict the question of different embedding

behaviors to the class of standard shearlet groups.

Corollary 6.2. The groups Hλ1,λ2 and Hλ2,λ1 have the same embedding behavior

and the groups Hδ and H1−δ,1−2δ have the same embedding behavior for λ1, λ2, δ ∈

R.

Proof. This follows immediately by comparing the inequalities given in Theorem

5.1 and Theorem 5.2.

Remark 6.2.

(1) To phrase this differently, the embedding behavior of shearlet dilation groups in

dimension three into Sobolev spaces in our setting is completely determined by

the diagonal entries of the group elements. The different shearing parts of Toeplitz

and standard shearlet groups have no effect on the existence of embeddings.

(2) This also means that we can restrict our attention to the group Hλ1,λ2 with

λ1 ≤ λ2, when we discuss the embedding behaviour of shearlet coorbit spaces in

more detail. The next result shows that within this smaller class, different groups

have different embedding behaviors.

Theorem 6.1. For λ1, λ2, λ
′
1, λ

′
2 ∈ R, the groups Hλ1,λ2 and Hλ′

1,λ
′
2 have the same

embedding behavior if and only if {λ1, λ2} = {λ′1, λ
′
2}.

Proof. We already know that the embedding behavior is the same if {λ1, λ2} =

{λ′1, λ
′
2}, according to Corollary 6.2 and that it suffices to consider the case λ1 ≤ λ2
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and λ′1 ≤ λ′2. Let p ∈ (0,∞], q ∈ (0, 2], α ∈ R, β ≥ 0 and k ∈ N0 and γ = 1/2− 1/q

in this proof. According to Theorem 5.1, the embedding

Co(Lp
v(α,β)(R

3
⋊Hλ1,λ2)) →֒ W k,q(R3)

holds if and only if p ≤ q and

β − (1 + λ1 + λ2)γ ≤ α ≤ (β − k)λ2 − (1 + λ1 + λ2)γ

for 1 ≤ λ1 ≤ λ2, denote this inequality with I1(λ1, λ2) and

max{βλ1, (β − k)λ1} − (1 + λ1 + λ2)γ ≤ α ≤ (β − k)− (1 + λ1 + λ2)γ

for λ1 ≤ λ2 ≤ 1, denote this inequality with I2(λ1, λ2) and

max{βλ1, (β − k)λ1} − (1 + λ1 + λ2)γ ≤ α ≤ (β − k)λ2 − (1 + λ1 + λ2)γ

for λ1 ≤ 1 ≤ λ2, denote this inequality with I3(λ1, λ2).

Assume that the groups Hλ1,λ2 and Hλ′
1,λ

′
2 have the same embedding behavior

and let always be p ≤ q.

(1) If 1 ≤ λ1 ≤ λ2 and 1 ≤ λ′1 ≤ λ′2, this entails that the inequalities I1(λ1, λ2) and

I1(λ
′
1, λ

′
2) are equivalent for all choices of parameters p ∈ (0,∞], q ∈ (0, 2], α ∈ R,

β ≥ 0 and k ∈ N0. This implies the equalities β−(1+λ1+λ2)γ = β−(1+λ′1+λ
′
2)γ

and (β − k)λ2 − (1 + λ1 + λ2)γ = (β − k)λ′2 − (1 + λ′1 + λ′2)γ. for all p ∈ (0,∞],

q ∈ (0, 2], α ∈ R, β ≥ 0 and k ∈ N0 (the lower and upper bounds of the

inequalities for α have to coincide). The second equality implies for q = 2 (γ = 0)

and β − k = 1 6= 0 the equality λ2 = λ′2. Then the first equality implies for some

q 6= 2 (γ 6= 0) the equality λ1 = λ′1.

(2) If 1 ≤ λ1 ≤ λ2 and λ′1 ≤ λ′2 ≤ 1, this entails that the inequalities I1(λ1, λ2)

and I2(λ
′
1, λ

′
2) are equivalent for all choices of parameters p ∈ (0,∞], q ∈ (0, 2]∪,

α ∈ R, β ≥ 0 and k ∈ N0. This implies the equalities β − (1 + λ1 + λ2)γ =

max{βλ′1, (β − k)λ′1}− (1 +λ′1 + λ′2)γand(β − k)λ2 − (1 + λ1 + λ2)γ = (β − k)−

(1 + λ′1 + λ′2)γ. for all p ∈ (0,∞], q ∈ (0, 2], α ∈ R, β ≥ 0 and k ∈ N0 (the

lower and upper bounds of the inequalities for α have to coincide). The second

equality implies for q = 2 (γ = 0) and β − k = 1 6= 0 the equality λ2 = 1. The

first equality implies for q = 2 (γ = 0) and some β > 0 first the inequality λ′1 ≥ 0

and then λ′1 = 1. But this implies already λ1 = λ′1 = λ2 = λ′2 = 1.

(3) If 1 ≤ λ1 ≤ λ2 and λ′1 ≤ 1 ≤ λ′2, this entails that the inequalities I1(λ1, λ2) and

I3(λ
′
1, λ

′
2) are equivalent for all choices of parameters p ∈ (0,∞], q ∈ (0, 2], α ∈ R,

β ≥ 0 and k ∈ N0. This implies the equalities β−(1+λ1+λ2)γ = max{βλ′1, (β−

k)λ′1}−(1+λ′1+λ
′
2)γ and (β−k)λ2−(1+λ1+λ2)γ = (β−k)λ′2−(1+λ′1+λ

′
2)γ.

for all p ∈ (0,∞], q ∈ (0, 2], α ∈ R, β ≥ 0 and k ∈ N0 (the lower and upper

bounds of the inequalities for α have to coincide). The second equality implies

for q = 2 (γ = 0) and β − k = 1 6= 0 the equality λ2 = λ′2. If we then cancel

(β − k)λ2 on both sides of the second equality and consider some q 6= 2 (γ 6= 0),

we get λ1 = λ′1.

(4) If λ1 ≤ λ2 ≤ 1 and 1 ≤ λ′1 ≤ λ′2, we can argue as in case (2).
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(5) If λ1 ≤ λ2 ≤ 1 and λ′1 ≤ λ′2 ≤ 1, this entails that the inequalities I2(λ1, λ2) and

I2(λ
′
1, λ

′
2) are equivalent for all choices of parameters p ∈ (0,∞], q ∈ (0, 2], α ∈ R,

β ≥ 0 and k ∈ N0. This implies the equalities max{βλ1, (β−k)λ1}−(1+λ1+λ2)γ

= max{βλ′1, (β− k)λ′1}− (1+λ′1 +λ′2)γand (β− k)− (1+λ1 +λ2)γ = (β− k)−

(1 + λ′1 + λ′2)γ. for all p ∈ (0,∞], q ∈ (0, 2], α ∈ R, β ≥ 0 and k ∈ N0 (the lower

and upper bounds of the inequalities for α have to coincide). The first equality

implies for q = 2 (γ = 0) and β 6= 0 with β − k 6= 0 first that λ1 and λ′1 have

the same sign and then that they are actually equal. The second equality then

implies for q 6= 2 (γ 6= 0) the equality λ2 = λ′2.

(6) If λ1 ≤ λ2 ≤ 1 and λ′1 ≤ 1 ≤ λ′2, this entails that the inequalities I2(λ1, λ2) and

I3(λ
′
1, λ

′
2) are equivalent for all choices of parameters p ∈ (0,∞], q ∈ (0, 2], α ∈ R,

β ≥ 0 and k ∈ N0. This implies the equalities max{βλ1, (β−k)λ1}−(1+λ1+λ2)γ

= max{βλ′1, (β − k)λ′1} − (1 + λ′1 + λ′2)γand (β − k) − (1 + λ1 + λ2)γ = (β −

k)λ′2 − (1+λ′1 +λ′2)γ. for all p ∈ (0,∞], q ∈ (0, 2], α ∈ R, β ≥ 0 and k ∈ N0 (the

lower and upper bounds of the inequalities for α have to coincide). The second

equality implies for q = 2 (γ = 0) and β − k = 1 6= 0 the equality λ′2 = 1. The

first equality implies for q = 2 (γ = 0) and β − k > 0 first that λ′1 and λ1 have

the same sign and in a next step that they are equal. The second equality lastly

implies for some q 6= 2 (γ 6= 0) that λ2 = λ′2.

(7) If λ1 ≤ 1 ≤ λ2 and 1 ≤ λ′1 ≤ λ′2, we can argue as in case (3).

(8) If λ1 ≤ 1 ≤ λ2 and λ′1 ≤ λ′2 ≤ 1, we can argue as in case (6).

(9) If λ1 ≤ 1 ≤ λ2 and λ′1 ≤ 1 ≤ λ′2, this entails that the inequalities I3(λ1, λ2) and

I3(λ
′
1, λ

′
2) are equivalent for all choices of parameters p ∈ (0,∞], q ∈ (0, 2], α ∈ R,

β ≥ 0 and k ∈ N0. This implies the equalities max{βλ1, (β − k)λ1} − (1 + λ1 +

λ2)γ = max{βλ′1, (β − k)λ′1} − (1 + λ′1 + λ′2)γ and (β − k)λ2 − (1 + λ1 + λ2)γ =

(β − k)λ′2 − (1 + λ′1 + λ′2)γ. for all p ∈ (0,∞], q ∈ (0, 2], α ∈ R, β ≥ 0 and

k ∈ N0 (the lower and upper bounds of the inequalities for α have to coincide).

The second equality implies for q = 2 (γ = 0) and β − k = 1 6= 0 the equality

λ′2 = λ2. The first equality implies for q = 2 (γ = 0) and β − k > 0 first that λ′1
and λ1 have the same sign and in a next step that they are equal.

For Toeplitz shearlet groups, this implies the following.

Corollary 6.3. For δ, δ′ ∈ R, the groups Hδ and Hδ′ have the same embedding

behavior if and only if δ = δ′.

Proof. The group Hδ has the same embedding behavior as the group H1−δ,1−2δ

and Hδ′ has the same embedding behavior as H1−δ′,1−2δ′ , according to Corollary

6.2. Hence, Corollary 6.1 implies that Hδ and Hδ′ have the same embedding be-

havior if and only if {1− δ, 1− 2δ} = {1− δ′, 1− 2δ′}. If 1− δ = 1− δ′, then δ = δ′

and if 1− δ = 1− 2δ′, then also 1− 2δ = 1− δ′, which implies δ = δ′ = 0.
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6.2. Influence of the group on the embedding behavior

In the last section of this chapter, we apply the results in Section 5.1 and Section

5.4 to investigate which groups allow embeddings into Sobolev spaces of higher

smoothness and what the influence of the different parameters on the existence of

such an embedding is. Corollary 6.2 allows us to focus on standard shearlet groups

with λ1 ≤ λ2.

The next result is an immediate consequence of Theorem 5.1.

Corollary 6.4. Let p ∈ (0,∞], q ∈ (0, 2], k ∈ N0, β ≥ 0 with p ≤ q and λ1 ≤

λ2. Necessary and sufficient for the existence of α ∈ R such that the embedding

Co(Lp
v(α,β)(R

3 ⋊Hλ1,λ2)) →֒W k,q(R3) holds is

(1) the inequality β ≤ (β − k)λ2 if 1 ≤ λ1 ≤ λ2,

(2) the inequality max{βλ1, (β − k)λ1} ≤ β − k if λ1 ≤ λ2 ≤ 1,

(3) the inequality max{βλ1, (β − k)λ1} ≤ (β − k)λ2 if λ1 ≤ 1 ≤ λ2.

Proof. If the embedding holds, then the respective inequality has to hold, according

to Theorem 5.1. On the other hand, if the inequalities in (1), (2), or (3) hold, then

the choice α := (β − k)λ2 − (1 + λ1 + λ2)(1/2 − 1/q) ensures the embedding in

case (1) and (3) and the choice α := β − k − (1 + λ1 + λ2)(1/2− 1/q) ensures the

embedding in case (2), according to Theorem 5.1.

Remark 6.3.

(1) If β = k = 0, then all these inequalities are satisfied, which means that for arbi-

trary parameters with p ≤ q, there exists always one α such that the embedding

Co(Lp
v(α,0)(R

3 ⋊Hλ1,λ2)) →֒ Lq(R3) holds.

(2) Since none of these inequalities hold for λ1 = λ2 = 1 and k > 0, we infer that

coorbit spaces associated to shearlet groups with isotropic scaling matrices never

allow an embedding into Sobolev spaces with nontrivial smoothness requirement

(k > 0).

(3) If β = k > 0, then no embedding exists for λ1 > 0, but for every λ1 ≤ 0.

(4) If β − k > 0, then we can always choose in case (1) a sufficiently large λ2
such that the inequality is fulfilled, in case (2) a sufficiently small λ1 > 0 or

λ1 ≤ 0 such that the inequality is fulfilled and in case (3) a sufficiently large

λ2 or a sufficiently small λ1 > 0 or λ1 ≤ 0 such that the inequality holds. To

phrase this more informally, it is easier to find smoother functions in the space

Co(Lp
v(α,β)(R

3 ⋊Hλ1,λ2)) the more different the pair (λ1, λ2) is from (1, 1).

Next, we consider the case p = q. An application of Theorem 5.1 for this choice

of parameters leads to the next result.

Corollary 6.5. Let p ∈ (0, 2], k ∈ N0, α ∈ R, β ≥ 0 and λ1 ≤ λ2. Necessary and

sufficient for the embedding Co(Lp
v(α,β)(R

3
⋊Hλ1,λ2)) →֒W k,p(R3) are
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(1) the inequalities β ≤ α+ (1 + λ1 + λ2)
(

1
2 − 1

p

)
≤ (β − k)λ2 if 1 ≤ λ1 ≤ λ2,

(2) the inequalities max{βλ1, (β − k)λ1} ≤ α + (1 + λ1 + λ2)
(

1
2 − 1

p

)
≤ β − k if

λ1 ≤ λ2 ≤ 1,

(3) the inequalities max{βλ1, (β− k)λ1} ≤ α+(1+λ1 + λ2)
(

1
2 − 1

p

)
≤ (β− k)λ2 if

λ1 ≤ 1 ≤ λ2.

Remark 6.4.

(1) In the first case, the right inequality leads to the condition

k ≤ β −

(
α+ (1 + λ1 + λ2)

(
1

2
−

1

p

))
λ−1
2

for k. If we fix all parameters except p and k, this shows that for smaller p this

upper bound for k increases, which means that the functions in Co(Lp
v(α,β)(R

3 ⋊

Hλ1,λ2)) are smoother for smaller p.

(2) In the second case with λ1 > 0, the right inequality leads to the similar condition

k ≤ β −

(
α+ (1 + λ1 + λ2)

(
1

2
−

1

p

))

for k. If we fix all parameters except p and k, this shows that for smaller p

this upper bound for k increases, which means that in this case the functions in

Co(Lp
v(α,β)(R

3 ⋊Hλ1,λ2)) are smoother for smaller p as well.

(3) In the third case with λ1 > 0, the right inequality leads to the same condition

k ≤ β −

(
α+ (1 + λ1 + λ2)

(
1

2
−

1

p

))
λ−1
2

for k. If we fix all parameters except p and k, this shows that for smaller p

this upper bound for k increases, which means that in this case the functions in

Co(Lp
v(α,β)(R

3 ⋊Hλ1,λ2)) are smoother for smaller p as well.

7. Conclusion

This paper provides a case study how the decomposition space approach can be sys-

tematically employed to study embedding properties of coorbit spaces. The com-

plexity of the characterizations we obtained also highlight that even though the

approach developed by Voigtlaender often reduces complex questions of contain-

ment between function spaces into a mere combinatorial problem, understanding

the latter in more conceptual terms remains a challenge.
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34 Führ, Koch

bases in abstract and function spaces, Appl. Numer. Harmon. Anal., pages 127–160.
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monic Analysis. Birkhäuser/Springer, New York, 2012. Multiscale analysis for multi-
variate data.

25. Demetrio Labate, Lucia Mantovani, and Pooran Negi. Shearlet smoothness spaces. J.
Fourier Anal. Appl., 19(3):577–611, 2013.

26. Romain Murenzi. Wavelet transforms associated to the n-dimensional Euclidean group
with dilations: signal in more than one dimension. In Wavelets (Marseille, 1987),
Inverse Probl. Theoret. Imaging, pages 239–246. Springer, Berlin, 1989.

27. Jaak Peetre. A remark on Sobolev spaces. The case 0 < p < 1. J. Approximation
Theory, 13:218–228, 1975. Collection of articles dedicated to G. G. Lorentz on the
occasion of his sixty-fifth birthday, III.

28. Holger Rauhut. Coorbit space theory for quasi-Banach spaces. Studia Math.,
180(3):237–253, 2007.

29. Daniel Vera. Shearlets and pseudo-differential operators. Collect. Math., 68(2):279–
299, 2017.

30. Felix Voigtlaender. Embedding Theorems for Decomposition Spaces with Applications
to Wavelet Coorbit Spaces. PhD thesis, RWTH Aachen University, 2015.

31. Felix Voigtlaender. Embeddings of Decomposition Spaces into Sobolev and BV Spaces.
ArXiv e-prints, January 2016.


	1 Introduction
	2 Generalized Wavelet Transform and Shearlet Groups
	2.1 Generalized Wavelet Transform
	2.2 Shearlet Groups

	3 Coorbit Spaces and Decompositions Spaces
	4 Embeddings into Sobolev spaces
	5 Embeddings of shearlet coorbit spaces into Sobolev spaces
	5.1 The standard shearlet groups
	5.2 Standard Shearlet Group: case 11 2
	5.3 Standard Shearlet Group: remaining cases
	5.4 Embeddings for Toeplitz shearlet groups

	6 Interpretation of embedding results. Coorbit spaces as smoothness spaces
	6.1 Characterizing groups by their embedding behavior
	6.2 Influence of the group on the embedding behavior

	7 Conclusion

