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Abstract
Post hoc assignment of patterns determined by all pairwise comparisons in microarray experiments
with multiple treatments has been proven to be useful in assessing treatment effects. We propose the
usage of transitive directed acyclic graphs (tDAG) as the representation of these patterns and show
that such representation can be useful in clustering treatment effects, annotating existing clustering
methods, and analyzing sample sizes. Advantages of this approach include: (1) unique and descriptive
meaning of each cluster in terms of how genes respond to all pairs of treatments; (2) insensitivity of
the observed patterns to the number of genes analyzed; and (3) a combinatorial perspective to address
the sample size problem by observing the rate of contractible tDAG as the number of replicates
increases. The advantages and overall utility of the method in elaborating drug structure activity
relationships are exemplified in a controlled study with real and simulated data.
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1. Introduction
Microarray remains the current standard for high throughput chemical genomics, in which
microarray experiments are used to compare two chemical treatments1–5 as well as more than
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two chemical treatments.6–10 A microarray study has typically been divided into three separate
steps: (1) selecting significant genes for further reliable analysis, (2) analyzing significant
genes by grouping them into clusters or classes, and (3) biological interpretation of gene
clusters or classes. While there are many approaches proposed to address each step of this
process, they are mostly separate approaches. For example, the interpretation of gene clusters
usually does not take into account the clustering method, which in turn does not take into
account how genes are selected or how sample size is determined.

In selecting significant genes, an important concern, the so-called sample size problem, is to
determine the number of replicates for each treatment to achieve statistical significance of gene
expression.11,12 Too few replicates give misleading results; too many replicates are expensive
as each replicate costs one microarray. Most approaches so far attack this problem naturally
from a statistical direction via calculation of power. Another important aspect of microarray
analysis is clustering. Genes are grouped into clusters according to the similarity of their
expression values. The advantage of this approach is that it is unsupervised and efficient. A
disadvantage with clustering is that it is hard to interpret clusters biologically or to ascribe
pharmacological relationships of the treatments. This is mainly due to the fact that purely
mathematical measures are used to determine similarity. Another disadvantage is that the
number of clusters and the association of genes to clusters usually depend on not only the
expression values but also the number of genes considered. This is mainly because genes are
placed into clusters based on how similar their responses are to other genes. This means that
adding a few more genes to the set may cause existing genes to be assigned to different clusters.
To improve biological interpretation of microarray responses, another approach is supervised
classification, in which observed patterns are placed into known profiles or templates, using
such computational techniques as decision trees or support vector machines. This approach is
desirable if there is prior knowledge of what classes into which the studied genes should be
placed. This approach, however, generally fails to predict new relationships, new profiles or
classes. Furthermore, the lack of prior knowledge, for example, by providing too few classes
or profiles, can distort the results by forcing the data into classes in which they do not belong.

In this paper, we introduce a graph-based approach that touches various important aspects of
all three aforementioned steps: determining sample size, clustering, and annotating clusters for
biological interpretation. This approach is based on a post hoc comparison test that is done
after step (1) and before step (2). The result of this additional step infers knowledge about the
question of sufficient sample size, and at the same time allows us to place the genes into clusters,
which can be annotated with specific meanings that aid the biological interpretation.
Previously, Sutter et al.8 used post hoc comparisons to identify important information about
structure activity relationships of three important chemopreventive chemicals by encoding
gene response to treatment as a ternary digit, i.e. 0, 1, or 2. Hulshizer and Blalock10 used the
same ternary classification to further assign a significance level to observed patterns using
Monte Carlo simulation. In this paper, we show that by using transitive directed acyclic graphs
(tDAG) for post hoc pattern assignment, we retain all advantages of the ternary-system
approach and at the same time address the important issue of sample size. Specifically, we
illustrate how tDAG can be used for clustering gene responses, annotating clusters with
meaning, and thereby effectively classifying gene responses to treatments. Each tDAG can be
viewed as a cluster of genes with specific meaning. We also show that a property of tDAG
relates closely to the number of replicates. This approach provides an alternative perspective
of the important sample size problem, as demonstrated in our recent preliminary study.13 The
main difference between these traditional approaches such as Refs. 11 and 12 and ours is that
traditionally sample size is calculated in terms of statistical power and such estimation is
computed before the experiment takes place. For instance, in Liu and Hwang’s method,11 they
first calculate the rejection region for each sample size based on the desirable proportion of
nondifferentially expressed genes and False Discovery Rate (FDR) control level, then calculate
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power for each rejection region, and finally select sample size according to a desirable power.
In our approach, sample size is estimated in terms of the rate of contractible tDAG and the
estimation is done “in real time” when each sample is added sequentially. The traditional
approach has an advantage when economic considerations, such as the cost of recruiting
experimental subjects and obtaining samples, are of some importance. For traditional sample
size computations in microarray experimental design, the proportion of nondifferentially
expressed genes must generally be estimated and a model of gene dependencies must be
assumed before hand. Such model assumptions are not always easy to make, and it is not always
clear how to factor in a robust dependence structure into a model. A unique advantage of our
approach is that it does not need to make an estimate of the proportions of differentially
expressed genes, and gene dependencies are encoded in the tDAG clusters.

As a clustering technique, the proposed method was used as a complete analytical process.8
Importantly, we suggest that it can also be used as an augmentation of existing statistical
techniques of determining sample size, clustering techniques, and other ways of interpreting
gene clusters. One immediate use is that the tDAG produced by this method can be used as
profiles or classes for training other classification methods. Annotation of clusters produced
by clustering techniques is illustrated in Sec. 4.4.

2. Representation of Gene Reponses as Directed Graphs
The initial step in the procedure is selecting significant responses, which can be done by the
Kruskal–Wallis rank procedure, by using an analysis of variance (ANOVA) model,1,14 or
similar procedures. Then, every probe is assigned a pattern using a second set of (post hoc)
tests for each probe. Let us assume that there are K treatments (including control) and each
treatment has exactly r replicates. Each Wilcoxon Rank test is performed to determine how
the probe responds to each pair of treatments A and B, whose p-values can be computed exactly
in O(r2) time, where r is the number of replicates of each treatment, using a dynamic
programming implementation of the recursive procedure by Ross.15 There are K(K − 1)/2 such
tests (and hence K(K − 1) outcomes) for each probe. These outcomes collectively encode the
pattern of the probe. For example, if there are four treatments (including control), there will
be six tests to determine the pattern for each gene. Thus, the number of steps to determine the
pattern for each gene is O(r2K2). There are three possibilities for each outcome:

• A ~ B, which means H0 is accepted, or there is no statistical difference of expression
of the gene under both treatments.

• A < B, which means H0 is rejected, and the gene is expressed significantly more under
treatment B than under treatment A.

• A > B, which means H0 is rejected, and the gene is expressed significantly more under
treatment A than under treatment B

The outcomes for each probe could be encoded in a straightforward manner using K(K − 1)/2
ternary digits. Sutter et al. used 0, 1, 28 while Hulshizer and Blalock used 0, 1, −1.10 In this
paper, we employ a different encoding using directed acyclic graph (DAG). Although both
encodings/representations capture the exact information, there are two advantages to the DAG
representation: it is more visually informative, and more importantly, the “contractibility”
property of DAG allows analysis of sample size. Vertices of the directed graph represent
treatments, and directed edges represent relative responses of genes to pairs of treatments. The
outcome A > B is represented by the edge A → B; A < B is represented by the edge B → A;
and A ~ B implies no edge between vertices A and B.

An important property of this representation is that the observable patterns are not just DAG;
they are all a specific subset of DAG called transitive directed acyclic graphs or tDAG. A
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tDAG is a DAG with the following property: if there are two edges, A → B and B → C, there
is also an edge A → C, for any three vertices A, B, and C. This property holds because of the
nature of consistent pairwise test the observed patterns must obey the rule of transitivity. That
is, if A > B, and B > C, then A > C. The transitivity property can be seen in Fig. 1.

While all observable patterns are tDAG, a particular subset of such patterns is of importance
for the analysis of sample. We call them contractible tDAG. Formally, a tDAG is
contractible if either

1. It is a complete tDAG: there is an edge between any pair of its vertices; or

2. It is possible to contract equivalent vertices to produce a complete tDAG that
preserves all vertex-edge relationships in the original tDAG. Vertices A and B of a
tDAG areequivalent if A ~ B and for all other vertices u, u → A (or A → u) if and
only if u → B (or B → u). In other words, the gene’s relative responses to A and B
to all pairwise treatments are statistically the same. As an example, vertices BNF and
D3T of the tDAG in Fig. 1(b) are equivalent.

Intuitively, contracting means placing vertices into groups without distorting the original
relationship between vertices and edges. Figure 1(a) shows a noncontractible tDAG; Fig. 1(b)
shows a contractible tDAG and its contracted form. Contracted tDAG is the most concise form
of tDAG. Even if there are 20 vertices with 20 treatments, a contracted tDAG might have much
fewer vertices.

3. Pattern Analyses
3.1. Clustering

There are two general approaches to analysis of gene clusters. First, the tDAG patterns can be
used to annotate clusters produced by traditional clustering methods. This can be a useful
refinement of clustering results because each tDAG pattern possesses a unique and informative
meaning in terms of how genes respond to all pairwise treatments. Second, the tDAG patterns
themselves can be viewed as gene clusters. All genes having the same K(K − 1)/2 outcomes
are placed into a cluster, represented by the tDAG. This is particularly useful when relative
response is more meaningful than absolute values of expression.8 Another advantage is that
statistical significance can be estimated for each cluster, e.g. using Monte Carlo simulation.10

Because each tDAG pattern carries a unique meaning, levels or hierarchies of clusters can be
defined. The first level of clusters includes all observed tDAG, for instance, the two tDAG in
Fig. 1. With one control and three treatments, there are maximally 219 tDAG patterns that can
be observed. This number increases rapidly as the number of treatments increases.16 The
second level includes clusters with slightly more general meanings indicating more major
treatment effects. For example, both tDAG in Fig. 1 can be classified into the “up-regulated”
cluster. Formally, each cluster in the second level consists of genes that have exactly one group
of equivalent treatments. Taking our experiment, for instance, with one control and three
treatments (BNF, D3T, and OLT) experiment, there are 14 clusters at the second level:

1. Control only

2. BNF only

3. D3T only

4. OLT only

5. No difference between Control and BNF

6. No difference between Control and D3T
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7. No difference between Control and OLT

8. No difference between BNF and D3T

9. No difference between BNF and OLT

10. No difference between D3T and OLT

11. No difference between Control, BNF, and D3T

12. No difference between Control, BNF, and OLT

13. No difference between Control, D3T, and OLT

14. No difference between BNF, D3T, and OLT

If we account for up-down responses, there would be 28 different clusters at the second level.
Each cluster can consist of several tDAG (clusters at the first level). In fact, two different
clusters at the second level can have common tDAG. Consequently, a gene can belong to
different clusters in the second level; its meanings can be interpreted in a different perspective
depending on which cluster at the second level we are considering. Clusters at higher levels
can be defined similarly: having two (or three, or more) groups of equivalent treatments and
the exact number of clusters can be similarly enumerated.

3.2. Analysis of sample size
Microarray experiments typically require more than two replicates for each treatment to
achieve statistical significance of gene expression. Most current approaches are based on
statistical calculation of power to determine the necessary number of replicates.11,12 We argue
that the increasing rate of contractible tDAG can be also used to analyze the sufficient number
of replicates. As an explicit example, the tDAG in Fig. 1(a) and 1(b) represent six outcomes
of comparison test of a probe in our data set (which will be discussed later) observed with four
and five replicates, respectively. With four replicates, the tests concluded in particular that
OLT ~ D3T. With an additional replicate, however, the outcome became D3T > OLT, making
the tDAG contractible. Is the change from a noncontractible pattern to a contractible pattern
incidental? We suggest that this is not the case and that in general as more replicates are added,
more tDAG become contractible. As each test is a comparison of means of expression values
responding to pairs of treatments (e.g. Wilcoxon rank test), we can reason formally why tDAG
tend to be contractible as more replicates are added as follows:

Proposition—Assuming that the elements of the parameter space consisting of the mean
expression values for each gene are well ordered, the set of all tDAG converges to a set of
contractible tDAG as the number of replications per treatment increases.

The following reasoning is for three treatments A, B, and C, but it can be extended inductively
to any arbitrary number of treatments. For gene g, let Ωg = {(µA, µB, µC) : µA, µB, µC ∈ ℛ}
represent the parameter space of all possible mean gene expressions. Then the elements of
Ωg, are well ordered. The objective for performing multiple comparisons is to resolve which
elements of Ωg are supported by data after the H0 : µA = µB = µC thesis has been rejected.
Using a consistent test statistic, the power of the test will converge to one, when true values of
the mean expressions under treatments A, B, C, are not in the null region. We claim that the
pattern of responses will correspond to a contractible tDAG. To see this, we will consider
specific cases in the multiple pairwise comparison tests that follow the global test for significant
responses. First, if µA, µB, µC are all sufficiently different, three pairwise tests will result in a
total ordering of the three means. This pattern corresponds to a complete tDAG with three
vertices, which by default is contractible. The second case is if exactly two means are essentially
identical, for instance, µA = µB, the outcome of the three pairwise test will either be A ~ B, A
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< C, B < C, or A ~ B, A > C, B > C. In either case, the outcome of the multiple comparison
test corresponds to a contractible tDAG, namely either {A, B} ← C or {A, B} → C, with A
and B being equivalent. For more than three treatments, we simply take a subset of three and
apply the same reasoning. Then, pairwise comparison tests will result in a pattern that groups
all means that are essentially equivalent into the same vertices, and consequently the tDAG is
contractible.

In practice, it may be possible to have a gene whose observed pattern is the noncontractible
tDAG pattern: A > B, A ~ C, and yet B ~ C. We argue that this behavior is very rare in most
cases with a sufficient sample size. The noncontractible pattern A > B, A ~ C, B ~ C implies
that a gene with that pattern cannot respond to all three treatments, because that would impose
an ordering on its responses to the treatments. On the other hand, with a sufficient number of
replicates, A > B implies that the gene must have responded to either A or B or both. Let us
say, it is A, then, A ~ C implies that it also responds to C. Consequently, B ~ C then implies,
it also responds to B as well. This appears to be a contradiction to the assumption that the gene
cannot respond to all three treatments.

It is also possible that for certain genes and sets of treatments it may take a large number of
replicates to establish statistically the well ordering of the gene’s response to the treatments.
Furthermore, it may even be possible to construct artificial responses such that for any given
finite number of replicates, pairwise comparison tests will yield a noncontractible tDAG
pattern. We stipulate that in practice such an adversary scenario is very rare when the drug
treatments are different. Moreover, most gene responses to treatments are well ordered, and
this ordering can be determined statistically with a sufficient number of replicates. The rate of
contractible tDAG converges to a limit, which may not be 1, but should be close to 1 in practice.
We propose the following procedure, which analyzes the sample size for a given threshold t
of contractible tDAG:

1. Start with a small sample size, e.g. 4.

2. count = 0

3. For each gene g:

4. a. Generate a new replicate for g.

b. If g’s response is significant and its tDAG is contractible: count = count + 1

5. If count ÷(total number of genes) ≥t: stop. Else, go to step 2.

This procedure increases the number of replicates incrementally until a threshold is reached.
Test of significance for any response and pairwise comparisons can be done using Kruskal–
Wallis and Wilcoxon Rank, respectively. An issue is how to generate a new replicate for each
gene. This can come from another microarray experiment, or by simulation based on the
existing real data. Another issue is how to select the threshold t, i.e. the acceptable proportion
of contractible tDAG at which the sample size is sufficient. We think that the right threshold
varies with different experiments. Fortunately, one can observe dynamically the sizes of
noncontractible tDAG as a hint on when to stop.

4. Experimental Results
4.1. Experimental design

We designed a controlled study based on three chemopreventive compounds having relatively
well-understood pharmacological activities: 5,6-benzoflavone (BNF), 3H-1,2-dithiole-3-
thione (D3T), and 4-methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (OLT).8 BNF is known to
activate both Pathways 1 and 2; whereas D3T and OLT are known to activate only Pathway 2
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(see Fig. 2). Two families of phase 2 (conjugating) enzyme inducers exist, based upon their
capacity to coordinately elevate phase (functionalizing) enzymatic profiles.17,18 Prochaska and
Talalay,18,19 using mutant hepatoma cell lines defective in the regulation of certain phase 1
enzymes, were able to experimentally define bifunctional and monofunctional inducers
representing these two families. BNF, a bifunctional inducer, is an aryl hydrocarbon receptor
(AhR) ligand. In its latent form the cytosolic AhR is associated with 90 kDa heat shock protein
(Hsp90). Upon ligand binding, the AhR is activated and translocates to the nucleus where it
forms a heterodimer complex with a second basic-helix-loop-helix transcription factor, Arnt.
This complex binds to specific DNA sequences termed xenobiotic or dioxin response elements
(XRE or DRE) that are found upstream of several known target genes, for example, CYP1A1,
and acts to enhance the rates of gene transcription (Pathway 1). Also, BNF can be metabolized
to electrophilic intermediates capable of activating Pathway 2. Dithiolethiones such as D3T
and OLT are monofunctional inducers, and activate only Pathway 2, even though D3T is known
to be more potent and efficacious than OLT for Nrf2 activation.8 These compounds affect the
dissociation of a Cap-N-Collar type leucine zipper transcription factor, Nrf2, from its cytosolic
protein partner Keap1. Upon dissociation, Nrf2 translocates to the nucleus where it complexes
with small Maf transcription factors, affecting gene transcription through DNA sequences
termed electrophilic or antioxidant response elements (EpRE or ARE, Pathway 2).

Microarray analysis was performed on samples of livers of Spague-Dawley rats treated with
either control diet or one of three chemopreventive compounds provided by the
Chemopreventive Branch of the National Cancer Institute. The Affymetrix RG_230 2.0
GeneChips were used to analyze the levels of RNA expression. To verify the relationship
between the rate of contractible tDAG and sample size, we designed a series of experiments
on the same gene set and treatments but with three, four, and five replicates. Significant genes
were selected using the Kruskal–Wallis rank procedure and exact p-values were computed
using Monte Carlo permutation resampling.2 P-values of pairwise tests were computed using
a recursive procedure.15 Control for false discovery rate at 0.05 was computed using the
Benjamini and Hochberg procedure.20

With five replicates, the procedure yielded 1,550 significant genes distributed into 111 tDAG
plus a no-response tDAG with 10,747 genes.With four replicates, the procedure yielded 557
significant genes distributed into 65 tDAG, plus a no-response tDAG with 12,163 genes. There
are no significant genes found after the Kruskal–Wallis tests with FDR control at the 0.05 level
with three replicates. The dataset was deposited to the Gene Expression Omnibus database
(GEO) with accession number GSE8880.

4.2. Comparison and validation
To compare how our method, multiple pairwise comparisons (MPC), differs from other popular
methods, we first look at the global differences between clusters produced by our method and
those of hierarchical clustering and k-mean clustering. As we obtained 111 tDAG clusters, both
(average linkage) hierarchical clustering and k-mean were configured to produce 111 clusters
(using correlation as the measure of distance) using Gene Cluster 3.0, originally developed by
Eisen.21 To compare two sets of clusters, we use the Rand index,22 a well-known objective
measure defined as R = (a + b)/(n(n−; 1)/2), where a is the number of pairs of genes that are
in the same clusters in both sets, and b is the number of pairs of genes that are in different
clusters in both sets. R = 1 means the two sets of clusters are identical, whereas R = 0 means
they are totally different.

First, we examined the sensitivity (robustness) of each method to the number of genes used to
produce the clusters. Ideally, if each gene is assigned to a cluster with an implicit indication
of some biological significance, this assignment shoud be unchanged regardless of the number
of genes used to cluster. Unfortunately, this is not true for many clustering methods including
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k-mean and hierarchical clustering — the number of genes used to cluster affects the assignment
of genes to clusters. To study sensitivity, seven additional datasets were generated by randomly
removing 1%, 2%, 3%, 5%, 10%, 15%, and 20% of genes, respectively, from the original
datasets. For each method, each reduced dataset is clustered using the three methods and each
resulting set of clusters is compared to the clusters produced from the original dataset. Our
method assigned genes 100% consistently to the same tDAG clusters in the reduced data sets
as in the original data set, which is proper. On the other hand, for hierarchical clustering, the
clusters produced from the dataset with 1% of genes removed are different from the clusters
produced from the original dataset [Rand index of about 0.97; Fig. 3(a)]. This means genes
were placed differently with fewer genes. For k-mean, the Rand index is about 0.985. Across
seven reduced datasets, k-mean is more robust than hierarchical clustering (average Rand index
is about 0.985 versus 0.96).

Second, we looked at the similarity in clusters produced by our method, hierarchical clustering
and k-mean clustering, using the seven reduced datasets described. From a global point of view
across the seven datasets, clusters produced by our method are more similar to those produced
by k-mean clustering. Specific results are shown in Fig. 3(b). Overall, the Rand indices between
clusters produced by k-mean and those produced by our method is about 0.95, whereas between
k-mean and hierarchical clustering is about 0.94 and between our method and hierarchical
clustering is about 0.92. Based on these datasets, our clusters are more similar to k-mean and
less similar to hierarchical clustering.

Furthermore, to validate the agreement between gene placement in a tDAG and the meaning
of the tDAG, we performed real time reverse transcription polymerase chain reaction (RT-
PCR) on eight randomly selected genes to validate this. As microarrays are affected with
manufacturing errors, low specificity of probes, alternative splicing etc., RT-PCR has been
used by biologists as one of the most reliable tools for confirming findings from microarray
data. Real time RT-PCR is often referred as the “gold standard” for gene expression
measurements.23,24 It is an accurate and reproducible method, even with a limited amount of
RNA. The first four genes, CYP1b1, Aldh 3a1, COX 8h, and Gpnmb, were arbitrarily selected
from the 211001 cluster, which consists of genes responding to only BNF. The other four genes,
Serpina, Mat 2a, Cfd, and Itgal, were selected because they were not grouped into the 211001
cluster by our method; however, both hierarchical clustering and k-mean grouped them into
clusters that overlap greatly with the 211001 genes. Intuitively, both hierarchical clustering
and k-mean partitioned the 211001 cluster into smaller groups. In doing so, they might have
placed into these groups genes that do not belong there. We expected that RT-PCR would
confirm that our method had correctly placed the first four genes into 211001 and the last four
genes into other clusters. As expected, RT-PCR confirmed that the first four genes responded
significantly to BNF only and agreed with their placement into the 211001 cluster. However,
both the PCR and statistical analyses show that the last four genes do not belong in the cluster
labeled 211001; (see Fig. 4). This result is in perfect agreement with our analysis of all pairwise
comparisons of the microarray data. In fact, there is a high correlation of 0.9258 between RT-
PCR and the microarray data. On the other hand, even though both hierarchical clustering and
k-mean placed the first four genes in correct clusters, they mistakenly placed the other four
genes.

4.3. Identification and interpretation of gene clusters
Several informative observations can be drawn from the placement of genes into tDAG patterns
(or clusters). As was expected, the largest cluster of genes describes the case where the null
hypothesis is accepted for all treatments, i.e. no treatment effect (Appendix Table 1, cluster
No. 50). This corresponds to the “scattered genes”, a notion previously introduced.25 These
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genes do not respond to any of the three treatments. Furthermore, we were able to cluster genes
in relation to their known pharmacological relationships among the treatment groups.

At the first level (Appendix Table 1), clusters No. 25 and No. 78 identify the largest clusters
of genes responding only to treatment with BNF, with increasing or decreasing expression
ratios, respectively. The observation of this cluster is consistent with our knowledge that BNF
activates Pathway 1, as well as Pathway 2 (Fig. 2). Furthermore, cluster No. 4 (222210)
identifies a set of genes that respond to D3T, but not to either OLT or BNF, exemplifying how
this procedure could be used to explore drug efficacy in dose-response experiments.

At the second level, showing treatment effects (Appendix Table 2), we can make more
generalized observations. BNF treatment is associated with two of the largest sets of genes
(clusters No. 3 and No. 4). Another large number of genes are identified as responding to all
three treatments (clusters No. 1 and No. 2). Again, this observation is consistent with our prior
knowledge of a pharmacological relationship shared among the test compounds, i.e. all three
compounds activate Pathway 2. Additionally, we were also able to identify groups of genes
corresponding to previously unknown mechanisms of action. A prominent structure–activity
relationship, indicated by two clusters in the second level (No. 9 and No. 10), identifies genes
that respond to D3T and OLT, but not to BNF. The observation of these clusters was not
predicted by our prior knowledge of the mechanisms of action of these compounds and suggests
that D3T and OLT share a unique activity that is independent of the Nrf2 pathway (Fig. 2,
Pathway 2). However, in 2003, a study of liver gene expression in mice treated with D3T
reported that 21% of the 292 D3T-responsive genes were similarly responsive in both wild-
type and KeapI-Nrf2 double knockout mice, indicating that these genes were not regulated via
Pathway 2.26 Because of differences in the quality of annotation of the earlier mouse GeneChip
and the current rat GeneChip, and because the mouse data was not placed into a repository, it
is difficult to directly compare the list of genes identified in these two studies. Nonetheless,
manual inspection of those genes reported in this paper identified several genes in common,
including: amino levulinate synthase, EIB 19K/Bcl-2-binding protein homolog, glutathione
S-transferase theta 2, and sterol regulatory element binding factor 1. Therefore, this analysis
suggests that this unique structure–activity relationship for D3T and OLT lies, in part, in Nrf2-
independent mechanisms. This result highlights the utility of this method for the analysis of
samples from rats or human tissues, where production of a null allele is currently not possible.

Another structure–activity relationship (Appendix Table 2, clusters No. 7 and No. 8), identifies
genes that respond more or only to OLT. This activity was not predicted by our prior knowledge
of the mechanisms of action of these chemopreventive compounds, but was identified in a
previous study of Oltipraz.8 Two mechanisms of action have been proposed for this effect. The
first mechanism suggests that Nrf2-independent gene expression occurring in response to OLT
is mediated by inhibition of certain cytochrome P450 enzymes by the 5-pyrazinyl substituent
on the dithiolethione ring of OLT, resulting in activation of a novel set of genes.27 The second
mechanism suggests that the Ah receptor (Fig. 2, Pathway 1) is activated by OLT.28,29 In our
classification, we find support for both mechanisms. Clusters No. 17 and No. 18 identify genes
responding equally to OLT and BNF, but not to D3T, supporting the Ah receptor hypothesis.
However, clusters No. 21 and No. 22 identify genes responding only to OLT, supporting a
mechanism independent of the Ah receptor, which is activated by BNF (Fig. 2, Pathway 1).
Because the number of genes in each cluster is relatively small and similar, it is not possible
to weight one mechanism over the other. Further molecular analysis of the genes identified in
these clusters could clarify this issue.

4.4. Annotation of other clustering methods
Our method can also be used to annotate clusters of genes that are produced by other methods.
We illustrate this with two examples. We show how tDAGs can be used to annotate a dimension
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reduction technique such as principle component analysis (PCA), as well as the gene clusters
produced by hierarchical clustering. Both of these have been popular approaches in analyzing
microarray data.21,30

PCA allows users to visually observe the relationship between the sources of variation and
gene expression, and has been used to cluster genes with similar expression profiles. In our
study, experimental conditions were considered variables, thus the analysis created four
“principal experiment components”. The percentage variance from PCA showed that the first
three components captured most of the information about the observed variability in the
experiment. Figure 5(b) shows an annotation of these PCA results, overlaying the clusters
identified by our combinatorial procedure. PCA essentially identified two large clusters,
making it difficult to discern additional information. This observation accounts for the fact that
the three compounds have similar activities. The color-coded annotation shows clearly distinct
regions of the PCA clusters. For example, clusters 122221 and 100001 were clearly separated.
These clusters represent genes that respond to OLT and D3T, either up- or down-regulated.
Similarly, cluster 211001, representing genes that respond only to BNF, were also clearly
separated from the rest of the clusters. This unique ability to identify distinct clusters in a series
of related chemical structures clearly demonstrates the strength of our procedure for this
application and its much higher resolution of important clusters. In addition, the pharmacologic
activity represented by each cluster is obvious in our method.

Using actual tDAG to annotate clusters can provide meaningful annotation far beyond the
simple color coding scheme. Figure 6 shows this annotation on a typical cluster (circled)
produced by hierarchical clustering. Here, the cluster is further annotated with tDAGs, resulting
in 10 subclusters that show clearly how the genes responded to all pairs of treatments.
Annotation with tDAG reveals subtle differences that can easily go unnoticed with unannotated
clusters produced by hierarchical clustering. For instance, by observing the subclusters
annotated with tDAG, we see that while the two largest subclusters both identify genes up-
regulated by D3T and OLT, they are slightly different: the 34 genes in the first subcluster do
not respond to BNF, while the 16 genes in the second subcluster are down-regulated by BNF.
Another possible use of tDAGs is in detecting outliers. In this example, we see three
subclusters, each having only one gene. This suggests that these three genes might be outliers,
or at least they are more likely to be outliers in comparisons to the other 34 genes in the most
populated subcluster among them. As with most clustering methods, hierarchical clustering
does not provide any meaning to its clusters, making it hard to interpret the results.
Additionally, researchers typically use Venn diagrams to assess pairwise relationships. As the
number of treatments increases, the number of pairwise comparisons increases quadratically,
making the Venn diagram a clumsy way to visualize all pairwise relationships. In contract, the
tDAG representation does this nicely.

4.5. Relationship between sample size and contractibility of tDAG
In validating the theoretical reasoning in Sec. 3.2, Analysis of sample size, we look at statistics
from both real data (four and five replicates) and synthesized data (6–15 replicates). In doing
so, we explore two main questions about increasing the number of replicates: (1) whether or
not more genes adopt contractible tDAG patterns, and (2) whether or not the size of
noncontractible tDAG patterns decreases.

Real Data—Real data consisted of microarrays with four and five replicates as described in
Sec. 4.1. Figure 7 shows the answers for the two main questions. Firstly, more genes adopt
contractible tDAG than noncontractible tDAG patterns. Overall, the percentage of genes with
contractible tDAG patterns increases from 67% (four replicates) to 71% (five replicates).
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Furthermore, the average number of genes per contractible tDAG increases from 13.4 to 24.6;
for noncontractible tDAG the average increase is only from 4.9 to 6.7.

Secondly, for tDAG observed in both the four-replicate and five-replicate experiments, a
similar increase was observed. Unlike tDAG that appeared only in either experiment, these are
more “stable” and thus more likely to be real clusters. There were 28 contractible and 35
noncontractible tDAG observed in both experiments. We observed an average increase in size
of 5.8 fold for contractible patterns, and 2.3 fold for noncontractible patterns.

Thirdly, a gene with a contractible tDAG pattern observed in the four-replicate experiment was
more likely to remain contractible in the five-replicate experiment. Conversely, a gene with a
noncontractible tDAG pattern was more likely to become contractible. Specifically, 92% of
361 genes with contractible patterns remained contractible, while only 8% became
noncontractible. Conversely, 66% of 180 genes with noncontractible patterns adopted new
contractible patterns, while 34% of them remained noncontractible.

Simulated Data—Due to cost, our microarray experiment only consisted of up to five
replicates. Thus, we simulated gene expressions based on the real microarray data of the five-
replicate experiment. For every gene, a new replicate was generated from a normal distribution.
The mean and standard deviation of this normal distribution are set to be the sample mean and
standard deviation obtained from the five replicates of that gene.

Using simulated data, we continued to observe the same trend: there are more genes with
contractible tDAG patterns as the number of replicates increases (Fig. 7). With five replicates,
71% of genes adopted contractible tDAG response patterns. We saw a monotonic increase in
the percentage of genes adopting contractible patterns; 93% of genes adopted contractible
tDAG patterns at 15 replicates. Moreover, the average number of genes with the same
noncontractible tDAG pattern decreased from 6.7 to 3.3. The number of genes having the same
noncontractible tDAG patterns helps in determining when to stop and serves as an indicator
of a sufficient sample size. We stopped at 15 replicates when the average noncontractible
cluster size was less than four.

5. Conclusion
The use of tDAG touches upon three important aspects of microarray studies with multiple
treatments: determining sufficient sample size for reliable observed responses, clustering of
genes, and interpretations of the clusters. The post hoc assignment of tDAG patterns is
dependent on but separate from other statistical and clustering procedures; it can supplement
them in predicting sample size, clustering robustly, annotating clusters produced by other
methods, and meaningful visualization of the clusters. Methods such as hierarchical clustering
and k-mean do not possess these properties. Using tDAG, the graphical property of
contractibility facilitates the analysis of sample size. This facilitation was not available in the
previous works using ternary digit representations of the clusters.8,10 One important aspect
open for future exploration is the relationship between the rate of contractible tDAG and
statistical power in the determination of sample size.
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Appendix

APPENDIX
Table 1

First-level clusters. Each cluster is shown with its size (number of genes) and
whether its pattern is a contractible tDAG.

ID Pattern Size Contr ID Pattern Size Contr ID Pattern Size Contr

1 222221 8 x 39 122121 3 77 011222 4

2 222220 5 x 40 121221 24 78 011221 83 x

3 222211 8 41 121220 23 79 011220 15

4 222210 19 x 42 121211 7 80 011211 5

5 222121 4 43 121210 34 x 81 011210 8

6 222111 11 x 44 112222 3 82 011122 1

7 222110 3 45 112221 6 83 011121 2

8 222100 1 x 46 112122 4 x 84 010221 4

9 222011 1 47 112121 2 85 010220 2 x

10 222002 1 x 48 111221 1 86 010211 3

11 222001 3 x 49 111220 1 87 010210 14 x

12 222000 1 x 50 111111 10747 x 88 010110 2

13 221211 1 51 110210 1 89 010100 2

14 221210 3 52 110101 3 90 001222 3 x

15 221100 7 x 53 110100 11 x 91 001221 7

16 221001 6 54 110001 6 92 001211 1

17 221000 4 x 55 110000 5 93 001122 12 x

18 212012 1 x 56 101122 2 94 001121 3

19 212011 1 57 101012 7 x 95 001112 3

20 212002 2 x 58 101002 4 96 001022 1 x

21 212001 2 59 101001 9 97 001012 3

22 211100 1 60 100111 3 98 000221 11 x

23 211011 1 61 100101 9 99 000211 6

24 211002 2 62 100100 6 100 000210 2 x

25 211001 108 x 63 100012 7 101 000122 3 x

26 211000 2 64 100011 14 102 000121 3

27 210100 1 65 100002 25 x 103 000112 5

28 210001 16 66 100001 231 x 104 000111 63 x

29 210000 6 x 67 100000 12 x 105 000110 7

30 201002 5 x 68 022221 42 x 106 000101 23

31 201001 31 69 022220 15 x 107 000100 9 x

32 200001 25 x 70 021221 43 108 000012 14 x

33 122222 2 x 71 021220 41 x 109 000011 23

34 122221 151 x 72 021211 8 110 000002 6 x

35 122220 42 x 73 021210 6 111 000001 53 x

36 122211 8 74 012222 2 x 112 000000 3 x

37 122210 14 75 012221 12
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ID Pattern Size Contr ID Pattern Size Contr ID Pattern Size Contr

38 122122 1 76 012122 1

Table 2
Second-level clusters. Notation: cluster No. 9 (CON = BNF >), for instance,
consists of genes for which control ≡ BNF, and (as the > sign indicates) the
responses to BNF and control are greater than those to the other treatments. A
cluster can consist of a mixture of contractible and noncontractible tDAGs. The
4th column shows the ID’s of 1st-level clusters (Table 1). The fifth column shows
the portion of genes whose patterns are contractible tDAGs in each cluster.

ID Cluster #genes ID’s of clusters in the 1st level (Table 1) Contract. Ratio

1 CON> 231 98–112 0.71

2 CON< 65 1–12 0.75

3 BNF> 214 10–12,16–17,20–21,24–26,28–29,30–32 0.72

4 BNF< 284 68–71,74–75,77–79,84–86,91,98 0.7

5 D3T> 202 2,4,14,35,41,43,69,71,73 0.77

6 D3T< 72 30,57–58,63,65,96–97,108,110 0.81

7 OLT> 13 33,38,44,46,74,76 0.62

8 OLT< 55 27,29,53,55,62,6789,107,112 0.75

9 CON=BNF> 268 65–67 1

10 CON=BNF< 195 33–35 1

11 CON=D3T> 16 85,87 1

12 CON=D3T< 3 18,20 1

13 BNF=D3T> 8 8,15 1

14 BNF=D3T< 15 93,101 1

15 CON=OLT> 16 90,93,96 1

16 CON=OLT< 11 15,17 1

17 BNF=OLT> 1 18 1

18 BNF=OLT< 16 87,100 1

19 D3T=OLT> 201 1,34,68 1

20 D3T=OLT< 309 32,65,111 1

21 CON=BNF=D3T> 11 53 1

22 CON=BNF=D3T< 4 46 1

23 CON=BNF=OLT> 7 57 1

24 CON=BNF=OLT< 34 43 1

25 CON=D3T=OLT> 83 78 1

26 CON=D3T=OLT< 108 25 1

27 BNF=D3T=OLT> 11 6 1

28 BNF=D3T=OLT< 63 104 1
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Fig. 1.
Patterns of all-pairwise comparison represented as DAG. Both DAG are transitive. (a) This
noncontractible transitive DAG is the same as the ternary representation 222011. This pattern
represents the outcomes: BNF > CON, BNF > OLT, OLT > CON, D3T > CON, BNF ~ D3T,
OLT ~ D3T. (b) This contractible tDAG is the same as the ternary representation 222012. It
has the same outcomes as in (a), plus one more, D3T > OLT. In this pattern, BNF and D3T are
equivalent; contracting BNF, D3T yields a complete tDAG (shown on the right).
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Fig. 2.
Mechanism of action of the test compounds. BNF is known to activate both Pathway 1 and 2;
whereas D3T and OLT are known to activate only Pathway 2. Two families of phase 2
(conjugating) enzyme inducers exist, based upon their capacity to coordinately elevate phase
1 (functionalizing) enzymatic profiles.
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Fig. 3.
Our method (MPC) versus k-mean (KM) and hierarchical clustering (HC). (a) Sensitivity
comparison, using seven reduced datasets with 1%, 2%, 3%, 5%, 10%, 15%, 20% genes
removed. (b) Similarity between the clusters of the original, plus the seven reduced datasets.

Phan et al. Page 18

J Bioinform Comput Biol. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Correlation between RT-PCR and microarray. Left: PCR expression values of CYP1b1, Aldh
3a1, COX 8h, Gpnmb, Serpina, Mat 2a, Cfd, and Itgal under control, BNF, D3T, and OLT.
Right: Microarray expression values of the same eight genes. The linear correlation between
the two is 0.9258.
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Fig. 5.
Annotation of PCA. (a) Expression profiles of clusters with 15 or more genes projected on the
three principle components. (b) The expression profiles color-coded according to the clusters
produced by our method. Color figure is only available in electronic version.
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Fig. 6.
Annotation of traditional clustering. Top: A selected cluster (circled) produced by hierarchical
clustering. Bottom: Annotation of the selected cluster with tDAGs. This gives 10 subclusters,
each possessing a specific meaning in terms of how the genes responded to all pairs of
treatments. Other clusters produced by hierarchical clustering or any other clustering method
can be annotated similarly.
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Fig. 7.
Changes of tDAG patterns as a function of sample size. The x-axis indicates the sample size
(number of replicates). Data points 4–5 are real data, 6–15 are simulated data. (a) The
percentage of genes with contractible tDAG patterns. (b) The average size of noncontractible
tDAG clusters.
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