
ar
X

iv
:2

00
5.

13
64

5v
1

 [
cs

.D
S]

 2
7

M
ay

 2
02

0

To appear in Journal of Bioinformatics and Computational Biology 5(4) 937–961, 2007
DOI 10.1142/S0219720007002977

ALGORITHMIC APPROACHES TO SELECTING CONTROL

CLONES IN DNA ARRAY HYBRIDIZATION EXPERIMENTS ∗

QI FU∗, ELIZABETH BENT†, JAMES BORNEMAN†,
MAREK CHROBAK∗and NEAL E. YOUNG∗

Department of Computer Science ∗, Department of Plant Pathology †,
University of California,

Riverside, CA 92521. U.S.A.
(qfu, marek, neal)@cs.ucr.edu ∗

(bente, james.borneman)@ucr.edu †

We study the problem of selecting control clones in DNA array hybridization experi-
ments. The problem arises in the OFRG method for analyzing microbial communities.
The OFRG method performs classification of rRNA gene clones using binary fingerprints
created from a series of hybridization experiments, where each experiment consists of
hybridizing a collection of arrayed clones with a single oligonucleotide probe. This experi-
ment produces analog signals, one for each clone, which then need to be classified, that is,
converted into binary values 1 and 0 that represent hybridization and non-hybridization
events. In addition to the sample rRNA gene clones, the array contains a number of con-
trol clones needed to calibrate the classification procedure of the hybridization signals.
These control clones must be selected with care to optimize the classification process.
We formulate this as a combinatorial optimization problem called Balanced Covering.
We prove that the problem is NP-hard, and we show some results on hardness of approx-
imation. We propose approximation algorithms based on randomized rounding and we
show that, with high probability, our algorithms approximate well the optimum solution.
The experimental results confirm that the algorithms find high quality control clones.
The algorithms have been implemented and are publicly available as part of the software
package called CloneTools.

Keywords: Control selection; DNA array; balanced covering; linear programming; ran-
domized rounding.

∗A preliminary version of this paper appeared in the Proceedings of Asia-Pacific Bioinformatics
Conference 2007. Journal version published as Journal of Bioinformatics and Computational Biol-
ogy 5(4) 937–961, 2007, DOI 10.1142/S0219720007002977, World Scientific Publishing Company

1

http://arxiv.org/abs/2005.13645v1

2 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

1. Introduction

Background. We study the problem of selecting control clones for DNA array

hybridization experiments. The specific version of the problem that we address

arises in the context of the OFRG (Oligonucleotide Fingerprinting of Ribosomal

RNA Genes) method, that we describe below, although our approach is also relevant

to other applications of DNA microarray technology.

OFRG (5, 8, 10, 11, 12) is a technique for analyzing microbial communities

that classifies rRNA gene clones into taxonomic clusters based on binary finger-

prints created from hybridizations with a collection of oligonucleotide probes. More

specifically, in OFRG, clone libraries from a sample under study (e.g., fungi or bac-

teria from an environmental sample) are constructed using PCR primers. These

cloned rRNA gene fragments are immobilized on nylon membranes and then sub-

jected to a series of hybridization experiments, with each experiment using a single

radiolabeled DNA oligonucleotide probe. This experiment produces analog signals,

one for each clone, which then need to be classified, that is, converted into binary

values 1 and 0 that represent hybridization and non-hybridization events. Overall,

this process creates a hybridization fingerprint for each clone, which is a vector of

binary values indicating which probes bind with this clone and which do not. The

clones are then identified by clustering their hybridization fingerprints with those

of known sequences and by nucleotide sequence analysis of representative clones

within a cluster.

In addition to sample clones, the array contains a number of control clones,

with known nucleotide sequences, used to calibrate the classification procedure of

hybridization signals. Consider a hybridization experiment with a probe p. Signal

intensities from its hybridizations with the control clones produce two distributions:

one from control clones that match p (e.g., they contain p or p’s reverse comple-

ment and thus should hybridize with it) and the other from control clones that do

not. This information is used to determine, via appropriate statistical techniques,

p’s signal intensity threshold t. Once t has been determined, we can classify signal

intensities for sample clones as follows: signals above t are interpreted as 1’s (hy-

bridization events) while those below are represented by 0’s (non-hybridizations).

The quality of information obtained from hybridizations depends critically on

the accuracy of the signal classification process. In particular, the control clones

should be more or less equally distributed in terms of their ability to bind or not bind

with each probe from a given probe set. In prior OFRG work, control clones were

selected arbitrarily, often producing control clones with very skewed distribution of

binding/non-binding with some probes. As an example, from a set of 100 control

clones, only two might bind with a specific probe. The signal classification for this

probe would be very unreliable, as it would be based on signal intensities from

hybridization with only two control clones.

Problem formulation. Our control-clone selection problem can be then formu-

lated as follows: We are given a collection C of candidate control clones and a set P

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 3

of oligonucleotide probes to be used in the hybridization experiments. From among

the candidate clones in C, we want to select a set D ⊆ C of s control clones such

that each probe in P hybridizes with roughly half of the clones in D.

This gives rise to a combinatorial optimization problem that we call Balanced

Coveringa. The instance is given as a pair 〈G, s〉, where G = (C,P,E) is a bipartite

graph and s ≤ |C| is an integer. C represents the clone set, P is the probe set, and

the edges in E represent potential hybridizations between clones and probes, that

is, (c, p) ∈ E iff c contains p or the reverse complement of p. For p ∈ P and D ⊆ C,

let degD(p) be the number of neighbors of p in D (that is, the number of clones in

D that hybridize with p). Throughout the paper, unless stated otherwise, by m we

will denote the cardinality of C and by n the cardinality of P .

Example. We illustrate the concept with a small example. (The realistic data sets

are typically considerably larger.) Let P = {p1, p2, ..., p7} be the following probe

set:

p1 p2 p3 p4 p5 p6 p7
CTGGC TACAT CGGCG GCTGG CGCTA GCCTA ATACA

The set of control clones C = {c1, c2, ..., c8} and the resulting bipartite graph G

are shown below (G is represented by its C × P adjacency matrix).

p1 p2 p3 p4 p5 p6 p7
c1 ATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGGACGGTAG 1 0 0 1 0 1 0

c2 GACGAACAGCCAGGGCGTGCTTCGGCGATGCAAGTCGAGCGCTAA 1 0 1 0 1 0 0

c3 ATTTTACGCTGGCGGCAGGCCTAACACATGCAAGTCGAAAAGTAG 1 0 0 1 0 1 0

c4 ACGCTAGCGGGATGCTTTACACATGCAAGTCGAACGGCAATACAT 0 1 0 0 1 0 1

c5 ACGAACGCTGGCGGCGTGCCTAATACATGCAAGTCGAACGCTTCT 1 1 1 1 0 1 1

c6 ACGAACGGCCAGGGCGTGGATTAGGCATGCAACGGCGACGCTGGA 1 0 1 1 0 1 0

c7 GATGAACGCTAGCGGCAGGCTTAATACATGCAAGTCGAACGGCAG 0 1 0 0 1 0 1

c8 GACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAACGGAAA 1 0 1 1 0 0 0

In G, we have an edge (ci, pj) if pj matches ci, that is, pj or its reverse com-

plement appears in ci. For example, p1 appears in c1, c3, c5 and c8, and its reverse

complement GCCAG appears in c2 and c6. (These occurrences of p1 are underlined.)

There is no edge (c4, p1) and (c7, p1) since c4 and c7 do not contain either p1 or p1’s

reverse complement.

Now suppose that we want to select s = 6 control clones from C. The probe

degree sequence with respect to D1 = {c1, c2, c3, c5, c6, c8} is (6, 1, 4, 5, 1, 4, 1),

while the probe degree sequence with respect to D2 = {c2, c4, c5, c6, c7, c8} is

(4, 3, 4, 3, 3, 2, 3). Thus D2 would be considered a better set of control clones, since

more degrees are closer to s/2 = 3.

a There have been some discussions on the Balanced Set Cover (see 1, 7) problem, however, they
are not directly related to Balanced Covering problem discussed in this paper.

4 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

Generally, as mentioned earlier, our goal is to find a set D ⊆ C of cardinality s

such that, for each p ∈ P , degD(p) is close to s/2. Several objective functions can

be studied. To measure the deviation from the perfectly balanced cover, for a given

probe p, we can compute either min {degD(p), s− degD(p)} or | degD(p)−s/2|. The
objective function can be obtained by considering the average of these values or the

worst case over all probes. This gives rise to four objective functions:

maximize C
min

(D) = min
p∈P

min {degD(p), s− degD(p)}

maximize C
avg
(D) = 1

n

∑

p∈P

min {degD(p), s− degD(p)}

minimize D
max

(D) = max
p∈P

| degD(p)− s/2|

minimize D
avg
(D) = 1

n

∑

p∈P

| degD(p)− s/2|

where each function needs to be optimized over all choices of D. There are certain

relations among these functions, for an instance, maximizing C
min

(D) and C
avg
(D) is

equivalent to minimizing D
max

(D) and D
avg
(D), respectively, since D

max
(D) = s/2−

C
min

(D), and D
avg
(D) = s/2−C

avg
(D). Throughout the paper, the four optimization

problems corresponding to these functions will be denoted by BCP C
min

, BCP C
avg
,

BCP D
max

, and BCP D
avg
.

Let 〈G, s〉 be an instance of Balanced Covering. By C∗
min

(G, s) = maxD C
min

(D)

we denote the optimal value of C
min

(D). If A is an algorithm for BCP C
min

, then

CA
min

(G, s) denotes the value computed by A on input 〈G, s〉. We use similar no-

tations, C∗
avg
(G, s), CA

avg
(G, s), etc., for all the other objective functions introduced

above.

Results. In this paper we show several analytical and experimental results on Bal-

anced Covering. In Section 2 we prove that all versions of Balanced Covering are

NP-hard. In particular, it is NP-complete to decide whether there is a perfectly bal-

anced cover with s clones, as well as to decide whether there is a size-s cover where

each probe is covered by at least one but not all clones. These results immediately

imply that (unless P=NP), there are no polynomial-time approximation algorithms

for BCP D
max

, BCP D
avg
, and BCP C

min
.

Stronger hardness-of-approximation results are shown in Section 3. For ex-

ample, for BCP D
avg
, we show that approximating the optimum is hard even if

we allow randomization and an additive term in the performance bound. More

specifically, we prove that, unless RP = NP, there is no randomized polynomial-

time algorithm A that for some constants α > 0 and 0 < ǫ < 1 satisfies

Exp[DA
avg
] ≤ αD∗

avg
+ β 1

n (mn)1−ǫ. (RP is the class of decision problems that can be

solved in randomized polynomial time with one-side error.) For BCP C
min

, we show

that there is no polynomial-time algorithm that computes a solution with the objec-

tive value at least C∗
min

−(1−ǫ) lnn or ǫC∗
min

, unless NP has slightly superpolynomial-

time algorithms. Our results on hardness of approximation are summarized in Ta-

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 5

Table 1. Hardness results and algorithms

Hardness Results Randomized Polynomial-Time Alg.

BCP Cmin No polynomial-time algorithm A sat-
isfies CA

min ≥ C∗
min − (1 − ǫ) lnn

or CA
min ≥ ǫC∗

min, unless NP ⊆
DTIME(nO(log log n)).

Algorithm RCM2 s.t., CRCM2
min ≥ C∗

min −
O

(

√

C∗
min lnn

)

, with probability at least
1
2
.

BCP Cavg No randomized polynomial-time algo-
rithm A satisfies Exp[CA

avg] ≥ C∗
avg −

β 1
n
(mn)1−ǫ , unless RP = NP.

Algorithm RCA2 s.t., Exp[CRCA2
avg] ≥

C∗
avg −O

(√

C∗
avg

)

.

BCP Dmax No polynomial-time algorithm that A
satisfies DA

max ≤ D∗
max +(1− ǫ) lnn, un-

less NP ⊆ DTIME(nO(log log n)).

Algorithm RDM s.t., DRDM
max ≤ D∗

max +

O
(√

s lnn
)

, with probability at least 1
2

BCP Davg No randomized polynomial-time algo-
rithm A satisfies Exp[DA

avg] ≤ αD∗
avg +

β 1
n
(mn)1−ǫ , unless RP = NP.

α, β > 0 and 0 < ǫ < 1 are any constants.

ble 1.

Then, in Section 4, we propose a polynomial-time randomized rounding algo-

rithm RCM for BCP C
min

. The algorithm solves the linear relaxation of the integer

program for BCP C
min

, and then uses the solution to randomly pick an approxi-

mately balanced cover. We show that, with probability at least 1
2 , RCM’s solution

has objective value at least C∗
min

−O(
√

C∗
min

lnn+
√
s).

Algorithm RCM performs well for input instances where the optimum is rela-

tively large, but its performance bound can be improved further for instances where

the optimum is small compared to s. In Section 4.2, we present another algorithm

called RCM2 that, with probability at least 1
2 , computes a solution with objec-

tive value at least C∗
min

− O(
√

C∗
min

lnn). (Although the asymptotic approximation

bound of RCM is not as good as that of RCM2, we include RCM in the paper

because, according to our experiments discussed in Section 5, it outperforms RCM2

in practice.)

We also study problems BCP D
max

and BCP C
avg
, for which we develop some

polynomial-time randomized rounding algorithms (RDM for BCP D
max

, and two

algorithms RCA and RCA2 for BCP C
avg
.) These results are summarized in Table 1.

In Section 5, we present the results of our experimental studies, where we tested

algorithms RCM, RCM2 and RDM on both synthetic and real data sets. According

to this study, solutions found by these algorithms are very close to the optimal

solution of their corresponding linear program, especially on real data sets. For

example, in 92.8% of our real data sets, RCM found the solution with value at least

97% of the solution from the linear program.

Algorithm RCM has been implemented and is publicly available at

the OFRG website as part of the CloneTools software package, see

http://algorithms.cs.ucr.edu/OFRG/.

http://algorithms.cs.ucr.edu/OFRG/

6 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

Relation to other work. We are not aware of any other work on the Balanced

Covering problem studied in this paper.

Note that OFRG differs from other array-based analysis approaches that, typi-

cally, involve a single microarray experiment where one clone of interest is hybridized

against a collection of arrayed probes, each targeting a specific sequence. These ex-

periments include control clones as well, but these control clones are used to test

whether they bind as predicted to particular microarray probes (see 9,14, for exam-

ple). In contrast, OFRG uses a small set of probes (roughly 30-50) to coordinately

distinguish a much larger set of sequences (for example, all bacterial rRNA genes).

Each probe is used in one hybridization experiment, and the unknown DNA clone

sequences are immobilized on the array.

2. NP-Completeness

We first show that all four versions of Balanced Covering studied in this paper are

NP-hard. In fact, we give two proofs of NP-hardness, as each will lead to different

results on hardness of approximation in the next section.

Given a bipartite graph G = (C,P,E) and an even integer s, define a perfectly

balanced cover in G to be a subset D ⊆ C with |D| = s such that degD(p) = s/2 for

each p ∈ P . Similarly, we define a size-s cover to be a subset D ⊆ C with |D| = s

such that 1 ≤ degD(p) ≤ s− 1 for each p ∈ P .

Theorem 1. The following decision problem is NP-complete: “Given a bipartite

graph G = (C,P,E) and an even integer s, is there a perfectly balanced cover in

G?” Consequently, BCP C
min

, BCP C
avg
, BCP D

max
and BCP D

avg
are NP-hard.

Proof. The proof is by a polynomial-time reduction from X3C (Exact Cover by

3-Sets), which is known to be NP-complete (see 6, for example). The instance of

X3C consists of a finite set X of 3m items, and a collection T of n 3-element subsets

of X that we refer to as triples. We assume that n ≥ m ≥ 2. The objective is to

determine whether T contains an exact cover of X , that is a sub-collection T ′ ⊆ T

such that every element of X occurs in exactly one triple in T ′.

The reduction is defined as follows. Given an instance 〈X,T 〉 of X3C above, we

construct an instance 〈G = (T ∪W,X,E), s〉 of Balanced Covering, where W is a

set that contains m − 2 new vertices. For t ∈ T and x ∈ X , we create an edge

(t, x) ∈ E if x ∈ t. Further, we create all edges (w, x) ∈ E for x ∈ X and w ∈ W .

This defines the bipartite graph G. We let s = 2m− 2.

It remains to show that this construction is correct, namely that 〈X,T 〉 has an
exact cover iff 〈G, s〉 has a perfectly balanced cover.

(⇒) If 〈X,T 〉 has an exact cover T ′, we claim that D = T ′ ∪W is a perfectly

balanced cover for 〈G, s〉. To justify this, note first that |T ′| = m and |W | = m− 2,

and thus |D| = 2m− 2 = s. Further, each vertex x ∈ X has exactly one neighbor

in T ′ and m− 2 neighbors in W , so x has m− 1 = s/2 neighbors in D, as required.

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 7

(⇐) Suppose now that 〈G, s〉 has a perfectly balanced cover D ⊆ T ∪W . Denote

W ′ = D ∩W , k = |W ′|, and T ′ = D ∩ T . We claim that T ′ is an exact cover of X .

We first show that D must contain all vertices in W . We count the edges between

D and X . There are 3km edges between W ′ and X , since each vertex in W ′ is

connected to all 3m vertices in X . There are 3(s−k) edges between T ′ and X , since

each vertex in T has degree 3. On the other hand, there must be 3m(m− 1) edges

between X and D, since each vertex in X must be connected to exactly s/2 = m−1

vertices in D. Together, this yields 3(2m − 2 − k) + 3km = 3m(m − 1). Solving

this equation, we get k = m− 2, which means that W ′ = W .

Since W ′ = W , T ′ must contain exactly s− k = m vertices. Each vertex x ∈ X

is adjacent to all vertices in W , so it has exactly s/2− (m− 2) = 1 neighbor in T ′.

This means that T ′ is an exact cover of X , as claimed.

Next we prove that it is NP-complete to decide whether there is a size-s cover,

where each probe in P is covered by at least one but not all clones from the cover.

Theorem 2. The following decision problem is NP-complete: “Given a bipartite

graph G = (C,P,E) and an integer s, is there a size-s cover in G?”

Proof. The proof is by a polynomial-time reduction from the NP-complete problem

Set Cover (see 6). Given an instance of Set Cover 〈Q,X, b〉, where Q is a collection

of subsets over universe X , the query is whether there is a set cover of size b for X ,

that is a sub-collection Q′ ⊆ Q with |Q′| = b such that
⋃

Q′ = X .

The reduction is defined as follows. Given an instance 〈Q,X, b〉 of Set Cover,

we construct an instance 〈G = (Q ∪ {q0}, X ∪ {x0}, E), s〉, where q0 and x0 are two

new vertices. For q ∈ Q and x ∈ X , we create an edge (q, x) ∈ E if x ∈ q. We also

create all edges (q, x0) ∈ E for q ∈ Q. This defines the bipartite graph G. We let

s = b+ 1.

We now justify the correctness of the construction by showing that 〈G, s〉 has a
size-s cover iff 〈Q,X, b〉 has a set cover with size b.

(⇒) If 〈Q,X, b〉 has a set cover Q′ of size b, it is clear that D = Q′ ∪ {q0} is

a size-s cover for 〈G, s〉 since each vertex in X ∪ {x0} is adjacent to at least one

element from Q′, and not adjacent to q0 ∈ D.

(⇐) Suppose now that 〈G, s〉 has a size-s coverD. We denote Q′ = D∩Q. Every

x ∈ X must be adjacent to at least one vertex in Q′ since there is no x adjacent to

q0. Thus Q
′ is a set cover of X of size b.

3. Hardness of Approximation

Approximation of BCP D
avg

and BCP C
avg
. Now we prove that approximating

BCP D
avg

and BCP C
avg

is hard. Theorem 1 immediately implies that BCP D
avg

(as

well as BCP D
max

) cannot be efficiently approximated with any finite ratio. We show

that even if we allow an additive term in the approximation bound and random-

ization, achieving finite ratio for BCP D
avg

is still NP-hard. For BCP C
avg

we show

8 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

that it is hard to be approximated with the bound C∗
avg

− β 1
n (nm)1−ǫ, where β > 0,

0 < ǫ < 1 and m = |C|, n = |P |.
Let 〈G, s〉 be an instance of Balanced Covering. Given an algorithm A for

BCP D
avg
, recall that by DA

avg
(G, s) we denote the value of the objective function

computed by A, that is

DA
avg
(G, s) = 1

n

∑

p∈P

| degD(p)− s/2|,

whereD ⊆ C is the set computed byA. Similarly, given an algorithmA for BCP C
avg
,

CA
avg
(G, s) is the value of the objective function computed by A for BCP C

avg
, that is

CA
avg
(G, s) = 1

n

∑

p∈P

min {degD(p), s− degD(p)}.

Recall that by D∗
avg
(G, s) and C∗

avg
(G, s) we denote the optimal value for BCP D

avg

and BCP C
avg
, respectively.

Recall that the class RP (randomized polynomial time) is the complexity class

of decision problems P which have polynomial-time probabilistic Turing machines

M such that, for each input I, (i) if I ∈ P then M accepts I with probability at

least 1
2 , and (ii) if I /∈ P then M rejects I with probability 1. It is still open whether

RP = NP.

Theorem 3. Let α, β > 0 and 0 < ǫ < 1 be any constants. If RP 6= NP then there

is no randomized polynomial-time algorithm A that

(a) for any instance 〈G, s〉 of BCP D
avg

satisfies

Exp[DA
avg
(G, s)] ≤ α · D∗

avg
(G, s) + β 1

n (nm)1−ǫ, or (3)

(b) for any instance 〈G, s〉 of BCP C
avg

satisfies

Exp[CA
avg
(G, s)] ≥ C∗

avg
(G, s)− β 1

n (nm)1−ǫ. (4)

Proof. We first prove part (a) of the theorem. Suppose, towards contradiction,

that for some α, β and ǫ there exists a randomized polynomial-time algorithm A
that satisfies (3). We show that this would imply the existence of a randomized

polynomial-time algorithm that decides if there is a perfectly balanced covering,

contradicting Theorem 1.

Given an instance 〈G, s〉 of BCP D
avg
, where G = (C,P,E), convert it into

another instance 〈Gr, s〉 of BCP D
avg
, where Gr = (C,P ′, E′) is obtained by creating

r copies of each probe p ∈ P (that is, with the same neighbors in C). Thus |P ′| = rn.

We choose r = ⌈(2βm1−ǫn1−ǫ)
1
ǫ ⌉ + 1. For this r, we have 2βm1−ǫ(nr)−ǫ < 1

n .

Therefore the new instance 〈Gr , s〉 has the following properties:

• If 〈G, s〉 has a perfectly balanced cover (that is, D∗
avg
(G, s) = 0) then

D∗
avg
(Gr, s) = 0, and therefore 2 · Exp[DA

avg
(Gr , s)] ≤ 2βm1−ǫ(nr)−ǫ < 1

n .

Using Markov’s inequality, this implies that Pr[DA
avg
(Gr, s) < 1

n] ≥ 1
2 .

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 9

• if 〈G, s〉 does not have a perfectly balanced cover (that is, D∗
avg
(G, s) ≥ 1

n)

then DA
avg
(Gr , s) ≥ D∗

avg
(Gr, s) = D∗

avg
(G, s) ≥ 1

n , with probability 1.

Since Gr can be computed from G in polynomial time, from A we could obtain a

randomized polynomial-time algorithm that determines the existence of a perfectly

balanced cover – a problem that is NP-complete, according to Theorem 1. The part

(a) of the theorem follows.

Part (b) follows directly from part (a) of the theorem and the fact that

C∗
avg
(G, s) = s/2 − D∗

avg
(G, s) and C

avg
(H) = s/2 − D

avg
(H) for any solution H for

instance 〈G, s〉 of BCP C
avg

and BCP D
avg
.

Using an argument very similar to the proof of Theorem 3, one can show that,

unless P = NP, there is no deterministic polynomial-time algorithm that satisfies

bounds analogous to those in Theorem 3.

Approximation of BCP C
min

and BCP D
max

. Next we show that BCP C
min

can-

not be approximated efficiently with the objective value at least ǫC∗
min

(G, s) or

C∗
min

(G, s) − O(lnn), unless NP has slightly superpolynomial time algorithms. As

a result, BCP D
max

cannot be approximated efficiently with the objective value at

most D∗
max

(G, s) + O(lnn). Recall that for a given instance 〈G, s〉, we denote by

C∗
min

(G, s) and D∗
max

(G, s) the optimal value of C
min

(G, s) and D
max

(G, s), respec-

tively. Similarly, CA
min

(G, s) and DA
max

(G, s) are the values of the objective function

computed by an algorithm A for BCP C
min

or BCP D
max

, respectively, on an instance

〈G, s〉.

Theorem 4. Unless NP ⊆ DTIME(nO(log logn)), then

(a) there is no polynomial-time algorithm A for BCP C
min

that, for some 0 <

ǫ < 1, for any instance 〈G, s〉, satisfies

CA
min

(G, s) ≥ ǫ C∗
min

(G, s), and (5)

(b) there is no polynomial-time algorithm A for BCP C
min

that, for some 0 < ǫ <

1, for any instance 〈G, s〉, satisfies

CA
min

(G, s) ≥ C∗
min

(G, s)− (1− ǫ) lnn. (6)

Proof. We first prove part (a) of the theorem. Suppose, towards contradiction,

that there exists a polynomial-time algorithm A that satisfies (5). We show that

this would imply the existence of a polynomial-time ((1−Ω(ǫ)) lnn)-approximation

algorithm B1 for the Set Cover problem, which would imply in turn that problems

in NP have nO(log logn)-time deterministic algorithms 4.

Algorithm B1 works as follows. Given an instance 〈Q,X〉 of Set Cover, where

|X | = n and Q is a collection of sets over X , the algorithm B1 first reduces 〈Q,X〉
to an instance 〈G = (T ∪W,P,E), s〉 of BCP C

min
, where P = X ∪ {x0}, T contains

k = ⌊ lnn
2 ⌋ vertices q1, q2, ..., qk for each set q ∈ Q, and W is a set containing k

new vertices. For each q ∈ Q and i = 1, 2, ..., k, we create an edge (qi, x0) ∈ E

10 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

and edges (qi, x) ∈ E for each x ∈ q. This defines the bipartite graph G. Let b

represent the size of the minimum set cover of X . We now assume that, without

loss of generality, algorithm B1 knows the value of b. Otherwise, B1 can simply try

each b ∈ {1, 2, ..., n}, and choose the smallest set cover. We now let s = kb+ k.

Next B1 calls algorithm A on input 〈G, s〉 to get a balanced cover H for 〈G, s〉,
and outputs the collection of sets H ′ = {q : (∃i)qi ∈ H} as a set cover of X .

To prove that B1 is a ((1 − Ω(ǫ)) lnn)-approximation algorithm for Set Cover,

we now show that H ′ is a set cover of X and |H ′| ≤ (1− ǫ
2) ln(n)b.

Assuming that 〈Q,X〉 has a set cover Q′ of size b, we first claim that C∗
min

(G, s) ≥
k. To justify this, from Q′, we build the balanced cover D = {qi : q ∈ Q′} ∪ W .

Obviously, |D| = kb + k = s. For each x ∈ X , the k copies of Q′ ensure that

degD(x) ≥ k, while the k vertices in W ensure that degD(x) ≤ s − k. Our claim

implies that algorithm A on input 〈G, s〉 will find a balanced coverH with objective

function value at least ǫ C∗
min

(G, s) ≥ ǫk. We have |H ∩ W | ≥ ǫk, because x0 ∈ P

is adjacent to every vertex in T and H has at least ǫk vertices not adjacent to x0.

Therefore |H ∩ T | ≤ s − ǫk = kb + (1 − ǫ)k. Thus, since each x ∈ P is adjacent to

at least one vertex in H (in fact, at least ǫk), H ′ forms a set cover of X of size at

most kb+ (1− ǫ)k ≤ (2− ǫ)kb ≤ (1− ǫ
2) ln(n)b, as claimed.

The algorithm B1 clearly runs in polynomial time, and is a ((1 − Ω(ǫ)) lnn)-

approximation algorithm for the Set Cover problem. Thus the part (a) of the the-

orem follows.

Next we prove the part (b) of the theorem. Suppose, towards contradiction, that

there exists a polynomial-time algorithm A that satisfies (6). As in part (a), we will

prove that this would imply the existence of a polynomial-time ((1 − Ω(ǫ)) lnn)-

approximation algorithm B2 for the Set Cover problem.

B2 works like algorithm B1 described previously except we let k =

⌈(1− ǫ) lnn+ 1⌉ this time.

Assuming that 〈Q,X〉 has a set cover Q′ of size b, an argument similar to the

proof of part (a) shows that algorithm A on input 〈G, s〉 will find a balanced cover

H with objective function value at least

C∗
min

(G, s)− (1− ǫ) lnn ≥ k − (1 − ǫ) lnn ≥ 1.

Also, H ′ forms a set cover of X of size at most s. We now assume that, without

loss of generality, b ≥ 2
ǫ , because otherwise the Set Cover problem can be solved

in polynomial time O(|X |2 · |Q| 2ǫ). Thus we get |H ′| ≤ kb + k ≤ kb + ǫ
2kb ≤

(1 + ǫ
2)(1 − ǫ)(ln(n) + 2

1−ǫ)b ≤ (1− Ω(ǫ)) ln(n)b, as claimed.

The algorithm B2 clearly runs in polynomial time, and is a ((1 − Ω(ǫ)) lnn)-

approximation algorithm for the Set Cover problem. Thus the theorem follows.

As a corollary, we also get an approximation hardness result for BCP D
max

.

Corollary 1. Unless NP ⊆ DTIME(nO(log logn)), there is no polynomial-time al-

gorithm A for BCP D
max

that, for some 0 < ǫ < 1 and for any instance 〈G, s〉,

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 11

satisfies

DA
max

(G, s) ≤ D∗
max

(G, s) + (1− ǫ) lnn. (7)

Proof. The corollary follows directly from part (b) of Theorem 4 and the fact that

D∗
max

(G, s) = s/2 − C∗
min

(G, s) and D
max

(H) = s/2 − C
min

(H) for any solution H for

instance 〈G, s〉 of BCP D
max

and BCP C
min

.

4. Approximation Algorithms and Analysis

In this section we present several randomized algorithms for different versions of

Balanced Covering. We give two algorithms RCM and RCM2 for BCP C
min

, algo-

rithm RDM for BCP D
max

, and two algorithms RCA and RCA2 for BCP C
avg
.

All algorithms are based on randomized rounding. We first solve a linear re-

laxation LP of the integer program ILP for Balanced Covering, and then use the

fractional solution as probabilities to randomly choose the integral solutions.

Let x∗
1, ..., x

∗
n, where 0 ≤ x∗

i ≤ 1 for each i, be the optimum solution of LP and

z∗ the corresponding optimum value of the objective function. We choose Xi = 1

with probability x∗
i and 0 otherwise, which gives us a “provisional” integral solution

X1, ..., Xn with objective value Z. Since the expectation of Z is equal to z∗ and the

random variables Xi are independent, we can apply the Chernoff bound to show

that with high probability the value of Z is close to z∗ (and thus also approximates

well the optimum of ILP). If Z is not feasible, we adjust the values of a sufficient

number L of the variablesXi obtaining a final feasible solution whose value Z̃ differs

from Z by at most L. Applying the Chernoff bound again, we get an estimate on

L, and combining it with the bound on Z we obtain a bound on Z̃.

For some objective functions we refine this approach further, by adjusting the

probability of setting Xi to 1, in order to reduce the violation L of the constraints.

This modification improves asymptotic performance bounds but – as we show later

in Section 5 – it tends to degrade the experimental performance on both random

and real data sets.

4.1. Algorithm RCM for BCP C
min

Given G = (C,P,E), let C = {c1, c2, ..., cm}, P = {p1, p2, ..., pn}. And let A = [aij]

be the Booleanm×n adjacency matrix ofG, that is aij = 1 iff (ci, pj) ∈ E; otherwise

aij = 0. Then BCP C
min

is equivalent to the following integer linear program MinIP:

maximize: z

subject to: z ≤
∑m

i=1 aijxi ∀j = 1, ..., n

z ≤ ∑m
i=1(1− aij)xi ∀j = 1, ..., n

∑m
i=1 xi ≤ s

xi ∈ {0, 1} ∀i = 1, ...,m

12 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

The Boolean variables xi indicate whether the corresponding ci ∈ C are selected or

not.

Algorithm RCM. The algorithm first relaxes the last constraint to 0 ≤ xi ≤ 1

to obtain the linear program MinLP, and then computes an optimal solution x∗
i ,

i = 1, 2, ...,m, of MinLP. Next, applying randomized rounding, RCM computes

an integral solution X1, ..., Xm by choosing Xi = 1 with probability x∗
i and 0

otherwise. Note that this solution may not be feasible since
∑m

i=1 Xi may exceed

s. Let L = max{∑m
i=1 Xi − s, 0}. RCM changes L arbitrary variables Xi = 1 to 0,

obtaining a feasible solution X̃1, ..., X̃m.

Analysis. We denote by CRCM
min

(G, s) or Z̃ the value of the objective func-

tion computed by RCM on input 〈G, s〉, that is CRCM
min

(G, s) = Z̃ =

minnj=1{
∑m

i=1 aijX̃i,
∑m

i=1(1− aij)X̃i}.

Lemma 1. For any instance 〈G, s〉 of BCP C
min

, with probability at least 1
2 ,

CRCM

min
(G, s) ≥ C∗

min
(G, s)−O

(

√

C∗
min

(G, s) lnn+
√
s
)

. (8)

Proof. Let z∗ = minn
j=1{

∑m
i=1 aijx

∗
i ,
∑m

i=1(1−aij)x
∗
i } be the optimum solution of

MinLP. Let also Z = minnj=1{
∑m

i=1 aijXi,
∑m

i=1(1− aij)Xi}.
The {Xi} are independent Bernoulli random variables with Exp[Xi] = x∗

i . So,

for each j, Exp[
∑m

i=1 aijXi] =
∑m

i=1 aijx
∗
i ≥ z∗, By a standard Chernoff bound, we

get

Pr[
∑m

i=1 aijXi ≤ (1− λ)z∗] ≤ e−λ2z∗/2,

where 0 < λ ≤ 1. Similarly, for all j,

Pr[
∑m

i=1(1− aij)Xi ≤ (1− λ)z∗] ≤ e−λ2z∗/2.

By the naive union bound, the probability that any of the 2n above events happens

is at most 2ne−λ2z∗/2. Hence we have

Pr[Z ≤ (1 − λ)z∗] ≤ 2ne−λ2z∗/2. (9)

Likewise, Exp[
∑m

i=1 Xi] =
∑m

i=1 x
∗
i ≤ s. Thus by the Chernoff bound,

Pr[
∑m

i=1 Xi ≥ (1 + ǫ)s] ≤ e−ǫ2s/4, where 0 < ǫ ≤ 2e − 1. Recalling L =

max{∑m
i=1 Xi − s, 0}, we have

Pr[L ≥ δ
√
s] ≤ e−δ2/4, (10)

where 0 < δ ≤ (2e− 1)
√
s.

Since Z̃ ≥ Z −L, we get Pr[Z̃ ≤ (1−λ)z∗− δ
√
s] ≤ Pr[Z ≤ (1−λ)z∗] +Pr[L ≥

δ
√
s]. Combining this with (9) and (10), we have

Pr[Z̃ ≤ (1− λ)z∗ − δ
√
s] ≤ 2ne−λ2z∗/2 + e−δ2/4. (11)

Suppose C∗
min

(G, s) ≥ 2 ln(8n). Then z∗ ≥ 2 ln(8n) as well, because C∗
min

(G, s) ≤
z∗. Choosing λ =

√

2 ln(8n)/z∗ and δ =
√
4 ln 4, from (11), we get

Pr[Z̃ ≤ z∗ −
√

2 ln(8n)z∗ −
√

4 ln(4)s] ≤ 1
2 .

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 13

Since z∗ ≥ C∗
min

(G, s) ≥ 2 ln(8n), with probability at least 1
2 , we have

Z̃ ≥ C∗
min

(G, s)−
√

2 ln(8n)C∗
min

(G, s)−
√

4 ln(4)s. (12)

Inequality (12) is also trivially true for C∗
min

(G, s) < 2 ln(8n). Thus the lemma

follows.

4.2. An Alternative Algorithm RCM2 for BCP C
min

The performance bound for RCM given in Section 4.1 can be improved for in-

stances where the optimum is small compared to s. We now provide an alternative

algorithm RCM2, which is identical to RCM in all steps except for the round-

ing scheme: choose Xi = 1 with probability (1 − ǫ)x∗
i , and 0 otherwise, where

ǫ = min
{

2
√

ln(4n+ 2)/z∗, 1
}

.

Analysis. All notations are defined similarly to those in Section 4.1.

Lemma 2. For any instance 〈G, s〉 of BCP C
min

, with probability at least 1
2 ,

CRCM2

min
(G, s) ≥ C∗

min
(G, s)−O

(

√

C∗
min

(G, s) lnn
)

. (13)

Proof. The {Xi} are independent random variables with Exp[Xi] = (1− ǫ)x∗
i . By

linearity of expectation, Exp[
∑m

i=1 Xi] ≤
∑m

i=1(1 − ǫ)x∗
i ≤ (1 − ǫ)s. Thus, by the

Chernoff bound,

Pr[
∑m

i=1 Xi ≥ s] ≤ Pr[
∑m

i=1 Xi ≥ (1 + ǫ)(1− ǫ)s] ≤ e−ǫ2(1−ǫ)s/4.

As z∗ ≤ s/2, we have s/4 ≥ z∗/2. The above bound implies

Pr[
∑m

i=1 Xi ≥ s] ≤ e−ǫ2(1−ǫ)z∗/2. (14)

Likewise, for each j,
∑m

i=1 aijx
∗
i ≥ z∗, so Exp[

∑m
i=1 aijXi] ≥ (1 − ǫ)z∗. By the

Chernoff bound,

Pr[
∑m

i=1 aijXi ≤ (1− ǫ)2z∗] ≤ e−ǫ2(1−ǫ)z∗/2. (15)

Similarly, for all j,

Pr[
∑m

i=1(1− aij)Xi ≤ (1− ǫ)2z∗] ≤ e−ǫ2(1−ǫ)z∗/2. (16)

Letting L = max{∑m
i=1 Xi−s, 0}, since Z̃ ≥ Z−L, we get Pr[Z̃ ≤ (1−ǫ)2z∗−L] ≤

Pr[Z ≤ (1− ǫ)2z∗] + Pr[
∑m

i=1 Xi ≥ s]. Combining this with (14), (15) and (16), we

have

Pr[Z̃ ≤ (1 − ǫ)2z∗] ≤ (2n+ 1)e−ǫ2(1−ǫ)z∗/2.

Since (1− ǫ)2 ≥ 1− 2ǫ, for ǫ < 1
2 , we get

Pr[Z̃ ≤ z∗ − 4
√

ln(4n+ 2)z∗] ≤ 1
2 . (17)

14 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

The above bound is also trivially true for ǫ ≥ 1
2 (that is, z∗ ≤ 16 ln(4n+2)). Finally,

suppose C∗
min

(G, s) ≥ 16 ln(4n+2). Since also C∗
min

(G, s) ≤ z∗, inequality (17) implies

that with probability at least 1
2 ,

Z̃ ≥ C∗
min

(G, s)− 4
√

ln(4n+ 2)C∗
min

(G, s), (18)

Inequality (18) is also trivially true for C∗
min

(G, s) ≤ 16 ln(4n+ 2). Thus the lemma

follows.

We will show later in Section 5 that RCM2 does not outperform RCM in exper-

imental analysis. Therefore RCM cannot be completely substituted by RCM2.

4.3. Algorithm RDM for BCP D
max

In this section we present our randomized algorithm RDM for BCP D
max

. Given

G = (C,P,E), let A be the Boolean m×n adjacency matrix of G, as in Section 4.1.

Then BCP D
max

is equivalent to the following integer linear program MaxIP:

minimize: z

subject to: z ≥ ∑m
i=1 aijxi − s/2 ∀j = 1, ..., n

z ≥ s/2−∑m
i=1 aijxi ∀j = 1, ..., n

∑m
i=1 xi = s

xi ∈ {0, 1} ∀i = 1, ...,m

The Boolean variables xi indicate whether the corresponding ci ∈ C are selected or

not.

Algorithm RDM. The algorithm first relaxes the last constraint to 0 ≤ xi ≤ 1

to obtain the linear program MaxLP, and then computes an optimal solution x∗
i ,

i = 1, 2, ...,m, of MaxLP. Next, applying randomized rounding like in RCM, RDM

computes an integral solution X1, ..., Xm by choosing Xi = 1 with probability x∗
i

and 0 otherwise. Note that this solution may not be feasible since
∑m

i=1 Xi may not

be exactly s. Let L =
∑m

i=1 Xi − s. RDM changes |L| arbitrary variables Xi = 1 to

0 if L > 0, and does the contrary if L < 0, obtaining a feasible solution X̃1, ..., X̃m.

Analysis. We denote by z∗ and DRDM
max

(G, s) (or Z̃) the value of the objec-

tive function computed by MaxLP and RDM for BCP D
max

, respectively. Namely,

z∗ = maxnj=1 |
∑m

i=1 aijx
∗
i −s/2|, and DRDM

max
(G, s) = Z̃ = maxnj=1 |

∑m
i=1 aijX̃i−s/2|.

Lemma 3. For any instance 〈G, s〉 of BCP D
max

, with probability at least 1
2 ,

DRDM

max
(G, s) ≤ D∗

max
(G, s) +O

(√
s lnn

)

. (19)

Proof. We now assume that, without loss of generality, s ≥ 9, because otherwise

s is a constant then (19) will be trivially true.

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 15

Let Z = maxnj=1 |
∑m

i=1 aijXi − s/2|. For each j, define z̄j =
∑m

i=1 aijx
∗
i , and

z∗j = |z̄j − s/2|. Similarly, define random variables Z̄j =
∑m

i=1 aijXi and Zj =

|Z̄j − s/2|. Thus z∗ = maxnj=1 z
∗
j and Z = maxnj=1 Zj .

The {Xi} are independent Bernoulli random variables with Exp[Xi] = x∗
i . So

Exp[Z̄j] = z̄j for each j. Applying a standard Chernoff bound, we get Pr[|Z̄j− z̄j| ≥
ǫz̄j] ≤ 2e−ǫ2z̄j/4, for 0 < ǫ ≤ 1. This and the triangle inequality imply

Pr[Zj ≥ z∗+λ
√
s] ≤ Pr[Zj ≥ z∗j +λ

√

z̄j] ≤ Pr[|Z̄j−z̄j| ≥ λ
√

z̄j] ≤ 2e−λ2/4,(20)

where 0 < λ ≤ √
z̄j . Since |z̄j − s/2| ≤ z∗, z̄j ≥ s/2− z∗ for all j. Hence (20) also

holds when 0 < λ ≤
√

s/2− z∗.

By the naive union bound,

Pr[Z ≥ z∗ + λ
√
s] ≤ 2ne−λ2/4. (21)

Likewise, Exp[
∑m

i=1 Xi] =
∑m

i=1 x
∗
i = s. By the Chernoff bound, Pr[|∑m

i=1 Xi −
s| ≥ ǫs] ≤ 2e−ǫ2s/4, for 0 < ǫ ≤ 1. Thus we have

Pr[|∑m
i=1 Xi − s| ≥ δ

√
s] ≤ 2e−δ2/4, (22)

where 0 < δ ≤ √
s.

Since Z̃ ≤ Z + |∑m
i=1 Xi − s|, we get Pr[Z̃ ≥ z∗ + λ

√
s + δ

√
s] ≤ Pr[Z ≥

z∗ + λ
√
s] + Pr[|∑m

i=1 Xi − s| ≥ δ
√
s]. Combining this with (21) and (22), we have

Pr[Z̃ ≥ z∗ + (λ + δ)
√
s] ≤ 2ne−λ2/4 + 2e−δ2/4. (23)

Choose λ =
√

4 ln(8n) and δ =
√
4 ln 8. (Note that δ ≤ √

s, since s ≥ 9.) When

λ ≤
√

s/2− z∗, from (23), with probability at least 1
2 , we get

Z̃ ≤ z∗ + (
√

4 ln(8n) +
√
4 ln 8)

√
s. (24)

If s < 4
√

ln(8n), then
√

4s ln(8n) > s/2, inequality (24) will be trivially true.

Suppose s ≥ 4
√

ln(8n) and z∗ > s/2 −
√

4 ln(8n) (i.e., λ >
√

s/2− z∗). Then

z∗ +
√

4s ln(8n) ≥ s/2, and inequality (24) is also trivially true. Thus by (24)

together with the bound D∗
max

(G, s) ≥ z∗, we obtain the lemma.

4.4. Algorithm RCA for BCP C
avg

In this section we present our randomized algorithm RCA for BCP C
avg
. Given G =

(C,P,E), again let A be the Boolean m× n adjacency matrix of G. Then BCP C
avg

is equivalent to the following integer linear program AvgIP:

maximize:
1

n

n
∑

j=1

zj

subject to: zj ≤
∑m

i=1 aijxi ∀j = 1, ..., n

zj ≤ ∑m
i=1(1 − aij)xi ∀j = 1, ..., n

∑m
i=1 xi ≤ s

xi ∈ {0, 1} ∀i = 1, ...,m

16 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

The Boolean variables xi indicate whether the corresponding ci ∈ C are selected or

not.

Algorithm RCA. The algorithm first relaxes the last constraint to 0 ≤ xi ≤ 1

to obtain the linear program AvgLP, and then computes an optimal solution x∗
i ,

i = 1, 2, ...,m, of AvgLP. Next, applying randomized rounding, RCA computes

an integral solution X1, ..., Xm by choosing Xi = 1 with probability x∗
i and 0

otherwise. Note that this solution may not be feasible since
∑m

i=1 Xi may exceed

s. Let L = max{
∑m

i=1 Xi − s, 0}. RCA changes L arbitrary variables Xi = 1 to 0,

obtaining a feasible solution X̃1, ..., X̃m.

One can show that, in expectation, for any instance 〈G, s〉, RCA finds a solution

with objective value at least C∗
avg
(G, s)− O(

√
s). We omit the proof because in the

next section we provide an algorithm with a better asymptotic bound.

4.5. An Alternative Algorithm RCA2 for BCP C
avg

We now modify Algorithm RCA, to improve its approximation bound. Let z∗ be the

optimum solution of AvgLP, that is z∗ = 1
n

∑n
j=1 min{∑m

i=1 aijx
∗
i ,
∑m

i=1(1−aij)x
∗
i }.

Our new Algorithm RCA2 is identical to RCA in all steps except for the rounding

scheme: choose Xi = 1 with probability
x∗
i

1+λ and 0 otherwise, where λ = 1√
z∗

(without loss of generality, assuming z∗ > 0).

Before we start RCA2’s analysis, we state and prove a variant of the Chernoff

bound needed to estimate the error introduced by changing L variables Xi at the

end of the algorithm.

Lemma 4. Let Y1, Y2, ..., Yn be n independent Bernoulli trials, where Pr[Yi = 1] =

pi. Then if Y =
∑n

i=1 Yi and if Exp[Y] =
∑

i pi ≤ µ, for any 0 < ǫ ≤ 1:

Exp[max{0, Y − (1 + ǫ)µ}] ≤ 2e−µǫ2/4

ln(1 + ǫ)
. (25)

Proof. See Appendix Appendix A.

Analysis. We denote by CRCA2
avg

(G, s) or Z̃ the value of the objective

function computed by RCA2 for BCP C
avg
, that is CRCA2

avg
(G, s) = Z̃ =

1
n

∑n
j=1 min{

∑m
i=1 aijX̃i,

∑m
i=1(1 − aij)X̃i}. Recall C∗

avg
(G, s) is the optimal value

of C
avg
(G, s) of BCP C

avg
.

Lemma 5. For any instance 〈G, s〉 of BCP C
avg
,

Exp[CRCA2

avg
(G, s)] ≥ C∗

avg
(G, s)−O

(
√

C∗
avg
(G, s)

)

. (26)

Proof. We can assume that C∗
avg
(G, s) ≥ 1, because otherwise (26) is trivially true.

Thus z∗ ≥ 1 as well, since z∗ ≥ C∗
avg
(G, s).

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 17

For all j define constants z∗j = min{∑m
i=1 aijx

∗
i ,
∑m

i=1(1− aij)x
∗
i } and variables

Z̄j =
∑m

i=1 aijXi, Ẑj =
∑m

i=1(1 − aij)Xi and Zj = min{Z̄j, Ẑj}. Thus we have

z∗ = 1
n

∑n
j=1 z

∗
j and Z = 1

n

∑n
j=1 Zj.

The {Xi} are independent Bernoulli random variables with Exp[Xi] =
x∗
i

1+λ . So

Exp[Z̄j] ≥
z∗
j

1+λ and Exp[Ẑj] ≥
z∗
j

1+λ , for each j. Applying the Chernoff-Wald bound
13, we get

Exp[(1− ǫ)
z∗
j

1+λ − (1 + ǫ)Zj] ≤

Exp

[

max

{

(1− ǫ)
z∗j

1 + λ
− (1 + ǫ)Z̄j, (1− ǫ)

z∗j
1 + λ

− (1 + ǫ)Ẑj

}]

≤ ln 2

ǫ
,

where 0 < ǫ ≤ 1
2 . Since

1−ǫ
1+ǫ ≥ 1− 2ǫ, Exp[Zj] ≥ z∗

j

1+λ − 2
(

ǫz∗
j

1+λ + 1
ǫ

)

, and thus we

have

Exp[Z] ≥ z∗

1 + λ
− 2

(

ǫz∗

1 + λ
+

1

ǫ

)

.

In the above inequality we substitute λ = 1√
z∗

and choose ǫ = 1
2
√
z∗
, which, by

simple algebra, yields

Exp[Z] ≥ z∗ − 6
√
z∗. (28)

Likewise, Exp[
∑m

i=1 Xi] =
1

1+λ

∑m
i=1 x

∗
i ≤ s

1+λ . By Lemma 4, we have

Exp[max{0,∑m
i=1 Xi − (1 + δ) s

1+λ}] ≤ 2e
− s

1+λ
δ2/4

ln(1+δ) ,

where 0 < δ ≤ 1. Letting δ = 1√
z∗

and substituting λ = 1√
z∗
, the above inequality

implies

Exp[L] ≤ 2e
− s

4(z∗+
√

z∗)

ln(1 + 1√
z∗
)

≤ 2

ln(1 + 1√
z∗
)

≤ 4
√
z∗, (30)

where the last inequality follows from ln(1 + ǫ) ≥ ǫ/2 for 0 < ǫ ≤ 1. Combining

(28), (30), and Z̃ ≥ Z − L, we get

Exp[Z̃] ≥ Exp[Z − L] ≥ z∗ − 10
√
z∗.

Since 1 ≤ C∗
avg
(G, s) ≤ z∗, the above bound implies (26).

Note that performance bounds for RCA2 and RCA are weaker than those for

the algorithms in the previous sections, as it holds only in expectation. Algorithm

RCA’s approximation error is slightly worse than that of RCA2. Nevertheless, our

experimental analysis (not included) show that on synthetic and real data sets,

RCA2 does not outperform RCA.

18 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

Table 2. Performance of RCM on synthetic data with m = 100 and n = 30

s 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

MinLP 10 12.5 15 17.5 20 22.5 25 27.5 29.82 31.89 33.88 35.76 37.54 39.11 40

RCM 7 10 13 15 18 19 23 25 28 30 32 34 35 38 40

5. Experimental Analysis

We implemented Algorithms RCM, RCM2 and RDM using LP SOLVE solver 2,

and tested their performance on both synthetic and real data.

Synthetic data. We tested these three algorithms on random data sets repre-

sented by adjacency matrices of four sizes (m,n) = (100, 30), (100, 100), (200, 60),

(200, 200), where each element of the matrix is chosen to be 1 or 0 with probability
1
2 . We ran these programs for s = 20, 21, ..., 90, and compared the solution to the

optimal solution of the linear relaxation (that is, RCM and RCM2 were compared

to MinLP, RDM was compared to MaxLP).

Table 2 shows results of the comparison of RCM’s solution and the MinLP so-

lution of BCP C
min

from the experiment in which m = 100 and n = 30. This table

presents only the performance of a single run of RCM, so the results are likely to

be even better if we run RCM several times and choose the best solution.

We also repeated our simulation test 10 times for each of the above settings

and took the average of them. Figure 1 and Figure 2 illustrate results of these

experiments.

It is worth observing that (on average) RCM was always able to find the solution

close to that of MinLP. Furthermore, since the true optimum (integral solution) for

BCP C
min

could be smaller than the solution for MinLP, our approximation of RCM

could be even closer to the true optimum than it appears. These observations apply

to RDM as well.

We have repeated these experiments for sparser random matrices, where the

values in the matrix were chosen to be 1 with probability 1
4 or 1

8 . In all these exper-

iments the results were very similar to those for the distribution with probability
1
2 .

Real data. To test the performance of these three algorithms on real data, we used

four clone-probe adjacency matrices. The first two matrices represent hybridization

of 500 bacterial clones extracted from rRNA genes analyzed in 12 with two sets of 30

and 40 probes designed with the algorithm in 3. The other two matrices (with similar

parameters) represent hybridization of rRNA genes from fungal clones analyzed in
11 with their corresponding sets of probes. For each of these four data sets (and

for each s = 200, 210, ..., 400) we tested RCM 10 times, and took the average of

them. We observe that RCM found the solution with value at least 97% of MinLP’s

solution in 92.8% cases. We also repeated our tests for RCM2 and RDM using the

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 19

 0

 10

 20

 30

 40

 20 30 40 50 60 70 80 90

number s of clones chosen
(a)

MinLP solution
RCM solution

RCM2 solution
 0

 10

 20

 30

 40

 20 30 40 50 60 70 80 90

number s of clones chosen
(b)

MinLP solution
RCM solution

RCM2 solution

 0

 10

 20

 30

 40

 20 30 40 50 60 70 80 90

number s of clones chosen
(c)

MinLP solution
RCM solution

RCM2 solution
 0

 10

 20

 30

 40

 20 30 40 50 60 70 80 90

number s of clones chosen
(d)

MinLP solution
RCM solution

RCM2 solution

Fig. 1. RCM’s and RCM2’s performance for BCP Cmin on synthetic data for four ma-
trices: (a) (m,n) = (100, 30); (b) (m,n) = (100, 100); (c) (m,n) = (200, 60); (d)
(m,n) = (200, 200). The y-axis in the graph represents the objective value.

above data sets with the same settings. The results are summarized in Figure 3 and

Figure 4.

Figure 3 and Figure 4 suggest that solutions found by RCM and RDM on real

data are even closer to MinLP and MaxLP solutions, respectively, than those for

synthetic data, sometimes even coinciding with MinLP and MaxLP solutions; i.e.,

RCM and RDM achieved optimum in some cases.

We also performed experimental analysis for RCA and RCA2 using the same

synthetic and real data sets. The study shows that RCA and RCA2 approximate

well the optimum solutions. (The results are similar to those of RCM and RCM2

and are omitted.)

Our experimental results indicate that RCM performs better than RCM2 in

practice even though, according to our analysis in Section 4.1 and 4.2, RCM2 has

a better asymptotic bound. This is likely to be caused by a combination of several

factors. First, the constants in the asymptotic bounds for RCM2 appear to be larger

than those for RCM, and our data sets may not be large enough for the asymptotic

trends to show. Second, the bound for RCM2 is better than that for RCM only if

the optimum is sufficiently small compared to s/ logn. As the parameters of this

range depend on the hidden asymptotic constants, it is not clear whether our data

sets are within this range. Finally, if the number of clones initially selected by the

algorithm is less than s, our implementation of both algorithms adds some arbitrary

clones to increase their number to s. Since RCM2 uses slightly smaller probabilities

20 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

 0

 2

 4

 6

 8

 10

 12

 20 30 40 50 60 70 80 90

number s of clones chosen
(a)

MaxLP solution
RDM solution

 0

 2

 4

 6

 8

 10

 12

 20 30 40 50 60 70 80 90

number s of clones chosen
(b)

MaxLP solution
RDM solution

 0

 2

 4

 6

 8

 10

 12

 20 30 40 50 60 70 80 90

number s of clones chosen
(c)

MaxLP solution
RDM solution

 0

 2

 4

 6

 8

 10

 12

 20 30 40 50 60 70 80 90

number s of clones chosen
(d)

MaxLP solution
RDM solution

Fig. 2. RDM’s performance for BCP Dmax on synthetic data for four matrices: (a) (m,n) =
(100, 30); (b) (m,n) = (100, 100); (c) (m,n) = (200, 60); (d) (m,n) = (200, 200). The y-
axis in the graph represents the objective value.

in the rounding scheme, it tends to choose initially fewer clones, and thus it is also

likely to add more of these arbitrary clones. The performance of RCM2 relative to

RCM would probably be improved with additional random sampling. (The same

arguments apply to RCA and RCA2 as well.)

Our experiments were performed on a machine with Intel Pentium 4 2.4GHz

CPU and 1GB RAM. The total running time for each single run of RCM or RDM

on these synthetic and real data sets was in the range of 20-80 seconds, which is

practically acceptable.

Example. To complement the above statistics with a more concrete example, we

now describe the results of RCM on a typical data set. Here we used RCM to

compute a set D of s = 100 control clones for m = 500 bacterial clones with a set

of n = 30 probes. The distribution of the degrees of the probes with respect to D

is given in the table below:

degree 0 –30 31 – 40 41 – 50 51 – 60 61 – 70 71 – 100

n. of probes 0 14 7 4 5 0

The minimum and maximum degrees of probes inD were 37 and 68, respectively,

thus producing the objective value C
min

(D) = 32 for this instance. Thus this D is a

high quality control clone set.

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 21

 50

 60

 70

 80

 90

 100

 200 220 240 260 280 300 320 340 360 380 400

number s of clones chosen
(a)

MinLP solution
RCM solution

RCM2 solution 50

 60

 70

 80

 90

 100

 200 220 240 260 280 300 320 340 360 380 400

number s of clones chosen
(b)

MinLP solution
RCM solution

RCM2 solution

 50

 60

 70

 80

 90

 100

 200 220 240 260 280 300 320 340 360 380 400

number s of clones chosen
(c)

MinLP solution
RCM solution

RCM2 solution 50

 60

 70

 80

 90

 100

 200 220 240 260 280 300 320 340 360 380 400

number s of clones chosen
(d)

MinLP solution
RCM solution

RCM2 solution

Fig. 3. RCM’s and RCM2’s performance on real data: (a) 500 bacterial clones and 30
probes; (b) 500 bacterial clones and 40 probes; (c) 500 fungal clones and 30 probes; (d)
500 fungal clones and 40 probes. The y-axis in the graph represents the objective value.

6. Concluding Remarks

We performed similar experiments for other algorithms provided in this paper,

and the results were equally promising. Overall, our work demonstrates that ran-

domized rounding is a very effective method for solving all versions of Balanced

Covering, especially on real data sets. In the actual implementation available at

http://algorithms.cs.ucr.edu/OFRG/, the solution of RCM is fed as an initial

solution into a simulated-annealing algorithm. We found out that the simulated

annealing rarely produces any improvement of this initial solution, which provides

further evidence for the effectiveness of randomized rounding in this case. (In con-

trast, when we run simulated annealing from a random initial solution, in a typical

run, it takes approximately 10 minutes to find a solution that is about 80% as good

as that of RCM.)

We remark that (by creating two copies of the matrix and inverting the bits

in the second copy) BCP C
min

can be reduced to a more general problem where we

want to cover all columns with the maximum number of 1’s. Our algorithms and

their analyses apply to this problem as well.

Acknowledgments

This work is supported by NSF Grant BD&I-0133265. Work of Qi Fu and Marek

Chrobak is partially supported by NSF Grant CCR-0208856.

http://algorithms.cs.ucr.edu/OFRG/

22 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

 30

 40

 50

 60

 70

 80

 90

 100

 200 220 240 260 280 300 320 340 360 380 400

number s of clones chosen
(a)

MaxLP solution
RDM solution

 30

 40

 50

 60

 70

 80

 90

 100

 200 220 240 260 280 300 320 340 360 380 400

number s of clones chosen
(b)

MaxLP solution
RDM solution

 30

 40

 50

 60

 70

 80

 90

 100

 200 220 240 260 280 300 320 340 360 380 400

number s of clones chosen
(c)

MaxLP solution
RDM solution

 30

 40

 50

 60

 70

 80

 90

 100

 200 220 240 260 280 300 320 340 360 380 400

number s of clones chosen
(d)

MaxLP solution
RDM solution

Fig. 4. RDM’s performance on real data: (a) 500 bacterial clones and 30 probes; (b) 500
bacterial clones and 40 probes; (c) 500 fungal clones and 30 probes; (d) 500 fungal clones
and 40 probes. The y-axis in the graph represents the objective value.

We would like to thank the anonymous referees for invaluable suggestions that

helped us improve the presentation of this work.

Appendix A. Appendix: Proof of Lemma 4

Proof. Let c(ǫ) = eǫ/(1 + ǫ)1+ǫ and f(x) = − ln(c(x))/x. We will first show
∫ +∞

x=ǫ

c(x)µ dx ≤ 2c(ǫ)µ

µ ln(1 + ǫ)
. (A.1)

Integrating both sides of the inequality 1 + ln(1 + x) ≤ 1 + x, for x ≥ 0, we get

(1+x) ln(1+x) ≤ x(1+x/2). By simple algebra, we then get f ′(x) ≥ (ln(1+x)/2)′,

and thus f(x) is an increasing function and f(x) ≥ ln(1 + x)/2. We can now verify

(A.1) as follows,
∫ +∞

x=ǫ

c(x)µ dx =

∫ +∞

x=ǫ

e−µxf(x) dx

≤
∫ +∞

x=ǫ

e−µxf(ǫ) dx

=
e−µǫf(ǫ)

µf(ǫ)

=
c(ǫ)µ

µf(ǫ)

Algorithmic Approaches to Selecting Control Clones in DNA Array Hybridization Experiments 23

≤ 2c(ǫ)µ

µ ln(1 + ǫ)
.

We have

Exp[max{0, Y − (1 + ǫ)µ}] =
∫ +∞

y=0

Pr[Y − (1 + ǫ)µ ≥ y] dy.

Choose δ so that (1 + δ)µ = (1 + ǫ)µ + y. Changing variables from y to (δ − ǫ)µ,

and applying a standard Chernoff bound, the expected value above becomes

Exp[max{0, Y − (1 + ǫ)µ}] = µ

∫ +∞

δ=ǫ

Pr[Y ≥ (1 + δ)µ] dδ

≤ µ

∫ +∞

δ=ǫ

c(δ)µ dδ.

Combining this, inequality (A.1) and the fact that c(ǫ)µ ≤ e−µǫ2/4 for 0 < ǫ ≤ 1,

we get

Exp[max{0, Y − (1 + ǫ)µ}] ≤ 2c(ǫ)µ

ln(1 + ǫ)
≤ 2e−µǫ2/4

ln(1 + ǫ)
,

and the lemma follows.

References

1. B. Berger, J. Rompel, and P. Shor. Efficient NC algorithms for set cover with ap-
plications to learning and geometry. 30th Annual Symposium on the Foundations of
Computer Science, pages 54–59, 1989.

2. M. Berkelaar, K. Eikland, and P. Notebaert. Lp solve mixed integer linear program-
ming solver 5.5, 2004. Available at http://lpsolve.sourceforge.net/5.5.

3. J. Borneman, M. Chrobak, G.D. Vedova, A. Figueroa, and T. Jiang. Probe selection
algorithms with applications in the analysis of microbial communities. Bioinformatics,
17(1):S39–S48, 2001.

4. U. Feige. A threshold of ln n for approximating Set Cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

5. A. Figueroa, J. Borneman, and T. Jiang. Clustering binary fingerprint vectors with
missing values for DNA array data analysis. Journal of Computational Biology,
11(5):887–901, 2004.

6. M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the Theory
of NP-Completeness. W.H.Freeman, New York, 1979.

7. L. Gargano, AA. Rescigno, and U. Vaccaro. Multicasting to groups in optical net-
works and related combinatorial optimization problems. International Parallel and
Distributed Processing Symposium, page 223, 2003.

8. K. Jampachaisri, L. Valinsky, J. Borneman, and S. J. Press. Classification of oligonu-
cleotide fingerprints: application for microbial community and gene expression analy-
ses. Bioinformatics, 21(14):3122–3130, 2005.

9. J. Schuchhardt, D. Beule, A. Malik, E. Wolski, H. Eickhoff, H. Lehrach, and H. Herzel.
Normalization strategies for cDNA microarrays. Nucleic Acids Res., 28(10):e47, 2000.

10. L. Valinsky, A. Scupham, G.D. Vedova, Z. Liu, A. Figueroa, K. Jampachaisri, B. Yin,
E. Bent, R. Mancini-Jones, J. Press, T. Jiang, and J. Borneman. Oligonucleotide

24 Qi Fu, Elizabeth Bent, James Borneman, Marek Chrobak, and Neal E. Young

fingerprinting of ribosomal RNA genes (OFRG). In G.A. Kowalchuk, F.J. de Bruijn,
I.M. Head, A.D. Akkermans, and J.D. Van Elsas, editors, Molecular Microbial Ecology
Manual, pages 569–585. Kluwer Academic Publishers, Dordrecht, The Netherlands,
2nd edition, 2004.

11. L. Valinsky, G. Della Vedova, T. Jiang, and J. Borneman. Oligonucleotide fingerprint-
ing of ribosomal RNA genes for analysis of fungal community composition. Applied
and Environmental Microbiology, 68(12):5999–6004, 2002.

12. L. Valinsky, G. Della Vedova, A. Scupham, S. Alvey, A. Figueroa, B. Yin, R. Hartin,
M. Chrobak, D. Crowley, T. Jiang, and J. Borneman. Analysis of bacterial community
composition by oligonucleotide fingerprinting of rRNA genes. Applied and Environ-
mental Microbiology, 68(7):3243–3250, 2002.

13. N. E. Young. K-medians, facility location, and the Chernoff-Wald bound. ACM-SIAM
Symposium on Discrete Algorithms, pages 86–95, 2000.

14. W. Yu, B.C. Ballif, C.D. Kashork, H.A. Heilstedt, L.A. Howard, W.W. Cai, L.D.
White, W. Liu, A.L. Beaudet, B.A. Bejjani, C.A. Shaw, and L.G. Shaffer. Development
of a comparative genomic hybridization microarray and demonstration of its utility
with 25 well-characterized 1p36 deletions. Human Molecular Genetics, 12(17):2145–
2152, 2003.

	1 Introduction
	2 NP-Completeness
	3 Hardness of Approximation
	4 Approximation Algorithms and Analysis
	4.1 Algorithm RCM for BCP_Cmin
	4.2 An Alternative Algorithm RCM2 for BCP_Cmin
	4.3 Algorithm RDM for BCP_Dmax
	4.4 Algorithm RCA for BCP_Cavg
	4.5 An Alternative Algorithm RCA2 for BCP_Cavg

	5 Experimental Analysis
	6 Concluding Remarks
	Appendix A Appendix: Proof of Lemma 4

