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Abstract 
The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding 

signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from 
a motif of length I .  The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the 
signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm 
substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a 
consensus constraint, enabling it to detect much weaker signals. We studied the minimum number 
of detectable motifs q, as a function of sequence length N for random sequences. We found that 
q, increases linearly with N for a fast version of the algorithm based on counting threemember 
sub-cliques. Imposing consensus constraints reduces q, by a factor of three in this case, which 
makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts 
four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of 
length N = 12000 for ( I ,  d) = (15,4). 
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I. INTRODUCTION 

Transcription factors binding to fuzzy motifs in DNA is a process that underlies one 
of the most important modes of gene regulation in a cell. Algorithms that identify such 
protein-binding signals in DNA are becoming especially important with the recently de- 
veloped high-throughput techniques that show promise to uncover these interactions at a 
genome-wide scale. One such technique is genome-wide location analysis[l, 21, in which 
DNA microarrays offer a means to identify the approximate locations of the binding sites 
of a transcription factor anywhere in the genome. Motif identification also proves useful for 
analyzing microarray data when the measured mRNA expression levels of all the genes on 
the microarray are clustered, and genes in the same cluster are assumed to contain common 
regulatory elements in the DNA upstream of the transcription initiation points. Then the 
bioinformatics problem is to find common motifs in the upstream of the clustered-and 
presumably co-regulated-genes that may play similar regulatory roles for each[3, 41. Motif 
identification should also aid the search for morphogen binding sites from enhancers con- 
trolling early embryo development. Large-scale mapping of such cis-regulatory signals has 
been proposed[5] in which random genomic DNA sequences are assessed for their potential 
regulatory role in early embryo development. Detailed studies on sea urchin embryos have 
demonstrated that such enhancers often contain multiple transcription factor binding sites 
(34 have been identified in the case of endol6) [6]. Fuzzy motif-finding algorithms may prove 
to be a general method for identifying transcription factor binding sites from the large-scale 
mapping of cisregulatory elements. 

In a typical situation, a weak DNA signal is embedded in a set of experimentally iden- 
tified DNA sequences that are enriched with the binding site. Not every sequence in the 
experimental set is guaranteed to contain the binding site. In addition, protein-binding 
DNA signals often contain ambiguous positions which can have more than one equivalent 
nucleotide. The bioinformatics problem is to determine the hidden signal, if any. Identifying 
such a weak signal is a non-trivial problem[7]. Pevzner and Sze[8] have formulated a 'grand 
challenge' problem of finding a hidden motif of length I in which each binding site can differ 
from the hidden motif in at most d places. Two length I motifs can share a common hidden 
pattern even when they differ in 2d places. If a graph is constructed where the nodes are 
consecutive length I patterns and two nodes are linked if two corresponding patterns differ 
in no more than 2d places, then in the set of patterns that are within Hamming distance 
d to the common motif, every node is connected to every other node. In other words, the 
nodes form a q-member clique (q-clique) where q is the size of the set. However, the graph 
contains vastly more spurious connections. Pevzner and Sze proposed a winnower method 
that systematically deletes spurious links that cannot be a part of the q-clique. 

The chief advantage of the winnower algorithm is that it is guaranteed to find all hidden 
patterns that are present at least q times in the sample DNA sequences within Hamming 
distance d from the hidden pattern. The hidden pattern itself does not have to even be 
present in the dataset. Most popular motif finding methods [10-151 rely on optimization of 
non-linear objective functions and therefore cannot guarantee that the pattern found attains 
the global optimum. The winnower method is unique in being able to claim the definitive 
absence of signal (1, d) for copy number q. 

In this paper, we introduce a consensus bound on patterns belonging to the same clique 
that enables the algorithm to remove more spurious links. As a result, the algorithm becomes 
substantially more sensitive. We discovered parameter regions where the winnower method is 



TABLE I: The table compares the smallest copy number q necessary to prune all spurious links for 
one random sequence of length N (roughly equivalent to q sequences of length $ each considered 
by Pevzner and Sze[8]). WINNOWER and cWINNOWER denotes winnower algorithms without 
and with consensus bounds. Both cases are listed for the pruning criteria base on-eliminating links 
by counting the number of 3-cliques (k = 2) and 4cliques (k = 3). As q increases, the percentage 
of links pruned changes from essentially 0% to 100% in a very narrow range. The q, listed in this 
table is the smallest q when the number of spurious links left unpruned is less than 1000 (the total 
number of spurious links is more than a million). For reasons explained in the text, the algorithms 
run slowly in the vicinity of q,. For N = 12000 the running time for the WINNOWER algorithm 
for q in the range indicated exceeds 48 hours. Only a range of values is given in this case. 
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effective in detecting signals. We computed minimum clique sizes, q,, required for removing 
all spurious links generated from a random sequence. Our main results are summarized in 
Table I. We find that q, increases approximately linearly with the length of the rando'm 
sequence for the case of k = 2 (that eliminates links by counting the member of 3-cliques). 
The consensus constraint reduces q, by a factor of three for k = 2. For our most sensitive 
case of k = 3(that counts 4-cliques), which is slower to run, q, = 13 for the longest sequence 
length we tried (N = 12000). This is about a factor of two better than without consensus 
constraints. We formulated the algorithm in terms of set operations resulting in a much 
simpler implementation. For the most sensitive case of k = 3, which usually runs too slow 
to be useful, we speeded up the calculation by saving certain intermediate results. For the 
longest sequences we considered (N = 12000 and ( I ,  d) = (15,4)), the k = 3 algorithm is 
only a factor of three slower than k = 2. 

We first review the winnower algorithm before proving a consensus constraint. We then 
present the cWINNOWER algorithm in terms of set operations and discuss tests on random 
sequences. 

k = 2  cWINNOWER 

k = 3 WINNOWER 
k = 3  cWINNOWER 

11. WINNOWER METHOD 

Imagine the hyperspace of all possible length 1 patterns populated by words cut con- 
secutively from the input sequences. Regions of the hyperspace that have an unusually 
high density of 1-words indicates statistical significance and presumably biological mean- 
ings. Theoretically, we can enumerate each sequence and count the number of sequences 
that are within d mutations from it. However, the computation required goes up exponen- 
tially with the length of the pattern and becomes impossible for moderately long patterns. 
The winnower method[8] on the other hand changes the finding of hidden motifs to a graph- 
theoretical problem. 

Define a graph of n nodes each of which represents a consecutive sub-string of input 
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sequences. Two nodes are connected if they differ in less than 2d positions. The crucial 
observation is that all the sub-strings sharing a common motif form a clique graph. (A 
q-clique graph has q nodes and every pair of nodes is connected.) 

Most of the connections made by the 2d mismatch criterion are spurious, in that they 
are not part of a graph that makes a q-clique, and so must be eliminated.. For example, 
any node that has less than (q - 1) connections to the rest of the graph cannot be a part 
of the q-clique, and these connections are all spurious. Furthermore, in order for a link to 
be a part of the q-clique, it must be a part of at least (q - 2) triangles. More specifically, 
suppose the link is between node a and node b. Define a triangle neighbor set C consisting 
of nodes c that are connected to both a and b. The number of nodes in C has to be larger 
than (q - 2). This triangle criteria is what Pevzner and Sze called the k = 2 case[8]. A 
more stringent test is the k = 3 case, in which each member of set C is required to be in 
four-member sub-cliques. In order to belong to set C, there must be at least (q - 3) 4cliques 
containing nodes a, b and c. Finally, the size of the set C must be larger than (q - 2). This 
easily generalizes to higher clique graphs. 

111. CONSENSUS CONSTRAINT 

By counting the number of 3-clique and &clique sub-graphs, the winnower method sys- 
tematically eliminates links that cannot be a part of the q-clique. The main difficulty is that 
the 2d-mismatcli criterion that defines a connection for the link is too lenient, resulting in 
an explosion of spurious links. Here we develop a consensus constraint for deciding if a link 
between a and b belongs to a q-clique. Let P be the set of nodes including a and b as well 
as the nodes connected with both a and b. Let n = /PI be the number of nodes in set P. 
In order for the link (a, b) to be a part of the q-clique, we must have n 2 q. In order for the 
link to belong to the q-clique, the following consensus constraint must be satisfied: 

where S{ is the i-th element of the j-th sequence in P. Ci is the i-th column consensus of 
the sequences Sj, i. e. 

We now prove the consensus constraint. In order for the set P of n sequences filtered by 
either k = 2 or k = 3 criteria to be a part of the q-clique, we must have 

for some hidden motif h. Here {.) denotes a set and I. I is the number of elements in it. I is 
the length of the string, and d is the maximum number of allowed mismatches. 

This equation implies 
0 1 



for at least one subset of q sequences in P,. If we can show no q sequences satisfy Eq. (4), 
then Eq. (3) fails. 

Consider the consensus sequence of all sequences in P>. By definition, the consensus 
sequence C maximizes the sum &5$=, 6ss:,ci for each position i, where n = IP> I .  

0 bviously, 

where C' is the consensus sequence of q sequences and C is the consensus of the whole group 
of n sequences that include q sequences as a subset. The last inequality follows because 

A useful special case is when pruning a link that has the maximum allowed mismatch 
2d. The majority of links will be of this type. For such a link, the positions of matched 
nucleotides must agree with the consensus sequence. In such a case, using the nucleotides 
from the matching part of the two nodes instead of the n sequence consensus will improve 
the bound. 

We have also derived other constraints for three nodes.. However, none proved as useful 
in practice as the consensus bound. 

IV. CWINNOWER ALGORITHM 

Patterns I nucleotides long cut consecutively from each of the input sequences form a set 
of nodes. Any two nodes are linked if their mismatches are less than 2d, because they can 
be within d-mutations from a common hidden pattern. 

The winnower method systematically removes spurious edges that cannot be a link in 
a q-clique because they lack a sufficient number of sub-cliques. Here we give some details 
of the procedures used: k = 1 counts the number of links to each node; k = 2 counts the 
number of triangles (3-cliques) for a given link; and k = 3 counts 4-cliques. 

A. k= l  pruning criterion 

If the number of links, n, to any node is smaller than q - 1, then the node cannot be a 
part of any q-clique. Prune all links connected to it. If n is smaller than 4(q - d), then apply 



the consensus criteria. If it fails to satisfy, prune all links. The algorithm has a complexity 
of O(N2), where N is the total length of the sequence. 

B. k=2 pruning criterion 

k=2 pruning decides if the link between a and b should be pruned. First, define a set P 
of all nodes c that are connected to both a and b. Next apply the consensus criterion with 
n = 3 and q = 3 on a, b and c to remove those that fail the criterion from P. Finally, if 
the size of the neighboring set ]PI is smaller than q - 2, then the node cannot be in any 
q-clique. Prune the link between a and b. If /PI is smaller than 4(q - d) (beyond this value 
the consensus bound becomes useless), then apply the consensus criteria. If it fails to satisfy, 
prune the link (a, b). The algorithm has a complexity of O(N3). 

C. k=3 pruning criterion 

The goal is to prune the link between a and b. Here we also have a neighboring set P. 
The criterion of admission to the set is more stringent. Each member of the set P must 
have at least q - 3 other nodes that together with a, b and c form (q - 3) 4-cliques. In order 
for the four nodes to form a 4-clique, they must satisfy the consensus criterion with n = 4 
and q = 4. Finally, the size of the set P must be larger than q - 2. The consensus criterion 
is applied to P .  

By rearranging the order of calculation and saving some intermediate results, the code 
can be made much faster. Let Nt denote the set of neighbors connected to node t. Define 
Ib = N a n  Nb for each b in N,. Notice that Ib are typically much smaller than N, because 
it is the intersection of two sets. This set of sets will be used repetitively in pruning links 
between a and its neighbors b in set N,. To determine if any c E Ib belongs to set P, we form 
J, = I, r) Ib and require that the size of Jd be larger than or equal to q - 3. The complexity 
of the algorithm is O(N4). However, there is a much larger O(N3) term comparable to the 
k = 2 case. The running time for q = 32, (1, d) = (15,4) and N = 12000 for k = 2 is 3 hours 
45 minutes on a SGI workstation. This is to be compared with a running time of 10 hours 
and 15 minutes for k = 3 at q = 18. 

In order to speed up computations, we prune the node with the smallest numbers of links 
first because they are the easiest to be pruned. This will have a domino effect on other nodes 
resulting in a shorter running time. The extra cost is a simple sorting. By the same token, 
we prune links with 2d mismatches first. The algorithm is implemented in C++ using the 
standard template library, which has fast set operations. 

V. PRUNING RANDOM SEQUENCES 

Because the winnower algorithm is guaranteed not to prune away true q-cliques, its ability 
to remove spurious links determines its performance. In a typical situation, almost all of 
the links are spurious. For example, for (1, d) = (15,4), and total sequence length N = 6000 
the total number of links is about one million with the 2d mismatch criterion, whereas 
embedding twenty signals only contributes 190 links. 

In this paper we perform tests on random sequences. This is preferable to testing on 
random sequences embedded with signals[8] because, in our experience, on random sequences 
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FIG. 1: Fraction of spurious links left unpurged as a function of clique size q for the case of 
k = 2 after WINNOWER (dashed lines) and cWINNOWER (solid lines) algorithms are applied 
to random sequences of three sizes: N=12000 (diamonds); N=6000 (circles); and N=3000 (stars). 
cWINNOWER uses consensus constraints whereas WINNOWER does not. In each case, there is 
an abrupt transition from one (no link is purged) to zero (all links are purged). For WINNOWER 
algorithm N = 12000 (the rightmost curve), there are no data for q between 71 and 75 because 
it takes too long to complete the calculations. The hidden pattern sought is (1, d) = (15,4), i.e., 
a pattern of length 15 with at most 4 mutations allowed. Each point is the result .of averaging 
between one to ten random sequences. 

embedded with a pattern the winnower algorithm often leaves more links unpruned (by a 
factor of two to  three) even when the algorithm can remove all spurious links for the random 
sequences of the same length without embedded signals. The last few hundred spurious links 
mixed with . . links from true signals can be dealt with easily by other methods of finding clique 
graphs. 

The number of spurious links per node increases linearly with the total sequence length. 
Longer sequences require a larger q. We determine the minimum q = q, as a function of total 
sequence length for pattern ( I ,  d) = (15,4). Algorithms that can detect signals with small 
copy number q are more sensitive. FIG. 1 shows the percentage of spurious links left unpruned 
as a function of q after the application of winnower algorithms with and without consensus 
bounds for the case of k = 2 (which counts number of 3-cliques to eliminate spurious links). 



FIG. 2: Same as Fig.1 but for the case of k = 3. Transitions are in generd not as sharp as in the 
case of k = 2. For the rightmost curve, for q between 23 and 31, the calculation takes too long to 
complete. 

The calculations were performed for random sequences of lengths N = 3000,6000 and 12000. 
For each length, as the copy number q increases, a sharp transition is seen which defines the 
minimum copy number qc. For q < q,, the algorithm is unable to prune all the spurious links 
and therefore unable to find the q-clique containing the signals. We have also performed 
similar calculations for the more sensitive case of k = 3(FIG.2), which eliminates links by 
counting the number of 4-cliques. Table I lists qc for three random sequence lengths for the 
winnower algorithm with and without consensus bounds. The minimum detectable copy 
number qc is much smaller with the consensus bounds. For the case of k = 2, qc increases 
linearly with the random sequence length. (This is clearly true for WINNOWER and is 
most likely also true for cWINNOWER.) The minimum detectable copy number qc is three 
times smaller with the consensus constraint than without for k = 2. Therefore the consensus 
constraint greatly improved the sensitivity of the algorithm. For the more sensitive k = 3 
algorithm, q, also become smaller when the consensus bound is imposed. The ratio of qc 
with consensus constraints to q, without consensus constraints increases with the sequence 
length (see Table I). 

For N = 12000, there is a range of q near qc where the calculation took too long to run. 
The reason is that the program stops when it goes through all links remaining and there 



are no more links to  delete. However, near q,, each time it goes through the list, it is able 
to  delete a few links but the bulk of computing time is spent on deciding whether to delete 
links that end up not being deleted. 

Calculations reported in FIG.l and FIG.2 were averaged between one and ten random 
sequences depending on the sequence length. Where the calculations were repeated on 
different random sequences of the same length, the results are always similar, which is 
expected because the number of spurious links is very large: 0.25 x lo6, lo6, and 4 x lo6 for 
N = 3000,6000 and 12000, respectively. 

Winnower assumes mutations can occur anywhere in the sequence. However in most of 
the regulatory sequences, some sites are more conserved than others. A partial remedy for 
this is to divide the pattern into two parts. For one part-for example, in the middle of the 
pattern-the allowed number of mutations is less than that for the rest of the pattern. 

In summary, the winnower method affords several advantages. In addition to being able 
to allow mutations in the hidden pattern, it has a clear-cut criterion for signal selection and 
is also unique in showing the absence of signal, i.e. it can prove that a certain ( I ,  d) motif 
occurs less than q times in the input sequence. 
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