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The magnetised Jeffery-Hamel flow due to a point sink or source in convergent and di-

vergent channels is studied. The simplified governing equation ruled by the Reynolds

number, the Hartmann number and the divergent-convergent angle with appropri-

ate boundary conditions are solved by the newly proposed Coiflet wavelet-homotopy

method. Highly accurate solutions are obtained, whose accuracy is rigidly checked.

As compared with the traditional homotopy analysis method, our proposed technique

has higher computational efficiency and larger applicable range of physical parame-

ters. Results show that our proposed technique is very convenient to handle strong

nonlinear problems without special treatment. It is expected that this technique can

be further applied to study complex nonlinear problems in science and engineering

involving into extreme physical parameters. Besides, the influence of physically impor-

tant quantities on the flow is discussed. It is found that wall stretching and shrinking

exhibits totally different roles on the flow development. The enhanced Lorenz force

affects the flow behaviours significantly for both convergent and divergent cases.

1 Introduction

Incompressible viscous flow driven in convergent and divergent channels has numerous applications in

the fields of fluid mechanics and civil, mechanical, bio-mechanical and environmental engineering. The

famous Jeffery-Hamel problem [1, 2] is usually used to describe such fluid motion, which was then ex-

tended by many researchers to different physical configurations such as radial flow between two inclined

plane walls [3], flow in symmetrical channels with slightly curved walls [4], magnetohydrodynamic
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flow between convergent or divergent channels [5]. Like most classical problems in fluid mechanics,

the class of Jeffery-Hamel problems does not admit analytical solutions. As a result, analytical and nu-

merical approaches are common tools to give their solutions. In literature, many techniques including

the spectral homotopy analysis method [6], the optimal homotopy asymptotic method [7], the Adomi-

an decomposition method [8, 9] and its modification [10], the perturbation method [11], the homotopy

analysis method [12] and its inconsequential transformation [13, 14], the predictor homotopy analysis

method [15], the finite volume method [16] and the collocation method [17], have been suggested to

attack suck kind of convergent or divergent channel flow problems.

Among those computational techniques, the homotopy analysis method [18, 19] was regarded as

a very accurate and efficient approach for handling nonlinear problems with strong nonlinearity. This

is due to that it is not dependent upon small or large physical parameters, has freedom to express the

solution based on its behaviours, and can adjust convergent rate via a convergence-control parameter.

Though having all above mentioned advantages, in our knowledge there is still a room to improve on

this technique. Several obvious weaknesses of the homotopy analysis method are held. Firstly, it is

very time-consuming for complicated nonlinear problems. Secondly, its convergent rate is rather slow

when extreme large parameters are involved. Thirdly, it has limited solution expression forms. Yang and

Liao [20,21] made efforts to overcome these issues by introducing the Coiflet wavelet functions [22–24]

into the homotopy analysis method as the solution expressions. Their modified technique not only holds

the advantages of strong nonlinear processing capability inherited by the homotopy analysis method and

excellent local expression characteristics originated from the Coiflet wavelet, but also is very efficient and

accurate for nonlinear equations with homogenous boundary conditions. Yu and Xu [25–27] established

a generalized boundary modification approach based on the Coiflet wavelet which is suitable for both
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ordinary and partial differential equations subjected to non-homogenous boundary conditions. Their

idea was further adopted by Wang et al. [28] for a electrohydro-dynamic flow problem and Chen [29] for

a channel flow problem, respectively.

In this paper, we shall further develop the Coiflet wavelet-homotopy method for handling nonlinear

problems with extreme physical parameters. A complete set of solution solving process will be estab-

lished based on both the homotopy analysis method and the Coiflet wavelet based on the famous MHD

Jeffery-Hamel problem. Note that in most above mentioned studies, few researchers have considered

such extreme case. This makes our work novel and unique. Highly accurate solution for a large range of

physical parameters will be given, whose validity and efficiency will be strictly checked. The outline of

this is organized as follows: In Section 2, mathematical modeling and formulations of the MHD Jeffery

Hamel flow is presented. In Section 3, the fundamentals of Coiflet wavelet-homotopy method is given.

In Section 4, results is verified and. In Section 5, the concluding remarks are drawn.

2 Mathematical Description

We consider a magnetohydrodynamic flow of an incompressible viscous conducting fluid due to either

a source or a sink at the intersection of two stretchable or shrinkable nonparallel plane walls with an

included angle 2β. The cases β < 0 and β > 0, respectively, denote the convergent and the divergent

channels. The physical sketch is shown in Fig.1. The polar coordinates (r, θ, z) are employed, where

r, θ and z denote the polar radius, polar angle and polar axis respectively. The flow is assumed to be

laminar and symmetrical. The variable magnetic field B is assumed to be perpendicular to the radial

direction, whose distribution is [B0/r, 0, 0]. The fluid parameters are assumed to remain unchanged
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along z direction, as a result the flow is only dependent on r and θ. These assumptions indicate that the

velocity field of the flow has the form V = [ur, 0, 0], where ur = u(r, θ) is a function of r and θ.

The governing equations for the flow are given, as suggested by Jeffery [1], as

∇.V = 0, (1)

ρ

[

∂V

∂t
+ (V.∇)V

]

= −∇p+ µ∇2
V + F, (2)

where t denotes the time, V, ρ, µ, p and F are the velocity vector, the fluid density, the dynamic viscosity,

the pressure and the Lorenz force (total electromagnetic force) respectively. Here the Laplacian operator

is given by

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (3)

Based on the Ohm’s low, the Lorenz force is expressed by

F = J×B, (4)

where J is the electrical current density, defined by

J = σ[E+V ×B], (5)

in which σ is the electrical conductivity, E is the applied electrical field that is enforced to zero (refer to

Xu et al. [31]).

On the other hand, the walls are assumed to be radially stretched or shrunk in accordance with

u = uw =
Sr

r
, (6)

where Sr is the stretching/shrinking rate. On the centreline, it holds

ur =
uc
r
,

∂ur
∂θ

= 0, (7)
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where uc is a reference velocity on the centreline.

For the steady case, the aforementioned equations are expanded, after a series of physical assump-

tions such as low magnetic Reynolds number and symmetrical flow, as

∂

∂r
(rur) = 0, (8)

ur
∂ur
∂r

+
1

ρ

∂p

∂r
− ν

[

∂2ur
∂r2

+
1

r

∂ur
∂r

+
1

r2
∂2ur
∂θ2

− ur
r2

]

+
σB2

0

ρr2
= 0, (9)

1

ρr

∂p

∂θ
− 2ν

r2
∂ur
∂θ

= 0, (10)

where ν is the kinematic viscosity. Note that here the strongly radial flow assumption is applied so that

it holds uθ = 0. Then the scaling parameters are defined as

f(η) = r
ur
uc

, η =
θ

β
. (11)

By means of these transformations, the continuity equation (8) is automatically satisfied, and the set

of momentum equations (9) and (10) is reduced to

f ′′′ + 2βReff
′ + (4−Ha)β

2f ′ = 0, (12)

subject to the boundary conditions

f(0) = 1, f ′(0) = 0, f(1) = Cw, (13)

where the prime denotes the derivative to η, Cw, Re and Ha are the stretching or shrinking parameter,

the Reynolds number and the Hartmann number, which are defined by

Cw =
Sr

uc
, Re =

βuc
ν

, Ha =
σB2

0

ρν
. (14)

Note that Cw > 0 and Cw < 0 respectively represent the stretching and shrinking wall cases.
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Physically important quantity for this problem is the local skin friction coefficient, defined by

Cfr =
τw
ρu2c

, (15)

where τw is the wall shear stress, governed by

τw = µ

(

1

r

∂u

∂θ

)∣

∣

∣

∣

θ=β

. (16)

Substituting Eq.(16) into Eq.(17), with considering the scaling transformation (11), we obtain

Cfr =
1

r2Re
f ′(1). (17)

It is clear that f ′(1) is the core part of the local skin friction.

3 Fundamentals of Coiflet wavelet-homotopy method

3.1 Generalized Coiflets wavelet expression

Here the Coiflet wavelet modification technique suggested by Yu et al. [27] is employed to solve Eq.(12).

By this approach, the function g(x) (x ∈ [0, 1]) is expressed, for a prescribed resolution level j, by

g(x) =

2j
∑

k=0

g(xk)φk(x) +

3
∑

s=0

[α0,sϖ0,s(x) + α1,sϖ1,s(x)] , (18)

where k denotes the kth interpolation point, and g(xk) is the value of g(x) at xk. α0,s and α1,s, ϖ0,s(x)

and ϖ1,s(x) are coefficients associated with non-homogenous boundary conditions. For known boundary

conditions at certain derivative orders a and/or b (0 < a < b ≤ 3), it holds

α0,s =































g(a)(0), s = a,

g(b)(0), s = b,

0, s ̸= a and s ̸= b,

α1,s =































g(a)(1), s = a,

g(b)(1), s = b,

0, s ̸= a and s ̸= b,

(19)
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and

ϖ0,s(x) =
1

s!

−1
∑

i=2−3N+M1

xsiϕi(x), ϖ1,s(x) =
1

s!

2j−1+M1
∑

i=2j+1

(xi − 1)s ϕi(x),

where

g(a)(0) =
dag(x)

dxa

∣

∣

∣

∣

x→0

, g(a)(1) =
dag(x)

dxa

∣

∣

∣

∣

x→1

.

φk(x) is the generalized weight function, defined by

φk(x) =



































ϕ
k
(x) +

−1
∑

i=2−3N+M1

T0,k (xi)ϕi(x), k ∈ [0, 3]

ϕ
k
(x), k ∈ [4, 2j − 4]

ϕ
k
(x) +

2j−1+M1
∑

i=2j+1

T1,2j−k(xi)ϕi(x), k ∈ [2j − 3, 2j ]

(20)

in which

xi =
i

2j
, ϕi(x) = ϕ(2jx− i+M1),

T0,k(xi) =

3
∑

s=0

p0,s,k
s!

xsi , T1,k(xi) =

3
∑

s=0

p1,s,k
s!

(xi − 1)s,

with p0,s,k and p1,s,k being the matrix elements of the following two matrixes

P0 =

























1 0 0 0

−11/6 3 −3/2 1/3

2 −5 4 −1

−1 3 −3 1

























, P1 =

























1 0 0 0

11/6 −3 3/2 −1/3

2 −5 4 −1

1 −3 −3 −1

























.

Here the relations P0 = 2i jp0,s,k and P1 = 2i jp1,s,k are held for s = 0, 1, 2, 3.

From the definition of g(x), it is known that its derivatives are only dependent on the weight function

ϕk(x). Therefore we are able to proceed the nth-order derivatives of g(x) by directly differentiating the

weight function ϕk(x) n times with respect to x.

7



3.2 Linearization

In the framework of the homotopy analysis method, the solution of Eq.(12) can be decomposed into

f(η) = f0(η) +
M
∑

m=1

fm(η). (21)

The mth-order deformation equation is constructed, for m ≥ 1, as

L[fm(η)− χmfm−1(η)] = c0Rm(η), (22)

subject to the boundary conditions















f0(0) = 1, f ′

0(0) = 0, f0(1) = Cw, m = 0,

fm(0) = 0, f ′

m(0) = 0, fm(1) = 0, m ≥ 1,

(23)

where c0 is a homotopy convergence-control parameter, L is the linear operator, chosen as

L =
∂3

∂η3
,

Rm(η) is the residual term, defined by

Rm(η) = f ′′′

m−1 + 2βRe

m−1
∑

i=0

fif
′

k−1−i + (4−Ha)β
2f ′

m−1, (24)

and

χm =















0, m = 1,

1, m > 1.

The Coiflet wavelet projections are expressed by

f0(η) ≈ P jf0(η) =
2j−1
∑

k=1

f0(ηk)hk(η) + v0ϖ0,1 + v1ϖ1,1, (25)

fm(η) ≈ P jfm(η) =
2j−1
∑

k=1

fm(ηk)hk(η), (26)
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Rm(η) ≈ P jRm(η) =
2j
∑

k=0

Rm(ηk)φk(η), (27)

where P j denotes the Coiflet wavelet projection, hk(η) is the weight function defined by

hk(η) = φ(η)|p0,1,k→0. (28)

The mth-order deformation equation is then expressed via the Coiflet wavelet as

2j−1
∑

k=1

[fm (ηk)− χmfm−1 (ηk)]L[φk(η)] = c0

2j
∑

k=0

Rm (ηk)φk(η). (29)

Eq.(29) is solved by means of the Galerkin method. Multiplying both sides of Eq.(29) by hk(η) and

integrating in the domain [0,1], we obtain

A
T
(

f̂m − χmf̂m−1

)

= c0B
T R̂m, (30)

where

f̂m = [fm(η1), fm(η2), · · · , fm(η2j−1)]
T ,

R̂m = [Rm (0) , Rm (η1) , · · · , Rm (1)]T ,

and

A =

























a1,1 a1,2 · · · a1,2j−1

a2,1 a2,2 · · · a2,2j−1

...
...

...
...

a2j−1,1 a2j−1,2 · · · a2j−1,2j−1
























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and

B =

























b0,1 b0,2 · · · b0,2j−1

b1,1 b1,2 · · · b1,2j−1

...
...

...
...

b2j ,1 b2j ,2 · · · b2j ,2j−1

























in which, ak,l and bk,l are defined as

ak,l = Γk,l,3, bk,l = Γk,l,0. (31)

with the connection coefficients being given by

Γk,l,n =

∫ 1

0

dnhk(η)

dηn
hl(η)dη, Γk,l,n =

∫ 1

0

dnϕk(η)

dηn
hl(η)dη, (32)

3.3 Validation

To ensure the accuracy of our proposed approach, the quadratic Riccati differential equation [30] is used

as an illustrative example, which is written as

Y ′(t)− 2Y + Y 2 − 1 = 0, (33)

subject to the initial conditions

Y (0) = 0. (34)

The above nonlinear system admits the exact solution

Y (t) = 1 +
√
2 tanh

[

√
2t+

1

2
ln

(√
2− 1√
2 + 1

)]

. (35)
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In the framework of the homotopy analysis method, the initial guess and the linear operator are

chosen as

Y0(t) = 0, L =
d

dt
. (36)

By means of our above-mentioned approach, under the definitions















al,k = Γk,l,1

bl,k = Γk,l,0,

(37)

we are able to obtain the following Mth-order wavelet solution

ỸM (t) = Y0(t) +

M
∑

m=1

Ym(t). (38)

To check its accuracy and efficiency, the averaged square error Errs,M and the relative error Errr,M

are introduced, which are written by

Errs,M =
1

(2j + 1)

2j
∑

k=0

[

ỸM (tk)− ỸE (tk)
]2

, (39)

Errr,M =
|ỸM (t)− ỸE(t)|

|ỸE(t)|
, (40)

where tk = k/2j , ỸM and ỸE represent the Mth-order wavelet approximation and the exact solution

respectively.

Table 1 presents the averaged square error at different computational order M and resolution level j.

All results are obtained by using the same desktop computer, with its configuration being the processor

Intel(R) Core(TM) i3-5015U CPU @ 2.10GHz, and installed memory(RAM) 4.00GB. It is seen from the

table that both the computational order M and the resolution level j play key roles on error reduction.

Further to check the accuracy of the Coiflet wavelet-homotopy solutions, we compare the 120th-order
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Table 1: The averaged square error given by Eq.(39) at c0 = −0.08.

j=3 j=4 j=5

50th order 1.52× 10−3 1.20× 10−3 1.06× 10−3

CPU time (second) 0.25 0.27 0.39

80th order 4.26× 10−5 4.617× 10−5 4.31× 10−5

CPU time (second) 0.29 0.32 0.43

100th order 1.90× 10−5 5.89× 10−5 4.44× 10−6

CPU time (second) 0.28 0.28 0.43

120th order 3.29× 10−5 7.4328× 10−6 7.43× 10−6

CPU time (second) 0.30 0.30 0.52

solution at the resolution levels j = 3, j = 4 and j = 5 with the exact solution (35), very excellent

agreement is found, as shown in Table 2. This confirms the validity of our proposed method.

4 Results

In this section, the accuracy of our Coiflet solution is verified. The check procedure is divided into two

steps. We first examine the residual error of the solution itself. It has known that Eq.(12) does not admit

an analytical solution, we therefore introduce the relative error as its convergent indictor. In doing so, we

define

ResErrm =
1

(2j + 1)

2j
∑

k=0

[fM+1 (ηk)− fM (ηk)]
2 , (41)

where fM (ηk) and fM+1 (ηk) are the Mth-order and the (M+1)th-order Coiflet wavelet-homotopy so-

lutions.

For the sake of simplicity, we consider the particular case Cw = 0. Other mathematical and physical
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Table 2: Comparison of the exact solution with Coiflet-homotopy ones for different resolution levels j at

c0 = 0.08.

t Exact Solution Our solution

j = 3 j = 4 j = 5

0 0 0 0 0

1/8 0.141185 0.140195 0.140904 0.141183

2/8 0.315927 0.315038 0.315353 0.315915

3/8 0.522987 0.522206 0.522891 0.522982

4/8 0.756016 0.755570 0.755918 0.756013

5/8 1.003541 1.002603 1.003508 1.003530

6/8 1.250860 1.250055 1.250845 1.250859

7/8 1.483291 1.483207 1.483274 1.483280

1 1.689499 1.689401 1.689438 1.689497

parameters are chosen as c0 = 0.1, Ha = 1000, Re = 50 and β = 5, respectively. As shown in

Fig.2, the relative residual error decreases rapidly as the computational order evolves for all considered

resolution levels. The maximum relative error is less than 1× 10−7 at 120th order computation.

We then compare our results with the published ones in literature. It is seen from Table 3 and Table

4 that our solution matches the published ones for both convergent and divergent channels. This further

confirms the validity and accuracy of our proposed approach. Note that here the range of c0 is chosen

13



from the range [-0.5, -0.08] and Ha = 0.

Table 3: Comparison of f ′′(0) by our proposed approach with the published ones for different values of

Re at β = −5.

Re = 10 Re = 30 Re = 50 Re = 70 Re = 100

Mosta et al. [6] −1.784547 −1.413692 −1.121989 −0.893474 −0.640178

Turkyilmazoglu [32] −1.784546 −1.413691 −1.121989 −0.893474 −0.640177

Our results −1.784547 −1.413691 −1.121989 −0.893473 −0.640177

Table 4: Comparison of f ′′(0) by our proposed approach with the published ones for different values of

Re at β = 5.

Re = 20 Re = 60 Re = 100 Re = 140 Re = 180

Mosta et al. [6] −2.527192 −3.942140 −5.869165 −8.207326 −10.792073

Turkyilmazoglu [32] −2.527192 −3.942140 −5.869165 −8.207326 −10.792073

Our results −2.527191 −3.942140 −5.869164 −8.207325 −10.792072

In addition, we discuss the efficiency of our proposed technique. It has known that the traditional

Coiflet wavelet approach [22] is equivalent to the first order Coiflet wavelet-homotopy computation at

c0 = −1. As a result we only need to compare our proposed method with the traditional optimized

homotopy analysis method. The comparison is listed in Table 5 and Table 6, in which we find that our
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proposed approach is more than 100 times faster than the traditional homotopy analysis method when the

values of f ′(1) obtained by both techniques are same for four decimal places. Note that in these cases

the convergence control parameter is chosen from the range [-0.5, -0.2] for both approaches.

Table 5: CPU time comparison of the optimized homotopy analysis method (HAM) and the Coiflet

wavelet-homotopy method (CWHAM) for different values of Ha at Re = 50 and β = −5.

Cw = 2 Cw = −2

Ha f ′(1) HAM CWHAM f ′(1) HAM CWHAM

100 3.7593 162.45 1.20 -5.3650 180.18 0.92

500 4.1046 177.03 1.18 -6.2586 182.40 0.88

1000 4.8148 175.29 0.98 -9.0548 176.61 0.88

2000 5.2469 174.09 0.93 -12.0284 213.09 0.87

5000 3.7372 109.46 0.93 -18.5583 143.86 0.91

second second second second

Mathematically, it is always a challenge work to give accurate solutions to nonlinear equations with

physical parameters being chosen from a extremely wide region. Here we test the capability of our

proposed technique for handling such problems, while the optimized homotopy analysis method and

the standard shooting technique are employed as the contrasts. A large range of the Hartmann num-

bers are computed for examining the adaptability of our proposed technique. As shown in Table 7 and

Table 8. For small and medium Ha, all computational approaches give very excellent results. As Ha
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Table 6: CPU time comparison of the optimized homotopy analysis method (HAM) and the Coiflet

wavelet-homotopy method (CWHAM) for different values of Ha at Re = 50 and β = 5.

Cw = 2 Cw = −2

Ha f ′(1) HAM CWHAM f ′(1) HAM CWHAM

100 -0.7862 192.285 0.89 -7.1847 241.59 0.85

500 0.1808 185.216 0.93 -8.3887 187.58 0.83

1000 1.1088 181.862 0.82 -9.8086 191.49 0.80

2000 2.4989 179.982 0.85 -12.3920 185.24 0.85

5000 5.1925 111.448 0.84 -18.5887 175.90 0.84

second second second second

continuously increases, the optimized homotopy analysis method and the standard shooting technique

gradually fail to give accurate solutions, while our proposed method still keeps accurate. Note that the

integration distance by shooting technique is designated as ηmax = 20, 30, 40 respectively, the step size

is ∆η = 0.005, 0.01, 0.05 correspondingly. Only all results for a prescribed set of physical parameters

with varying integration distances and step sizes remain same, they are deemed as stable. The Newtonian

iteration is executed with the convergent criteria of 1.0× 10−8 for all considered cases.

The physical aspects of the problem are discussed in the following part. The flow velocity behaviors

under the influence of different physical parameters are portrayed Fig.3-Fig.8. In Fig.3 and Fig.4, the

effects of the stretching/shrinking parameter Cw on the flow velocity f(η) driven in convergent channel
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Table 7: Comparison of f ′(1) by the optimized homotopy analysis method (HAM), the shooting method

(SHOOTM), and the Coiflet wavelet-homotopy method (CWHAM) for different values of Ha at Re =

50 and β = −5.

Ha Cw = 1.5 Cw = −1.5

HAM SHOOTM CWHAM HAM SHOOTM CWHAM

100 1.76212 1.76212 1.76213 −5.43485 −5.43485 −5.43484

500 1.96503 1.96503 1.96502 −6.70401 −6.70401 −6.70400

1000 2.17478 2.17478 2.17477 −8.09765 −8.09764 −8.09766

10000 4.64589 4.64579 4.64589 −3.04261 −3.04262 −3.04261

100000 − − 3.19212 − - −2.53802

1000000 − − 2.07773 − - −2.53548

(β = −5) and divergent channel (β = 5) for the fixed values Ha = 50 and Re = 50 are presented.

Clearly the case Cw = 0 represents flow driven through a channel with stationary walls, which has been

discussed by Esmaeilpour et al. [7]. And the case Cw = 1 physically indicates that the stretching velocity

of the channel wall is identical to the flow velocity. For the case Cw > 1, the velocity of fluid increases

faster than the centreline velocity uc. It means that the fluid particles intensifies very close to the channel

wall owing to the influence of the viscosity and inertia of the fluid, just like the polymers concentrate

close to the convergent channel rather than the centreline of the channel. For the case Cw < 0, the wall

stretching direction is opposite to the fluid flow direction, the flow is retarded owing to the resistance

of the reverse force generated by the shrinking walls. It is found that in both cased the velocity profiles
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Table 8: Comparison of f ′(1) by the optimized homotopy analysis method (HAM), the shooting method

(SHOOTM), and the Coiflet wavelet-homotopy method (CWHAM) for different values of Ha at Re =

50 and β = 5.

Ha Cw = 1.5 Cw = −1.5

HAM SHOOTM CWHAM HAM SHOOTM CWHAM

100 12.51506 12.51506 12.51505 −5.35377 −5.35377 −5.35375

500 12.83738 12.83737 12.83738 −6.41662 −6.41662 −6.41661

1000 0.74015 0.74014 0.74014 −7.65832 −7.65831 −7.65832

10000 4.62507 4.62507 4.62506 −21.61287 −21.61287 −21.61286

100000 − − 3.10626 − − −1.53998

1000000 − − 5.00934 − − −0.29484

increase as Cw enlarges. In addition, the effects of stretching/shringking wall parameters on the wall

skin friction (wall shear stress) for both convergent and divergent channels are tabulated in the Table 9

and Table 10. It is seen that the results by the Coiflet wavelet-homotopy method (CWHAM) matches

those by the optimized homotopy analysis method (HAM) and the shooting method (SHOOTM) in the

whole domain. On the other hand, we notice that the increase in Cw leads to the increase in the skin

friction f ′(1) for both convergent and divergent cases. For the shrinking wall case, the shear forces by

the channel wall and by the fluid motion have same directions. While for the stretching wall case, they

have opposite direction.

18



Table 9: Influence of the stretching/shrinking parameter on the skin friction coefficient f ′(1) for the

convergent channel (β = −5) at Ha = 50 and Re = 50.

Cw CWHAM HAM SHOOTM

−1.5 -5.263467 -5.263465 -5.263467

−1 -4.712285 -4.712286 -4.712285

−0.8 -4.173127 -4.173127 -4.173128

−0.5 -3.973255 -3.973254 -3.973254

0 -2.888555 -2.888552 -2.888553

0.5 -1.843952 -1.843953 -1.843952

1.0 0.000000 0.000000 0.000000

1.5 2.254527 2.254526 2.254527

2.0 3.714635 3.714636 3.714635

The effects of the Reynolds number Re on the velocity profile f(η) for convergent and divergent

channels are depicted Fig.5 and Fig.6 respectively. It is clearly observed that the increase in Reynolds

number Re leads to the increase in the velocity profile f(η) for the shrinking and convergent channel

case, while results in the decrease in the velocity profile f(η) for stretching of convergent channel. How-

ever the totally opposite behaviors are observed for the divergent channel case. The variation of velocity

profile f(η) under the action of the Hartmann number for the convergent channel case is illustrated in

Fig.7. It is noticed from the figure that, an augmentation of Hartmann number Ha, the velocity profile

f(η) decreases for the stretching wall case and opposite behaviors shows for the shrinking wall case.
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Table 10: Influence of the stretching/shrinking parameter on the skin friction coefficient f ′(1) for the

divergent channel (β = 5) at Ha = 50 and Re = 50.

Cw CWHAM HAM SHOOTM

−1.5 -5.220584 -5.220584 -5.220585

−1 -3.785589 -3.785587 -3.785589

−0.5 -2.268185 -2.268186 -2.268185

−0.2 -1.902586 -1.902586 -1.902586

0 -1.178779 -1.178780 -1.178782

0.5 -0.582525 -0.582524 -0.582525

1.0 0.000000 0.000000 0.000000

1.3 1.291167 1.291167 1.291168

1.5 1.473324 1.473324 1.473325

This is due to the change in Hartmann number Ha leads to the variation of the Lorentz force. Conse-

quently, the modified Lorentz force is responsible for an elevated resistance of flow transfer in the case of

stretching and shrinking of the channel. Fig.8 demonstrates the effect of Hartmann number Ha on veloc-

ity profile f(η) for divergent wall case. Similar variational trend is observed owing to the Lorentz force

exerts equivalent influence as aforementioned case. Note that all the results illustrated in Fig.3-Fig.8 are

obtained with the the convergent control parameter being chosen in the range [−0.008,−0.5].
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5 Conclusions

We have established the new numerical algorithm for the nonlinear MHD Jeffery Hamel problem based

on the Coiflet wavelet-homotopy method. The proposed method has been checked rigidly. Results reveal

that the newly developed technique is superior to the optimized homotopy analysis method, which is

capable of handling strong nonlinear problems with higher efficiency. Especially, it can give accurate

solutions for extreme wide ranges of physical parameters. Besides, the physical mechanism of the flow

problem has been presented and discussed. Some major physical findings of the current work are as

follows:

• For both convergent and divergent channel cases, wall stretching drags more fluid from the channel

wall, while wall shrinking pulls the fluid to the wall and causes the back flow.

• The wall stretching of a divergent channel gives similar flow pattern as the wall shrinking of a

convergent channel, or vice-versa.

• The Hartmann number Ha plays a key role on the flow velocity distribution. While opposite trends

are obtained for stretching convergent channel case and shrinking divergent channel case.
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Fig.1: Phyiscal sketch of the magnetised Jeffery-Hamel flow.
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Fig.2: The residual error denoted in versus the computational order M for β = 5, Ha = 1000 with

different resolution levels in the case of the convergence-control parameter c0 = −0.1.
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Fig.3: Effects of stretching and shrinking walls on the velocity profile f(η) at specific values of β = −5,

Ha = 50 and Re = 50. Line: Coiflet wavelet solution; Circle: Shooting solution.
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Fig.4: Effects of stretching and shrinking walls on the velocity profile f(η) at specific values of β = 5,

Ha = 50 and Re = 50. Line: Coiflet wavelet solution; Circle: Shooting solution.
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Fig.5: Effects of the Reynolds number Re on the velocity profile f(η) at specific values of β = −3 and

Ha = 5. Line: Coiflet wavelet solution; Circle: Shooting solution.
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Fig.6: Effects of the Reynolds number Re on the velocity profile f(η) at specific values of β = 3 and

Ha = 5. Line: Coiflet wavelet solution; Circle: Shooting solution.
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Figures

Figure 1

Phyiscal sketch of the magnetised Jeffery-Hamel �ow.



Figure 2

The residual error denoted in versus the computational order M for β = 5, Ha = 1000 with different
resolution levels in the case of the convergence-control parameter c0 = −0.1.



Figure 3

Effects of stretching and shrinking walls on the velocity pro�le f(η) at speci�c values of β = −5, Ha = 50
and Re = 50. Line: Coi�et wavelet solution; Circle: Shooting solution.



Figure 4

Effects of stretching and shrinking walls on the velocity pro�le f(η) at speci�c values of β = 5, Ha = 50
and Re = 50. Line: Coi�et wavelet solution; Circle: Shooting solution.



Figure 5

Effects of the Reynolds number Re on the velocity pro�le f(η) at speci�c values of β = −3 and Ha = 5.
Line: Coi�et wavelet solution; Circle: Shooting solution.



Figure 6

Effects of the Reynolds number Re on the velocity pro�le f(η) at speci�c values of β = 3 and Ha = 5. Line:
Coi�et wavelet solution; Circle: Shooting solution.



Figure 7

Effects of the Hartmann number Ha on the velocity pro�le f(η) at speci�c values of β = −3 and Re = 10
Line: Coi�et wavelet solution; Circle: Shooting solution.



Figure 8

Effects of the Hartmann number Ha on the velocity pro�le f(η) at speci�c values of β = 3 and Re = 10
Line: Coi�et wavelet solution; Circle: Shooting solution.


