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Abstract

Fast, efficient and reliable algorithms for pairwise alignment of protein structures are in ever increasing
demand for analyzing the rapidly growing data of protein structures. CLePAPS is a tool developed for this
purpose. It distinguishes itself from other existing algorithms by the use of conformational letters, which
are discretized states of 3D segmental structural states. A letter corresponds to a cluster of combinations
of the three angles formed by Cα pseudobonds of four contiguous residues. A substitution matrix called
CLESUM is available to measure similarity between any two such letters. CLePAPS regards an aligned
fragment pair (AFP) as an ungapped string pair with a high sum of pairwise CLESUM scores. Using
CLESUM scores as the similarity measure, CLePAPS searches for AFPs by simple string comparison.
The transformation which best superimposes a highly similar AFP can be used to superimpose the
structure pairs under comparison. A highly scored AFP which is consistent with several other AFPs
determines an initial alignment. CLePAPS then joins consistent AFPs guided by their similarity scores
to extend the alignment by several ‘zoom-in’ iteration steps. A follow-up refinement produces the final
alignment. CLePAPS does not implement dynamic programming. The utility of CLePAPS is tested on
various protein structure pairs.

Key words: Protein structure; pairwise structure alignment; protein conformational alphabet.

1 Introduction

The comparison of protein structures has been an extremely important problem in structural and evolutional
biology. The detection of local or global structural similarity between a new protein and a protein with known
function allows the prediction of the new protein’s function. Since protein structures are better conserved
than amino acid sequences, remote homology is detectable more reliably by comparing structures. Structural
comparison methods are useful for organizing and classifying known structures, and for discovering structure
patterns and their correlation with sequences.

The common goal of all structure alignment methods is to identify a set of residue pairs from each protein
that are structurally similar, or to find the optimal correspondence between the atoms in two molecular
structures. An exhaustive search for such atomic correspondence between two structures is intractable,
and various heuristics have been developed. For example, to lower the dimensionality of the problem,
DALI identifies interaction patterns of fragment pairs,[1, 2] VAST describes secondary structure elements
(SSEs) as a set of vectors,[3, 4] while CE designates short aligned fragment pairs (AFPs) of local structural
similarities.[5] There are several excellent reviews, e.g. [6] and [7].

For a given correspondence of two point sets, finding the best rigid transposition to superpose the
correspondences can be easily done by using a closed-form solution based on singular value decomposition.
[8, 9] When the transformation between the two sets is given, the problem to find the correspondences (of
ǫ-congruence at the maximal or average error tolerance ǫ) is rather straightforward. However, when aligning
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two protein structures, at the beginning we know neither the transformation nor the correspondence. A
few methods, like DALI and CE, directly search for a good alignment. Many methods start with an initial
correspondence (seed matches), from which the optimal transformation for the correspondence is determined.
The transformation is then used to update the correspondence. The procedure of progressively building up
larger correspondence is iterated until the best correspondence is finally found. The methods vary in the way
of seed finding and correspondence updating. There may be an optional follow-up refinement of alignments.
A typical example is ProSup.[10]

Protein structural alignment involves the geometric representation of structures. In most cases, only the
backbone of pseudobonds formed by Cα atoms is considered. Coordinates of Cα atoms, which change under
translation and rotation in 3D space, are not geometric invariants. Distances used by DALI are the intrinsic
property of a geometric object. The bending and torsion angles of pseudobonds, as the chain counterparts
of curvature and torsion of a smooth curve, are also geometric invariants. In VAST, SSEs are replaced by
the vectors of their axes. This vector representation speeds up the computation, but has low precision for
structural elements.

Many tools find AFPs of local similarity as preliminary correspondences. Local similarity is a necessary,
but insufficient, condition for global structural alignment. Structurally similar fragments found in a pair
of proteins form the basis objects for further examination of their consistency in the spacial arrangement.
Consistent pieces then may be joined to obtain a global alignment. Different methods use various criteria
and strategies for seed matching, consistency checking and pieces merging. Generally, a stringent criterion
for local similarity would create less objects of seed matches, and hence speed up the merging process.
However, it would miss some substructures constituting the final global alignment. On the other hand, due
to the insufficiencies of local similarity in the global alignment, too loose conditions of local similarity would
overload the later filtering task. One has to balance sensitivity with specificity, and make a compromise
between efficiency and accuracy.

A way to represent structures is to use conformational alphabets, which are discretized conformational
states of certain fragment units of protein backbones.[11]–[16] Our conformational alphabet of 17 letters is
obtained by clustering based on the distribution of the two bending angles and one torsion angle formed
by three pseudobonds of the quadrupeptide unit. The description by conformational letters provides a
good balance between accuracy and simplicity, and converts a 3D structure to a 1D sequence of letters.
Substitution matrices such as the popular PAM and BLOSUM are essential to amino acid sequence alignment
algorithms. Without a conformational substitution matrix the use of a conformational alphabet is very
limited. In order to implement fast structural comparison in terms of conformational alphabets, we have
derived a substitution matrix of conformational letters called CLESUM from a representative pairwise aligned
structure set of the FSSP (families of structurally similar proteins) database of Holm and Sander.[17] It has
been verified that CLESUM aptly measures the similarity between conformational letter states.[16]

Despite the existence of various pairwise structural alignment algorithms, fast, efficient and reliable
algorithms for pairwise alignment are in ever increasing demand for analyzing the rapidly growing data of
protein structures. Here we report a tool called CLePAPS developed for fast pairwise alignment of protein
structures by fully using our conformational alphabet and its substitution matrix CLESUM. CLePAPS
regards an AFP as an ungapped string pair with a high sum of pairwise CLESUM scores. Using CLESUM
scores as the similarity measure, CLePAPS searches for AFPs by simple string comparison. Taking highly
similar AFPs as a pivot to determine the transformation for superposition, CLePAPS collects consistent
AFPs under the guide of their similarity scores to extend the alignment.

2 Methods

CLePAPS uses a 3D structure coding of protein backbones consisting of Cα pseudobonds. The flow chart of
CLePAPS is shown in Fig. 1.
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2.1 Conformational alphabet

Three contiguous Cα atoms determines two pseudobonds and a banding angle between them. Four contiguous
Cα atoms, say a, b, c and d, determine two such bending angles and a torsion angle which is the dihedral
angle between the two planes of triangles abc and bcd. By using a mixture model for the density distribution
of the three angles, the local structural states have been clustered as 17 discrete conformational letters of
a protein structural alphabet. The centers (µ), inverse covariance matrices (Σ−1) and weights (π) of the
clusters for these conformational letters in the phase space spanned by the three angles (θ, τ, θ′), are listed
in Table 1.

Final alignment

3 alignment

2 alignment

1 alignment

maximal stars
Centers of

AFPs
by CLESUM

Refinement

d1 blank-filling

d2 blank-filling

d3 blank-filling

Shaved List-20
Top K for centers
Top J for neighbors

Shaved List-8

Star-trees

‘Zoom-in’

Fig. 1 Flow chart of the CLePAPS algorithm.

Table 1. The 17 conformational states from the mixture model. Angles are in radians.

π |Σ|−1/2 µ Σ−1

State θ τ θ′ θθ τθ ττ θ′θ θ′τ θ′θ′

I 8.2 1881 1.52 0.83 1.52 275.4 −28.3 84.3 106.9 −46.1 214.4
J 7.3 1797 1.58 1.05 1.55 314.3 −10.3 46.0 37.8 −70.0 332.8
H 16.2 10425 1.55 0.88 1.55 706.6 −93.9 245.5 128.9 −171.8 786.1
K 5.9 254 1.48 0.70 1.43 73.8 −13.7 21.5 15.5 −25.3 75.7
F 4.9 105 1.09 −2.72 0.91 24.1 1.9 10.9 −11.2 −8.8 53.0
E 11.6 109 1.02 −2.98 0.95 34.3 4.2 15.2 −9.3 −22.5 56.8
C 7.5 100 1.01 −1.88 1.14 28.0 4.1 6.2 2.3 −5.1 69.4
D 5.4 78 0.79 −2.30 1.03 56.2 3.8 4.2 −10.8 −2.1 30.1
A 4.3 203 1.02 −2.00 1.55 30.5 9.1 8.7 6.0 5.7 228.6
B 3.9 66 1.06 −2.94 1.34 26.9 4.6 4.9 9.5 −5.0 54.3
G 5.6 133 1.49 2.09 1.05 163.9 0.6 3.8 2.0 −3.7 32.3
L 5.3 40 1.40 0.75 0.84 43.7 2.5 1.4 −7.0 −2.9 34.5
M 3.7 144 1.47 1.64 1.44 72.9 2.1 4.8 1.9 −7.9 72.9
N 3.1 74 1.12 0.14 1.49 25.3 3.2 3.1 9.9 0.9 83.0
O 2.1 247 1.54 −1.89 1.48 170.8 −0.7 3.7 −4.1 3.1 98.7
P 3.2 206 1.24 −2.98 1.49 48.0 8.2 7.3 −4.9 −6.6 155.6
Q 1.7 25 0.86 −0.37 1.01 28.4 1.5 1.2 3.4 0.1 19.5
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To use our structural codes directly for the structural comparison, a score matrix similar to the BLOSUM
for amino acids is desired. Using the alignments for representative structures in the database FSSP, which
contains 2,860 sequence families representing 27,181 protein structures, we have constructed a substitution
matrix called CLESUM for the conformational letters. The structures of the representative set are converted
to their structural code sequences. All the pair alignments of the FSSP for the proteins with a sufficient
similarity in the representative set are collected for counting aligned pairs of conformational letters. The
total number of letter pairs is 1,284,750. An entry of the matrix is the log-ratio of the observed frequency of
the aligned corresponding pair to the expected frequency from a random alignment simply by chance. The
substitution matrix is derived in the same way as BLOSUM was obtained (without clustering). The matrix
is shown in Table 2, where a scaling factor of 20 instead of 2 is used to show more details (corresponding to
0.05 bit units).

To the best of our knowledge, CLESUM is the first substitution matrix directly derived from structure
alignments for a conformational alphabet. (Matsuda et al. [13] introduced a backbone encoding which is a
uniform partition of the 2D phase space of one bending and one torsion angles by mapping the phase space
into the surfaces of a icosahedron; their substitution matrix is given by the cosine of the angles between the
corresponding normals of the icosahedron. This matrix measures a geometrical similarity while CLESUM
reflects an ‘evolutionary’ similarity.)

Table 2. CLESUM: The conformation letter substitution matrix (in 0.05 bit units).

J 37

H 13 23

I 16 18 23

K 13 5 21 49

N -2 -34 -11 28 90

Q -44 -87 -62 -24 32 90

L -32 -62 -41 -1 8 26 74

G -21 -51 -34 -13 -8 8 29 69

M 16 -4 1 12 7 -7 5 21 61

B -57 -96 -74 -50 -11 12 -12 13 -13 51

P -34 -60 -49 -36 -3 7 -12 5 8 42 66

A -23 -45 -31 -19 10 16 -11 -6 -2 20 35 73

O -24 -55 -34 5 15 -13 -4 -1 5 -12 4 25 104

C -43 -77 -56 -33 -5 29 0 -4 -12 7 4 13 3 53

E -93 -127 -108 -84 -43 -6 -21 -22 -47 15 -5 -25 -48 3 36

F -73 -107 -88 -69 -32 3 -16 -5 -33 7 0 -20 -30 20 26 50

D -88 -124 -105 -81 -44 14 -22 -31 -49 13 -10 -17 -42 21 22 21 52

J H I K N Q L G M B P A O C E F D

2.2 Finding AFPs of high CLESUM similarity scores

Suppose that the pair of structures to be aligned is P and P ′ with P being the shorter. The coordinates
{ri} and {r′j} of Cα atoms of the two proteins are converted to the sequences S and S′ of conformational
letters, respectively. Since each letter corresponds to a quadrupeptide unit, the length of S (S′) is shorter
than that of P (P ′) by three. By convention, we assign the first letter to the third residue, the second to
the fourth, and so on, until finally the last letter is assigned to the last residue but one.

Consider two fragments of the same length l, one of which starts at residue i of P and the other at j of
P ′. The local structural similarity of the fragment pair may be measured by

σ =

l−1∑

k=0

M(si+k, s
′

j+k), (1)

where M(a, b) is the (a, b)-entry of the CLESUM, and si and s′j are the conformational letters of corre-
sponding residues. Here we have kept the same index for a residue and its conformational letter. Setting a
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threshold T , if the pair score σ ≥ T , we call the pair an AFP, which defines a correspondence (l residue du-
ads). Comparing each string of S of length l with those of S′, we find all the AFPs. When an AFP contains
residues of SSEs at its ends, shifts of the AFP often also have a high similarity score, hence they also form
AFPs. To remove such redundancy, we keep only the one with the highest score among the nearby AFPs
which are shifts of each other and which share common duads. A width w is set to restrict the maximum
overlap for this shaving. After shaving we have a reduced list of the representative AFPs. We sort the list
in descending order of scores. Usually, a small l and a low T will result in a long list of AFPs.

For a given long enough AFP, we can find a rigid transformation to superpose its two members and make
the spatial deviation of its duad Cα atoms very small. Since an AFP is determined only by local similarity, a
superposition valid for one AFP need not be valid for another. We define the spatial distance or separation
between two members of a certain AFP under a given transformation by

δ = max
(ri,r′

i′
)∈AFP

{|xi − x′

i′ |, |yi − y′i′ |, |zi − z′i′ |}, (2)

where (ri, r
′

i′) is a duad of the AFP after transformation, and (x, y, z) denotes the 3D coordinates of r. A
small separation δ implies a good superposition of the two AFP members.

2.3 The greedy ‘zoom-in’ strategy

There is no clearly defined unique way to evaluate the quality of protein structure alignments. We adopt the
standard of ProSup: the goal is to maximize the number Ne of structurally equivalent residues subject to a
fixed Euclidean distance cutoff d0 for judging correspondence between a residue pair and a minimal aligned
segment size ρ.

To balance speed with accuracy, we generate two lists of AFPs, one for l = 20 with threshold T20 = 350,
and the other for l = 8 with T8 = 0. Any two helices are locally similar. Length 20 will exclude many
such purely local coincidence. Length 8 is necessary for including most significant aligned pieces. We denote
them as List-20 and List-8, respectively. The two lists can be generated in a single run. We expect that a
significant alignment should contain at least one AFP of length around 20. Initial primary correspondences
will be taken from the top K, say top ten, AFPs of the sorted List-20. If the list size is less than 10, ‘top
ten’ means all.

Once an AFP is chosen, the transformation optimal to the AFP may be used to superimpose the two
proteins. The separation δ of any AFP under the transformation can then be calculated. Some AFPs are
consistent with each other. That is, under the transformation optimal to one of the AFPs, which is referred
to as the center AFP or simply the center, some other AFPs will have a small separation δ. By thinking in
terms of graph theory, AFPs are nodes, and the center is the center node. At a fixed threshold d for δ, if
the separation of an AFP is smaller than d, an edge is linked between the node of that AFP and the center.
The center and its linked neighbors form a star tree or star. We define the size of a star as the total number
of its nodes. Taking each of the top K AFPs as a center, we find its neighbor nodes in the top J AFPs of
the sorted List-20, where J ≥ K. The stars really used by CLePAPS are subject to a further restriction: for
a given center, we search the sorted List-20 successively from the top for neighbors of the center, and add a
new neighbor AFP only when it does not overlap with any existing neighbor AFPs. In this way, we obtain
K restricted stars. We sort them first by their sizes, and then by the similarity score σ of their centers in
descending order. We remove the stars whose centers are a neighbor of the first star. Then, we examine the
next star, and remove the stars associated with its neighbors, and so on, until all stars are examined. Only
the centers of the retained stars will be taken as an initial alignment seed. The effect of this star removal is
twofold: removing seed redundancy and selecting the seeds which better reflect the global consistency.

The extension of an initial seed alignment is mainly done by blank-filling of the AFPs from List-8 which
are consistent with the seed. Blanks are residue positions not included in an existing correspondence. The
transformation optimal to the seed AFP need not be globally optimal. We use a multi-step ‘zoom-in’ strategy,
starting with a low precision to avoid local trapping. We first use a large cutoff d1, say 8Å, as the consistency
criterion. That is, we add only the AFPs with δ < d1 to the existing correspondence. The procedure of
blank-filling is greedy. The AFPs with a higher σ have a priority to be filled. We examine the top half of
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the AFPs in the sorted List-8 one by one from the top. If none of the residues of an AFP is contained in the
existing correspondence, we calculate its separation δ. If δ < d1, we add the AFP to the correspondence.
When blank-filling is fulfilled, the transformation optimal to the enlarged correspondence is determined to
update the superposition of the two proteins. In the next run of blank-filling, cutoff d1 is reduced to d2, and
five-sixths of the AFPs in List-8 are examined. In a third run, d2 is further reduced to d3, and the whole
list is examined. Usually, three runs of iteration are enough for obtaining a full alignment.

There are mainly two ways to update the correspondence. One is to keep the existing duads and add
new ones. The other is to re-start with an empty correspondence and then fill in blanks with AFPs from
List-8. The latter strategy is used in CLePAPS. In the final polishing stage, the AFPs which have only a
limited overlap with the existing correspondence can also be used for blank-filling.

We speed up computation by means of marking. At the beginning, all AFPs in List-8 are identified as
‘unmarked’. If an AFP has no two contiguous residue pairs whose coordinate differences are both smaller
than di, it will be marked as ‘invalid’, and then will never be examined again.

2.4 Refinement by elongation and shrinking

After blank-filling we obtain an alignment usually as disjunct pieces. Due to the finite size of AFPs and the
redundancy removal by shaving, it is possible that an aligned piece can be elongated near its ends. Assume
that the residue duad (i, i′) is at one end of an AFP. Thus, either (i+1, i′+1) or (i−1, i′−1) will be an outer
residue pair. If the Euclidean distance of the pair is smaller than d0 we elongate the aligned piece by joining
the residue duad to it. More nearby residue pairs can be further examined for elongation. On the other
hand, depending on the relative quantities of d0 and d3, the Euclidean distance between some residue duads
on the aligned pieces may be greater than d0. We remove such pairs from the alignment (as a shrinkage of
the AFPs). Although elongation and shrinking may be conducted subsequently for every complete run of
blank-filling, CLePAPS conducts elongation and shrinking only after the final run.

A finetuning version of refinement is as follows. In the final run of blank-filling, position confliction in
protein P ′ is ignored so one residue of protein P may correspond to several residues of protein P ′. We sort in
ascending order of the root mean square deviations (RMSDs) all the AFPs which are candidates for filling,
then add these AFPs into an empty correspondence list one at a time and avoid any position confliction.
We perform possible elongation of each filled AFP to enlarge the correspondence. For any unfilled gap in
protein P , we search List-8 from the top. If an AFP which covers the gap is found, we calculate the Euclidian
distance of residue pairs whose positions coincide with the gap. When the distance of a pair is smaller than
d0, we check also the distances of nearby pairs by shifting protein P ′, and add the pair with the smallest
distance to the correspondence.

A filter for a minimal aligned segment length ρ may be finally applied. A further iteration of transfor-
mation would additionally improve the quality of the alignment. Once a global alignment is accomplished,
the total number Ne of equivalent residue pairs and the RMSD of the alignment are calculated as quality
indicators. Despite the star removal two alignments generated from two star centers may still be very similar.
We compare entries of the rotation matrices. If the greatest difference between two corresponding matrix
elements (or relative difference) is above ǫ, say 0.1, the two alignments are regarded as identical. A more
careful criterion is the number of coincident residue duads, which is used by ProSup.

Structure comparison often yields several distinct alignments as multiple solutions. The existence of
alternative alignments is mainly due to structure repeats at different levels ranging from secondary structure,
supersecondary structure to domains.[10] Another source is the domain move. CLePAPS often reports several
alignments and ranks them according to their Ne.

3 Results

3.1 Finding AFPs in the test case: phycocyanin versus colicin A

This test case was thoroughly studied by CE for tuning its operation parameters. The two proteins have PDB
codes 1colA and 1cpcL. Here letters A and L are chain identifiers. The former is classified as a ‘membrane
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and cell surface protein’, and the latter as an ‘all alpha protein’ by SCOP.[18] Their lengths are 204 and 172,
respectively. Only 197 residues of 1colA are given with their coordinates.

A great proportion of both the protein structures is helices. It is expected that the number of AFPs
should be large. Numbers of AFPs found at two different lengths l and different CLESUM score thresholds
T before and after shaving are shown in Table 3. The maximum overlap for shaving is set to be i× l/2, and
three overlap ranges for shaving are examined. From the table it is clearly seen that the number of AFPs
drops significantly for long l and high T , and shaving dramatically reduces the number of AFPs. Finally, in
CLePAPS the maximum overlap is set to be 20 for List-20 and 4 for List-8.

Table 3. Numbers of AFPs found at different lengths l and CLESUM score thresholds T before
and after shaving. Ni denotes the number of AFPs after shaving at overlap range i× l/2.

before after shaving
l T N0 N1 N2 N3

500 21 7 6 6
20 400 164 45 42 41

350 381 93 87 85
300 717 156 140 135
200 513 239 200 195
150 4273 1512 1093 953

8 100 7753 2462 1616 1245
50 10350 3161 1960 1418
0 13207 3942 2316 1547

We have examined the pair 1colA: 1cpcL and many other pairs to optimize the operation parameters of
CLePAPS. We use the default values of these parameters as shown in Table 4.

Table 4. Default parameters of CLePAPS.
Symbol Value Meaning

ll 20 length of long AFPs
Tl 350 similarity threshold for long AFPs
K 10 number of long AFPs used as seed candidates
J 50 number of long AFPs for building a star-tree
ls 8 length of short AFPs for blank-filling
Ts 0 similarity threshold for short AFPs
ρ 4 minimum length of aligned fragments
d0 5Å distance cutoff for evaluating overall alignment
d 10Å separation threshold for star construction
d1 8Å separation cutoff for blank-filling in first run
d2 6Å separation cutoff for blank-filling in second run
d3 5Å separation cutoff for blank-filling in third run
ǫ 0.1 maximal difference for rotational matrix

entries of two ‘identical’ alignments

3.2 The Fischer benchmark test

A well-known comprehensive test set for assessing the performance of fold recognition methods is the bench-
mark of Fischer et al., which contains 68 pairs of proteins.[19] All pairs of the set are known to be structurally
similar, but they have low sequence identity, ranging from 8% to 31% with an average of 18.6% and a standard
deviation of 4.4. This set covers a wide range of protein families. We test the benchmark with CLePAPS.
The results of the alignment are summarized in Table 5. Although AFPs reflect mainly the local similarity,
the construction of star trees helps us to select seed AFPs for pivoting superposition. We rank seeds first
according to the sizes of their center-stars, and then according to the similarity scores σ of the center seeds.
The last column of the table is the rank of the center seeds from which the optimal alignments are derived.
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Table 5. Test of CLePAPS on the Fischer benchmark. ID: protein PDB ID and an optional fifth
letter for chain index; L: protein length; Rank: the rank of the center star from whose center
the optimal alignment is generated; Ne: the number of aligned residues; rmsd: RMSD of the
alignment. Nine pairs whose optimal alignments are not from the rank-1 seed AFPs are indicated
with a superscript in the last column for ranks. Superscripts a, b and c correspond to three groups
of the nine pairs, see text.

Protein pair DALI DALI-core CLePAPS
ID L ID L Ne/rmsd Ne/rmsd Ne/rmsd Rank
1mdc 133 1ifc 131 - - 127/1.87 1
1npx 447 3grs 461 395/3.45 347/2.40 335/2.38 1
1onc 104 7rsa 124 97/1.86 91/1.49 91/1.56 1
1osa 148 4cpv 108 67/1.43 67/1.43 67/1.43 2a

1pfc 111 3hlaB 99 88/2.83 74/2.14 77/2.29 1
2cmd 312 6ldh 329 286/2.52 269/2.05 271/2.09 1
2pna 104 1shaA 103 92/2.62 85/2.14 85/2.20 1
1bbhA 131 2ccyA 127 125/2.02 121/1.86 122/1.81 1
1c2rA 116 1ycc 108 96/1.62 95/1.53 95/1.49 1
1chrA 370 2mnr 357 347/1.88 340/1.73 340/1.73 1
1dxtB 147 1hbg 147 135/2.04 128/1.74 137/1.95 1
2fbjL 213 8fabB 214 194/2.30 186/1.91 186/1.90 1
1gky 186 3adk 194 154/2.97 129/2.43 122/2.44 1
1hip 85 2hipA 71 67/1.81 66/1.71 62/1.43 1
2sas 185 2scpA 174 168/3.58 131/2.53 134/2.49 1
1fc1A 206 2fb4H 229 175/8.28 101/2.01 117/2.23 1
2hpdA 457 2cpp 405 374/3.47 319/2.73 307/2.64 1
1aba 87 1ego 85 72/2.19 68/1.73 68/1.73 1
1eaf 243 4cla 213 174/2.62 161/2.25 165/2.35 1
2sga 181 5ptp 222 147/2.71 128/1.87 139/2.02 1
2hhmA 278 1fbpA 316 224/2.85 195/2.11 203/2.27 1
1aaj 105 1paz 120 80/1.67 79/1.56 79/1.61 1
5fd1 106 1iqz 81 57/2.62 47/1.95 51/1.53 5a

1isuA 62 2hipA 71 58/2.28 51/1.55 54/1.98 1
1gal 581 3cox 500 401/3.05 338/2.19 342/2.18 1
1cauB 184 1cauA 181 162/2.18 153/1.80 154/1.82 1
1hom 68 1lfb 77 56/1.95 52/1.40 55/1.65 1
1tlk 103 2rhe 114 89/2.02 81/1.41 86/1.70 1
2omf 340 2por 301 261/2.68 231/2.06 228/2.06 1
1lgaA 343 2cyp 293 261/2.44 235/1.84 241/1.92 1
1mioC 525 2minB 522 412/3.61 353/2.59 361/2.63 1

Amongst 68 protein pairs, the centers of 59 (87%) rank-1 star trees of List-20 lead to optimal alignments.
The nine protein pairs whose optimal alignments do not correspond to a rank-1 star tree form three groups
a, b and c. Four pairs in group a have structural repeats, and the rank-1 stars do correspond to one of the
multiple best choices although their Ne are relatively lower. For the two pairs in group b, the alignments from
the rank-1 stars are similar to the optimal. For one pair of the two, 1dsbA: 2trxA, the rank-1 center AFP is
consistent with the optimal alignment. However, it leads to only partial alignment due to local trapping. An
extra ‘zoom-in’ step with cutoff 10Å is able to obtain the optimal alignment from that AFP. The other three
of group c (1aep: 256bA, 1rcb: 2gmfA and 1bgeB: 2gmfA) belong to a ‘four-helical up-and-down bundle’.
The alignments of DALI consist of almost just helical regions; DALI and CE have nothing in common for
the alignment between 1aep and 256bA. It seems that the evidence of local similarity to support the global
alignments of these three pairs is not as strong as for other pairs in the benchmark. We shall come back
to the pair 1bgeB: 2gmfA in the next subsection. It seems that the loss of sensitivity by keeping only the
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rank-1 star and obtaining alignment only from its center is rather limited.

(Table 5, continued)
Protein pair DALI DALI-core CLePAPS

ID L ID L Ne/rmsd Ne/rmsd Ne/rmsd Rank
4sbvA 199 2tbvA 287 162/2.09 154/1.47 154/1.47 1
8i1b 146 4fgf 124 118/2.47 110/1.96 110/2.08 2a

1hrhA 125 1rnh 148 114/1.98 105/1.40 105/1.37 1
1mup 157 1rbp 174 140/2.92 123/2.12 120/2.10 1
1cpcL 172 1colA 197 114/3.61 99/3.02 104/2.98 1
2ak3A 226 1gky 186 149/3.00 120/2.35 118/2.41 1
1atnA 373 1atr 383 292/3.00 257/2.34 258/2.32 1
1arb 263 5ptp 222 189/2.89 164/2.10 159/2.13 1
2pia 321 1fnb 296 216/2.52 196/1.98 195/2.12 4b

3rubL 441 6xia 387 206/4.14 142/3.30 154/2.94 2a

2sarA 96 9rnt 104 71/3.18 58/2.46 61/2.66 1
3cd4 178 2rhe 114 94/2.60 88/1.49 89/1.63 1
1aep 153 256bA 106 74/1.78 73/1.63 84/2.83 4c

2mnr 357 4enl 436 285/3.43 237/2.72 227/2.71 1
1ltsD 103 1bovA 69 67/1.92 66/1.82 66/1.91 1
2gbp 309 2liv 344 260/6.75 109/2.37 140/2.51 1
1bbt 186 2plv 288 168/2.62 159/2.31 150/2.19 1
2mtaC 147 1ycc 108 80/2.10 79/1.99 71/1.94 1
1tahA 318 1tca 317 188/2.47 178/2.15 173/2.22 1
1rcb 129 2gmfA 121 82/3.32 67/2.32 82/2.77 2c

1sacA 204 2ayh 214 133/3.03 118/2.67 132/2.79 1
1dsbA 188 2trxA 109 82/2.77 77/2.04 77/2.01 2b

1stfI 98 1molA 94 85/1.92 85/1.92 85/2.29 1
2afnA 331 1aozA 552 248/2.56 231/2.23 223/2.24 1
1fxiA 96 1ubq 76 60/2.58 55/2.30 50/2.30 1
1bgeB 159 2gmfA 121 94/3.33 79/2.22 82/2.41 2c

3hlaB 99 2rhe 114 75/3.03 63/2.32 65/2.30 1
3chy 128 2fox 138 103/3.04 91/2.59 86/2.76 1
2azaA 129 1paz 120 81/2.26 78/1.92 78/2.30 1
1cew 108 1molA 94 81/2.46 76/2.14 78/1.98 1
1cid 177 2rhe 114 97/3.15 82/2.03 87/2.21 1
1crl 534 1ede 310 211/3.47 168/2.49 169/2.65 1
2sim 381 1nsbA 390 292/3.26 240/2.50 248/2.61 1
1ten 89 3hhrB 195 86/1.91 84/1.73 84/1.71 1
1tie 166 4fgf 124 114/3.06 97/2.18 100/2.26 1
2snv 151 5ptp 222 131/3.09 113/2.38 118/2.49 1
1gp1A 183 2trxA 109 97/3.70 74/3.40 85/2.22 1

Indeed, with the aid of the star tree construction, the AFPs in terms of CLESUM scores are efficient for
generating protein structure alignment. The selection of a seed for initial correspondence plays an essential
role in the quality of the final alignment. In most cases (41 of 68) the AFP of List-20 with the highest σ is
the one from which the optimal alignment is derived. It appears that K = 10 is enough to include the seed
leading to the optimal alignment. A large value of J for construction of a star tree is favorable for picking up
a right seed. The size of a star tree is small for a small J . When the structures to be compared are large or
contain repeats, usually a large J is required for star tree construction. For example, the pair 2sim: 1nsbA
is a highly repeated fold ‘6-bladed beta-propeller’ with lengths 381 and 390, respectively. At J = 30, every
star tree is of size 1, consisting of only the center itself. In CLePAPS we use J = 50; increasing J from 30
to 50 does not add much extra computational cost.
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In the table we have also listed Ne and RMSD of DALI alignments. It is difficult to compare them directly
with those from CLePAPS. To make a close comparison, we derive a ‘DALI core’ alignment from the original
DALI alignment as follows. We superimpose a given pair structure according to the DALI alignment, and
calculate the distance of each correspondent residue duad. We remove residue duads with distance greater
than d0, and the aligned segments whose lengths are smaller than ρ. The remaining reduced correspondence
is the DALI core of the original alignment. The transformation optimal to the core is then determined, and
Ne and RMSD of the core are calculated; they are also listed in the table. It is seen that the performance of
CLePAPS is comparable with DALI. A more detailed comparison on ten protein pairs is given in the next
subsection.

3.3 Ten ‘difficult’ protein structure pairs

Ten protein pairs from the Fischer benchmark set of 68 pairs were regarded as ‘difficult’ for fold recognition,
and treated as a test set by CE and ProSup. The comparison of CLePAPS with DALI, CE and ProSup
is shown in Table 6. Since different criteria are used there is no simple direct comparison. For example, a
high RMSD would lead to a large number of equivalent residues. With an extra restriction in the minimal
size for aligned segments, ProSup usually has a smaller Ne than others. To make a direct comparison, as
done in the last subsection for DALI alignments, we derive also CE-core alignments from the original CE
alignments. Generally, alignments of CLePAPS are comparable with those of other alignment tools.

The two proteins of pair 1fxiA: 1ubq are of lengths 96 and 76, respectively. There is only one member
in List-20. The alignment listed in Table 5 is from the only AFP. This is rather risky, being prone to local
trapping. It is easy for CLePAPS to give a warning. A simple way of rescue is to use a weaker criterion for
AFPs, e.g. List-12 with T12 = 180 or a lower T20. The alignment listed in Table 6 is obtained by using either
T20 = 200 or T12 = 180. The CLePAPS alignment for the pair 1bgeB: 2gmfA has nothing in common with
the first of DALI’s three alignments. The List-20 of the protein pair has 31 members, but none coincides
with any segment of the first DALI alignment. This means that the local similarity of the alignment is rather
weak. The CLePAPS alignment for the pair is very similar to the second DALI alignment of Ne = 94 with
RMSD 3.3Å. Of the total 82 aligned residue duads, 72 are identical with those of DALI.

Table 6. Comparison of structure alignments obtained by DALI, CE, ProSup and CLePAPS for
‘10 difficult’ cases from the Fischer benchmark. Ne: total number of equivalent residue duads;
rmsd: RMSD in units of Å; IDA: number of residue duads which are identical to those of DALI.

CE DALI CE-core DALI-core ProSup CLePAPS
Pair Ne/rmsd Ne/rmsd Ne/rmsd Ne/rmsd Ne/rmsd IDA Ne/rmsd IDA

1fxiA 1ubq 64/2.8 60/2.6 59/2.5 55/2.3 54/2.6 41 55/2.4 42
1ten 3hhrB 87/1.9 86/1.9 85/1.7 84/1.7 85/1.7 79 84/1.7 77
3hlaB 2rhe 85/3.5 75/3.0 71/3.0 63/2.3 71/2.7 37 65/2.3 57
2azaA 1paz 85/2.9 81/2.5 73/2.5 76/2.1 82/2.6 8 78/2.3 72
1cewI 1molA 81/2.3 81/2.3 78/2.0 78/1.9 76/1.9 68 78/2.0 75
1cid 2rhe 98/3.0 97/3.2 79/2.0 82/2.0 84/2.3 70 87/2.2 72
1crl 1ede 220/3.9 211/3.5 155/2.5 168/2.5 161/2.6 147 169/2.7 146
2sim 1nsbA 276/3.0 292/3.3 236/2.5 240/2.5 248/2.6 231 248/2.6 213
1bgeB 2gmfA 109/4.6 94/3.3 62/2.7 79/2.2 87/2.4 0 82/2.4 0
1tie 4fgf 117/3.0 114/3.1 99/2.3 97/2.2 101/2.4 48 100/2.3 94

3.4 Database search with CLePAPS

Only 56 of the 68 protein structures in the Fischer benchmark are distinct. We take 4 proteins from the
68 probes of the benchmark as query structures: 2mtaC from Class α Fold Cytochrome, 1fxiA from α + β
Ubiquitin-like, 1tie from β Trefoil, and 3chy from α/β Open sheet. Each query structure is aligned with each
of the 56 target structures of the benchmark. The first eight structures found by CLePAPS to be similar
to these probes are shown in Table 7. In the benchmark, the structure counterparts of 2mtaC, 1fxiA, 1tie
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and 3chy are 1ycc, 1ubq, 4fgf and 2fox, respectively. It is seen that, indeed, 1ycc, 1ubq and 4fgf have the
highest Ne among the similar structures found. However, 2fox appears rather behind. A close inspection
reveals that the six structures with a higher Ne than 2fox are rather large, about three or five times longer
than 3chy (except 3adk), and all have a domain or repeat of the same CATH [20] topology ‘Rossmann fold’
as 3chy. Taking the lengths of the aligned proteins into account, the DALI Z-score [21] assigns the second
highest value to 2fox. The DALI Z-scores for alignments to 3chy are also listed in the table. All the listed
structures found for 3chy are coincident with 3chy, at least at the CATH topology level.

According to the Fischer benchmark, four probe sequences 1tlk, 3cd4, 3hlaB and 1cid are associated with
the structure 2rhe. We have also taken 2rhe as a query to search the 68 probes for similar folds, and the
results are also listed in Table 7. As we may expect, the structures of the above four probes do indeed appear
to be highly ranked among those similar to 2rhe. However, an additional one, 2fbjL, has the highest value
of Ne. It is verified that the two domains of 2fbjL share the same SCOP superfamily or CATH homology
with 2rhe, and 2fbjL has the highest DALI Z-score. Protein 1sacA is not classified as Immunoglobulin (IG)
or IG-like, but it still shares the same CATH Architecture with 2rhe.

Table 7. Structures found by CLePAPS as highly similar to five queries. Zdali: the Z-score given
by DALI; rmsd: RMSD in Åunits.

Query structure
2mtaC 1fxiA 1tie 3chy 2rhe

ID Ne/rmsd ID Ne/rmsd ID Ne/rmsd ID Ne/rmsd Zdali ID Ne/rmsd
1ycc 71/1.9 1ubq 50/2.3 4fgf 100/2.3 2liv 102/2.6 7.9 2fbjL 102/1.5
1tca 47/3.1 1rbp 48/3.0 5ptp 60/2.9 2minB 97/2.9 6.7 3cd4 89/1.6
1hbg 47/2.6 5ptp 44/3.2 9rnt 51/2.5 1tca 96/2.6 5.6 1cid 87/2.2
1atr 46/3.0 1aozA 39/3.1 1cauA 49/2.7 1ede 88/2.7 4.9 1tlk 86/1.7
2scpA 44/2.9 1nsbA 38/3.4 2plv1 49/2.8 3adk 88/3.0 4.3 1fc1A 76/2.6
2cpp 43/2.9 1atr 35/2.7 1rbp 45/2.5 6ldh 87/2.7 6.0 1ten 68/2.8
4cpv 42/3.2 1ifc 35/2.5 1fnb 45/2.9 2fox 86/2.8 6.8 1sacA 67/2.6
2mnr 41/2.8 1fbpA 35/2.8 1nsbA 45/3.4 1fnb 84/2.9 3.1 3hlaB 65/2.3

3.5 Multiple solutions of alignments

To be less greedy, CLePAPS generates several alignments from star centers of highly scored AFPs. Often
there is one alignment which has a much higher Ne than others. (A better measure of significance for
alignments is the P -value or Z-score.) There are situations where several meaningful alignments do exist.
We see such examples in the Fischer benchmark.

Proteins 8i1b and 4fgf belong to SCOP fold beta-Trefoil, which exhibits a three fold rotational symmetry.
Indeed, the alignment ranks 1 to 3 clearly demonstrate this symmetry. A more complicated example is the
pair 2sim: 1nsbA. Both belong to SCOP fold 6-bladed beta-propeller, but in PFAM [22] classification 2sim
has four repeats of PF02012 while 1nsbA is PF00064. Multiple alignments reflect the rough symmetry.
Another example is the pair 3rubL: 6xia, which contains a SCOP fold TIM beta/alpha-barrel. Among
the multiple alignments, only one follows a sequential order, while all the others correspond to a circular
permutation. There are, however, non-topological alignments not related to a rotational symmetry, which
will be described in the next subsection.

Proteins 1osa and 4cpv belong to all alpha SCOP fold EF hand-like. The former contains two EF
hand domains, while the latter has a single domain. The top two alignments are mainly the two ways of
alignments of the EF hand domains. Another similar example is the pair 3hhrB: 1ten of SCOP fold IG-like
beta-sandwich.

Proteins 2gbp and 2liv both belong to SCOP class α/β superfamily Periplasmic binding protein-like I,
consisting of two CATH 3-Layer (αβα) Sandwich domains, which will be denoted by I and II with I near
the N-terminus. The two domains present a repeat of highly similar αβα segments. For example, the AFP
search at length 20 of 2gbp against itself discovers a region of contiguous AFPs with the correspondence of
sites 23 – 60 to 163 – 200 around an AFP of σ = 772. The ranks 1 to 3 in CLePAPS alignments of 2gbp to
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2liv are mainly the alignments of domain I to I, II to I, and II to II, respectively. The AFP search of 2gbp
against 2liv ascertains a long piece of contiguous AFPs with a correspondence of sites 24 – 80 of 2gbp to
34 – 90 of 2liv around the AFP-20 of the highest σ = 804, a piece with a correspondence of 167 – 201 to
37 – 71 around an AFP of σ = 733, and another with a correspondence of 137 – 181 to 133 – 177 around
an AFP of σ = 606. These roughly correspond to the cores of the three alignments, which are of Ne = 141
with RMSD = 2.54Å, Ne = 137 with RMSD = 2.66Å, and Ne = 112 with RMSD = 2.40Å, respectively. A
relative move between the two domains with respect to the two proteins makes the RMSD for the alignment
of the proteins as a whole rather high. This is seen in the DALI and CE alignments, which are of Ne = 260
with RMSD 6.8Å and Ne = 252 with RMSD 4.6Å, respectively.

A global alignment involves the spatial arrangement of fragments. A domain move can destroy a global
alignment as a rigid superposition. However, the alignment of the corresponding sequences of conformational
codes is not affected by the domain move, so it is convenient for discovering conservative substructures of
domains. A domain move appears in the structure evolution. It also occurs as conformational change of some
flexible proteins in function. For example, an adenylate kinase (AKE) has a stable inactive conformation, in
addition to an active form, i.e., the open and closed forms. They are represented by structures of PDBIDs
4akeA and 1akeA, respectively. Of course, they have the identical amino acid sequence. Their code sequences
are also highly similar; only three code pairs are of a negative score. Their (positions, codes and scores) are
(K47, HM , −4), (I116, HM , −4) and (V121, NI, −11), respectively. If we cut the two structures arround
K47, V121 and D159 into four pieces we can align each piece pair extremely well. The code comparison can
easily discover two cutting points. In order for structure alignment tools based on a rigid superposition to
recognize the four aligned pieces a stringent criterion for deviation should be imposed for finding multiple
solutions.

3.6 Non-topological alignment and domain shuffling

It is well known that the 3D structures of two proteins may be surprisingly similar in secondary struc-
ture element packing while the sequential order of their SSEs is completely different. We do not see any
clear example of such non-topological alignment other than a simple rotation in the Fischer benchmark.
A good example of such protein pairs is SCOP fold SH3-like barrel 1ihwA: 1sso (of lengths 52 and 62,
respectively).[23] We represent an aligned fragment by the triplet (a : a′, w), where w is the fragment length,
and a and a′ are starting positions in the two proteins. The alignment of 1ihwA: 1sso consists of 5 pieces:

(2 : 26; 10), (13 : 36; 10), (28 : 0; 7), (36 : 8; 11), (47 : 20; 5).

and has Ne = 43 with RMSD 2.21Å. The first two segments show that the N-terminus of 1ihwA aligns with
the C-terminus of 1sso while the other three segments are the alignment between the C-terminus of 1ihwA
and the N-terminus of 1sso. Such alignments cannot be found by algorithms using dynamic programming.

4 Discussion

CLePAPS distinguishes itself from other existing algorithms for pairwise structure alignment in its use of
conformational letters. The description of 3D segmental structural states by a few conformational letters
aptly balances precision with simplicity. The substitution matrix CLESUM provides us with a proper
measure of the similarity between these discrete states or letters. Such a description fits the ǫ-congruent
problem very well. Furthermore, CLESUM extracted from the database FSSP of structure alignments
contains information of structure database statistics. For example, although two frequent helical states are
geometrically very similar, scores between them are relatively low, which reduces the chance of accidental
matching of two irrelevant helices. The conversion of coordinates of a 3D structure to its conformational
codes requires little computation. Once we transform 3D structures to 1D sequences of letters, tools for
analyzing ordinary sequences can be applied with some modification. The use of conformational letters for
fast local similarity search can be integrated into many existing tools to improve the latter’s efficiency.
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Recently, a few research groups have developed substitution matrices using various coding schemes for
structural alphabets. For example, the coding of Godzik’s group is based on a rigid fragment library, and
their matrices were constructed using multiple structure alignments (HOMSTRAD) and alignments derived
from multiple sequence alignments (BLOCKS).[24] Tyagi et al. published a matrix for their alphabet of 16
‘protein blocks’ representing eight dihedral angles of pentapeptides.[25] Also, Chang et al. reported a coding
based on writhing number defined for a chain fragment and a matrix generated by using the CLASTALW
alignments of sequences derived from SCOP as lineages.[26] Tung et al. derived a structural alphabet by
clustering in a plot of two angles of pentapeptides, and its substitution matrix SASM.[27] Lo et al. derived
another substitution matrix for their Ramachandran codes.[28] Structural codes convert structures into
one-dimensional sequences. These authors then compared structures by methods of sequence alignment or
database search, but no structure alignment was considered.

The CLESUM similarity score can be used to sort the importance of AFPs for a greedy algorithm, such as
CLePAPS. Guided by CLESUM scores, only the top few structurally similar fragments need to be examined
to determine the superposition for alignment, and hence a reliable greedy strategy becomes possible. Since
many computational steps are conducted on conformational codes instead of 3D coordinates it runs faster
than other tools, especially for large proteins. The running time for the 68 pairs of the Fischer benchmark
is less than 2 percent of that of the downloaded CE local version.

To a certain extent CLePAPS resembles some other algorithms such as STRUCTAL [29] and ProSup, but
there are fundamental differences. Apart from its key feature in its use of the representation of conformational
letters, CLePAPS is different from most algorithms in that it never conducts any dynamic programming, so
it is able to obtain non-topological as well as topological alignments. However, the conformational alphabet
can be used to find an initial correspondence for dynamic programming. We have tested two ways: the usual
Needleman-Wunsch global alignment method [30] with some simple penalty for the gaps or a little more
sophisticated way by joining nonoverlapping AFPs, which is the Needleman-Wunsch alignment of AFPs. A
gap penalty is necessary to keep the aligned pieces less scattered (sequentially).

It should be remarked that suitable tuning of the parameters used by CLePAPS is somewhat crucial to
its optimal performance. A large value of basis width l or similarity threshold T would reduce search times,
but at the price of sensitivity. Our strategy is to use stringent parameters first for finding reliable seed
matches by star tree construction to initiate the alignment, and then to fill missing blanks for eventually
compensating the sensitivity loss with relaxed parameters. The ‘zoom-in’ strategy for blank-filling starts
with a vague alignment to avoid local trapping, and then refines it in later steps. For two remote structures,
to keep the size of List-20 reasonably large a lower T20 is preferable. This also happens when one or both
proteins are small. For large proteins a large J is often necessary for obtaining a star large enough to avoid
local trapping. However, CLePAPS gets warned by a too small degree of a star center, so the danger of local
trapping can be significantly diminished. We have tested various combination of parameters. In general,
CLePAPS is not extremely sensitive to the choice of parameters. For example, T20 = 300 or an even lower
value may be used in most cases to guarantee that the size of List-20 is large enough, and T8 = 50 is often
sensitive enough to include all relevant aligned segments.

The problem of evaluating the significance of a structural alignment by a P -value or Z-score is by
no means simple. It has been demonstrated by Lackner et al. that optimizing the number of equivalent
residues under a distance cutoff for residue equivalence provides a simple and intuitive measure of structure
similarity.[10] The similarity index SI = RMSD×Lmin/Ne of Kleywegt and Jones is simple and convenient,
where Lmin is the shorter length of the two proteins.[31] The Z-score of DALI (with possible modification
in M(L)) can be used as another practicable measure of significance. A detailed discussion of the P -value
and Z-score is beyond the scope of this paper.

CLESUM counts only information of conformation. However, the FSSP alignments from which CLESUM
was derived contain also amino acid information. The use of a modified CLESUM including also such
information would elucidate biochemical roles in alignment.[16] The idea of using structural alphabets for
pairwise structure alignment is also valid for multiple structure alignment, where an AFP is replaced by a
similar fragment block. An algorithm has been developed along this line.[32]
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