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Abstract
Metagenomics is an emerging methodology for the direct genomic analysis of a mixed community
of uncultured microorganisms. The current analyses of metagenomics data largely rely on the
computational tools originally designed for microbial genomics projects. The challenge of
assembling metagenomic sequences arises mainly from the short reads and the high species
complexity of the community. Alternatively, individual (short) reads will be searched directly against
databases of known genes (or proteins) to identify homologous sequences. The latter approach may
have low sensitivity and specificity in identifying homologous sequences, which may further bias
the subsequent diversity analysis. In this paper, we present a novel approach to metagenomic data
analysis, called Metagenomic ORFome Assembly (MetaORFA). The whole computational
framework consists of three steps. Each read from a metagenomics project will first be annotated
with putative open reading frames (ORFs) that likely encode proteins. Next, the predicted ORFs are
assembled into a collection of peptides using an EULER assembly method. Finally, the assembled
peptides (i.e., ORFome) are used for database searching of homologs and subsequent diversity
analysis. We applied MetaORFA approach to several metagenomics datasets with low coverage short
reads. The results show that MetaORFA can produce long peptides even when the sequence coverage
of reads is extremely low. Hence, the ORFome assembly significantly increased the sensitivity of
homology searching, and may potentially improve the diversity analysis of the metagenomic data.
This improvement is especially useful for the metagenomic projects when the genome assembly does
not work because of the low sequence coverage.
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1. INTRODUCTION
Owning to the rapid advancement of the ultra-high throughput DNA sequencing technologies
1, the genomic studies of microorganisms in environmental samples have recently shifted from
the focused sequencing of 16sRNA sequences 2 to the shotgun sequencing of the whole DNAs
in the sample. This new methodology, now called metagenomics or environmental genomics,
has opened a door for biologists to assess the unknown world of the uncultured microorganisms
that are believed to be the majority in any environmental sample. The early attempts of this
kind can be traced back to a report published in 2002, in which extremely high diversity of
uncultured marine viral communities were revealed through genome sequencing 3. However,
the most important progress in shotgun metagenomics happened in 2004 4,5,6,7, when two
research groups published results from their large-scale environmental sequencing projects.
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The first project studied the sample from the Sargasso Sea, and revealed ~ 2000 distinct species
of microorganisms, including 148 types of bacteria that have never been observed before 8. In
the second project, a handful of genomes of bacteria and archaea that had previously resisted
attempts to culture them were revealed based on the analysis of the sample from the acid mine
drainage 9. Since then, many more metagenomics projects have been conducted, involving
broadened applications from ecology and environmental sciences to chemical industry 10 and
human health, e.g., the human gut microbiome projects 11,12.

The rapid growth of metagenomic data has posed great challenges to the computational analysis
13,14. Some metagenomics projects applied directly the data analysis pipeline that includes the
whole genome assemblers 15,16,17,18 and gene finding programs 19—originally designed for
the conventional Whole Genome Shotgun (WGS) sequencing projects—with only some small
parameter modifications 8,9,12,20. However, it is unclear how accurate these existing tools for
fragment assembly and genome annotation are when applied to metagenomic data. Mavromatis
and colleagues have conducted a valuable benchmarking experiment to evaluate the
performance of conventional genome assembly and annotation pipeline on simulated
metagenomic data 21. In this experiment, sequencing reads were randomly collected from 113
assembled genomes that are mixed at various complexities. Afterwards, the quality of the
results from each processing step (i.e., assembly, gene prediction, and phylogenetic binning)
was assessed separately by comparison to the corresponding genomes used in the simulation.
This experiment delivered an encouraging message that the number of errors made at each step
overall is not high, and some errors (e.g., the chimeric contigs) would not be propagated into
the subsequent steps (e.g., binning). Nevertheless, we argue that this experiment may not
completely reflect the challenge of metagenomic data analysis, especially the difference
between metagenomic data and the data from conventional genome sequencing. Conventional
genome projects deal with only one or sometimes a few individual genomes from the same
species that are isolated prior to sequencing, whereas metagenomics attempts to analyze
simultaneously a huge amount of genomes not only from hundreds of different
microorganisms, but also from many individuals of each organism. As a result, even the reads
from the same species might be quite different from each other since they might be sampled
from different individuals’ genomes. Furthermore, those microbial species may exist in the
sample at a wide range of abundances. Hence, typically, only a few dominant species can
receive good sequence coverage for their genomes, whereas the sequence coverage for the
remaining species is low.

More and more metagenomic projects have applied Next-Generation Sequencing (NGS)
technologies that produce massive but shorter reads (e.g., ~ 200 bps for 454 pyrosequencing
machines)a than those from the Sanger sequencing methods. Therefore, many metagenomic
sequencing projects that acquired a merely small number of short sequencing reads often
skipped the step of fragment assembly, and directly used the short reads for downstream
analysis 3,22,23. For instance, short reads can be used to search against protein database using
TBLASTX to identify homologous proteins, in which an arbitrary E-value (e.g., ≤ 1e – 5) was
chosen as a cutoff 22. This direct search approach, however, often missed many homologous
genes (or proteins) 24, and resulted in a very low false positive rate b but high false negative
rate. This drawback may bias the further analysis of species diversity (i.e., how many different
species are present in the sample) and functional coverage (i.e., how many functional categories
of proteins are present in the sample).

In this paper, we present a novel ORFome assembly approach to assembling metagenomic
sequencing reads. Different from the conventional genome analysis pipeline that first

a454 sequencing machines can now produce longer reads
bFor example, the MEGAN analysis based on the direct BLAST search method has achieved a 0 false positive rate 23!
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assembles sequencing reads into contigs (or scaffolds) and then predicts protein coding regions
within the contigs, our method first identifies putative protein coding regions (i.e., open reading
frames, or ORFs) within unassembled reads, and then focuses on the assembly of only these
sequences (i.e., ORFome). The ORFome assembly approach has several advantages. First, it
significantly simplifies the task of fragment assembly that is often complicated by the repetitive
sequences present mainly in non-coding regions 25. Meanwhile, we argue that ORFome
assembly does not lose much useful information by neglecting the non-coding sequences due
to several reasons: (1) the set of proteins (or the ORFome that encodes them) carry the most
important information for the downstream analysis; (2) the microbial genomes are often very
compact and protein coding regions comprise a major fraction of them; and (3) microbial
proteins are mainly encoded by continuous nonsplit open reading frames (ORFs), thus the
prediction of coding sequences prior to assembly is relatively straightforward. Second, from
ORFome assembly, complete proteins (or long peptides) may be derived, thus higher sensitivity
and specificity can be achieved in the step of database searching for homologs 24. Furthermore,
most single nucleotide polymorphisms are synonymous mutations that do not change the
encoding amino acids so that ORFome assembly does not even feel them. So by working on
the peptide sequences (translated from sequencing reads in silico) instead of the raw DNA
sequences, the ORFome assembly alleviates the assembly difficulty caused by the differences
among individual genomes at polymorphic sites. We used four marine viral metagenomic
datasets of short reads, acquired using 454 sequencing technique, to test our ORFome assembly
method—no genome assemblies are available for these metagenomic datasets because the
reads are extremely short and the sequence coverage is low.

2. METHODS
The computational framework of ORFome assembly consists of three steps (Fig. 1 (e-f)): (1)
each read is assessed individually and the putative open reading frames (ORFs) that likely
encode proteins are annotated; (2) the annotated ORFs are assembled into a collection of
peptides using a modified EULER assembly method 26; and (3) the assembled peptides are
used for the database searching of homologs.

A major difference between the ORFome assembly approach and the conventional whole
genome assembly is that the former approach conducts gene annotation (at this stage we used
all six frame translations; but a dedicated gene finder will be developed in the future to provide
better prediction of ORFs) followed by the assembly of identified short peptides, whereas the
latter approach conducts gene annotation after assembly of DNA sequences. Conventional
fragment assembly algorithms are mostly based on the analysis of overlap graph, in which the
reads are represented by vertices and the overlaps between reads are represented by edges 27.
The presence of repeats in the genomes often induce many spurious edges in the overlap graph,
which is a major challenge in fragment assembly. There are two additional aspects in the
metagenomic data that make fragment assembly even more challenging. First, metagenomics
projects often apply NGS technique, and produce shorter reads (~ 200 bps) than Sanger
sequencing methods (500-1000 bps). As a result, many short repeats (with lengths between
200 bps and 500 bps) may increase the complexity of the overlap graph, and cause many more
mis-assemblies 28. Second, unlike the conventional genome shotgun sequencing, which
handles a single species, metagenomics sequencing reads are collected from a large amount of
different genomes. Hence, we anticipate these reads should be assembled into not one but many
sequences that may even share high similarity on multiple regions. Therefore, the
straightforward application of conventional fragment assemblers may encounter difficulties.
In contrast, the ORFome assembly approach attempts to assemble only the most important
portions of the target genomes, i.e., the protein coding regions, which can highly reduce the
complexity of the overlap graph and thus improve the assembly quality.
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It is worth pointing out the idea of ORFome assembly can be viewed as an extension of the
repeat masking approach used in whole genome assembly of large eukaryotic (including
human) genomes. To avoid the complication induced by the many interspersed repeat copies
present in most eukaryotic genomes, Celera Assembler first masked out putative repeats in the
unassembled reads, and then focused on the assembly of the remaining reads from non-
repetitive regions 29,30. The resulting overlap graph, which consists of a number of connected
components each representing reads from continuous non-repetitive regions, is much simpler
and easy to be analyzed. Similarly, the ORFome assembly approach divides the complex
overlap graph into a number of components each representing reads from a single gene or
several highly similar genes from the same family.

We applied the ORFome assembly approach to several metagenomics datasets from Ocean
samples with low coverage and short reads 22. The results show that MetaORFA can produce
long peptides even when the sequence coverage of reads is extremely low. Hence, further
analysis of assembled peptides significantly increased the sensitivity for subsequent homology
searching, and may potentially improve the diversity analysis of the metagenomic data.

2.1. ORFome Assembly Algorithm
We implemented a tool called MetaORFA in C/C++ under linux platforms for the ORFome
assembly. MetaORFA consists of two programs. One program takes as input a set of reads and
predicts a number of putative ORFs; and the other program (EULER-ORFA) takes as input
the set of putative ORFs, and reports a set of peptides corresponding to the assembled ORFs.
Prior to be supplied to MetaORFA, the original reads were first processed by MDUST (a tool
for autonomous masking from TIGR, which implements the DUST algorithm 31) to mask out
low-complexity regions, and then processed by Tandem Repeat Finder (TRF V4.0) 32 to mask
out short tandem repeats.

In this preliminary study, we adopted a very simple method for ORF prediction. For each read
(and its reverse complement), a region from the beginning (i.e., position 1, 2, or 3, depending
on the frame) or a start codon to the end of the read or a stop codon is considered as a potential
ORF. Only ORFs with more than a threshold K (default K = 25) codons were reported. These
ORFs will then be transformed into peptide sequences, and subsequently assembled using
EULER-ORFA algorithm, modified from the original EULER algorithm designed for DNA
fragment assembly 26. In this process, we first build a de Bruijn graph using all k-mers (default
k = 10) in the putative peptides from previous step, and then apply the equivalent
transformations as described in Ref. 26 to resolve short repeats among peptides. Unlike many
other genome assemblers that assemble reads into linear contigs, EULER aims at constructing
from the reads a repeat graph that represents not only the unique regions but also the repeat
structures 33. Although we anticipate there are not many repeats in the coding sequences, the
similar parts of homologous proteins from the same family may act like repeats during the
ORFome assembly. In addition to peptide assembly, EULER-ORFA can report a compact
graph structure, called the protein family graph, to represent the architecture of domain
combinations, including domain recurrences and shuffling34 among homologous proteins in
the same sample.

Fig. 2 illustrates the EULER-ORFA process using a synthetic example. Assume that two
homologous proteins from different microorganisms are encoded in the metagenome. Due to
the short read length, it is difficult to reconstruct the complete sequences for both proteins.
However, using a de Bruijn graph approach, we can assemble them into a protein family graph
by glueing together all tuples longer than K (here K ≥ 2). The common and distinct parts
between two (or more) homologous proteins are represented by separate edges, and each
protein sequence corresponds to a path in the protein family graph.
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Notably, the protein family graph is not always a partial order graph 35,36. When domain
reorganization happens between multiple homologous proteins in a family, the protein family
graph may contain cycles, as demonstrated in the EULER multiple alignment algorithm 34.
However, we expect this will rarely be encountered in ORFome assembles because (1) there
are far fewer multi-domain proteins in bacteria; and (2) metagenomic sequencing may rarely
cover the full lengths of long multi-domain proteins. Therefore, the resulting protein family
graphs will likely be partial order graphs, and can be compared with similar protein sequences
by a network matching algorithm, to deduce the full length protein sequences in the sample.
An alternative strategy is to traverse in the family graph and collect all the paths each
corresponding to a potential peptide. However this strategy will result in many peptides—
which may slow down the further similarity search—and the potential chimeric peptides may
complicate the database search.

We note the further analysis of the ORFome assembly results, as described below, has not fully
taken advantages of the protein family graph representation. Rather, we searched the individual
assembled peptide sequences corresponding to each edge in the protein family graph after
assembly against the target protein sequence database. Nevertheless, our preliminary analysis
has already demonstrated that even this simple analysis revealed—in the metagenome sample
—more reads with similarity to known proteins.

2.2. Functional Coverage Assessment
The ORFome, i.e., the set of assembled peptides, is ready for further computational analysis
with different purposes, e.g., searching against database for homologous sequences, or
mapping to biological pathways to study metabolic diversity 37. Here we show that we can
improve the functional coverage of metagenomics sequences by using assembled peptides
instead of unassembled reads. There are various ways to estimate functional coverage of a
sample. In this study we used PANTHER (Protein ANalysis THrough Evolutionary
Relationships) protein family classification 38 for such assessment. The comparison of the
functional coverage between different ORFomes is then straightforward. We can simply count
the number of families (subfamilies) found in assembled ORFome and unassembled reads, and
calculate their differences.

In the PANTHER classification system, proteins are classified into families and subfamilies
of shared function by experts. Families and subfamilies are presented as Hidden Markov
Models (HMMs). We downloaded the PANTHER HMM library Version 6.1 (release date
December 17, 2007) from ftp://ftp.pantherdb.org, which contains 5547 protein family HMMs,
divided into 24,582 functionally distinct protein subfamily HMMs. We also downloaded the
HMM searching tool (pantherScore.pl, version 1.02), which utilized fast BLAST search prior
to the more sensitive but time-consuming HMM matching procedure to speed up the process.
The query protein sequence will first be blasted against the consensus sequences of each
PANTHER HMMs, and then based on the results, some heuristics are applied to determine
which HMMs (i.e., protein families or subfamilies) that the query should be compared with
using hmmsearch from the hmmer package (http://hmmer.janelia.org).

2.3. Metagenomic Sequences Datasets
We tested our algorithm on four datasets each containing metagenomics sequences of a major
oceanic region community (the four regions are Sargasso Sea, Coast of British Columbia, Gulf
of Mexico, and Arctic Ocean) (referred to as Ocean Virus datasets) 22. The reads were acquired
by 454 sequencing machine, and they are typically very short. All the metagenomic sequences
were downloaded from CAMERA website (http://camera.calit2.net/) 39.
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3. RESULTS
First we tested the performance of MetaORFA using different length cutoffs of input ORFs.
Then we chose the best cutoff and applied the MetaORFA to assemble the four Ocean Virus
datasets. The assembly of a dataset took about from several minutes to half an hour for the four
datasets we used here (on a linux machine with Intel(R) Core(TM)2 CPU@ 2.40GHz). The
unassembled reads and assembled peptides were searched against Integrated Microbial
Genomics (IMG) database 40 using BLASTP to identify known homologous proteins in pre-
sequenced microbial genomes. To show the improvement of functional coverage after the
ORFome assembly, we also searched both sets of sequences against PANTHER families and
subfamilies. Below we first report the basic statistics of the assembled peptides as compared
to the unassembled reads, and then show the annotation of the ORFs by BLAST search and
PANTHER family annotation. Finally we show that MetaORFA can assemble sequences with
synonymous mutations, demonstrating the advantage of using ORF assembly over the
assembly of DNA sequences.

3.1. Optimization of the length cutoff of input ORFs
The length cutoff of input ORFs for MetaORFA is an important parameter, which influences
the quality of ORF assembly as well as the speed of MetaORFA. We tested lengths of 15, 20,
25, 30 and 35 amino acids. We evaluated the assembly quality using two measures: the total
number of long peptides (e.g., peptides of at least 60 amino acids), and the length of the longest
assembled peptide. Our tests show that MetaORFA performs roughly the same when using
cutoff of 20 or 25 in all four datasets. Fig 3 shows the performance of the MetaORFA versus
the length cutoff of the input ORFs for the Sargasso Sea dataset. When a high cutoff (e.g.,
cutoff = 35) is applied, fewer ORFs will be included in assembly; as a result, fewer long peptides
will be assembled. On the other hand, using too many short ORFs (e.g., cutoff = 15) will
increase the noise for assembly, thus worsening the assembly results. Considering that using
more ORFs as the input will slow down MetaORFA, we chose 25 as the length cutoff of
predicted ORFs as input for MetaORFA.

3.2. Assembled Peptides from the ORFome Assembly
Table 1 shows the statistics of the reads, unassembled putative ORFs and assembled peptides
for the four Ocean Viruses datasets. For all four datasets, the ORFome assembly successfully
produced long peptides (≥ 60) that are not present in the unassembled reads. However, the
number and the length of long peptides are different from one dataset to another. For example,
the ORFome assembly produced the largest number (13,547) of long peptides with longest
average length (37 aa) in the Arctic Ocean dataset, even though comparable number of
sequencing reads were acquired in each of these four datasets. This may indicate either the
diversity of the microorganisms in Arctic Ocean sample is lower than the diversity in the other
samples, or the microorganism genomes in this sample are more compact than the genomes in
the other samples.

We use the longest peptide assembled from the Gulf of Mexico dataset as an example to
illustrate the advantages of the ORFome assembly. Fig. 4 shows that 18 putative ORFs detected
from different short reads were assembled into the long peptide (155 aa) by the ORFome
assembly, which shows strong similarity across the entire peptide with an annotated protein in
IMG database. In the Sargasso sea dataset, an even longer peptide was assembled
(contig216592), which has 202 amino acid residues. Homology search against IMG database
shows this peptide is similar to a major coat protein from Enterobacteria phage alpha3 (IMG
ID: 638278159) with E-value = 2e-24.
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3.3. Homology Search of Assembled Peptides
One of the commonly used analysis of metagenomic data is the searching of the unassembled
reads against databases of known microbial proteins in an attempt to use the identified
homologous proteins to assess the function and species diversity in the sample 41,23. In this
type of analysis, a quite high cutoff is often chosen for the BLAST E-values (i.e., less
significant) because the query sequences (i.e., reads) are quite short. As a result, there may be
many false hits included in the final list of homologous proteins, which can mislead the
diversity analysis. Comparing with this straightforward approach, we anticipate the homology
search using the assembled peptides from the ORFome assembly can achieve higher sensitivity
and result in more hits with higher significance (i.e., lower E-values).

We compared the results of homology searches using assembled peptides with the results using
unassembled reads. The four Ocean Virus datasets were tested separately against IMG
database. As reported in Ref. 22 c, only few reads hit proteins in the database. We emphasize
that the assembled peptides increase the number of significant hits (i.e., E-value ≤ 1e – 5) in
all four datasets, from 40.5% in the Sargasso Sea dataset (i.e., 2,728 read hits were added to
6,726 read hits received from the searching using unassembled reads) to 45.3% in the Arctic
Ocean dataset (39,658 read hits were added to 87,487 original read hits). Fig. 5 shows the
detailed comparison of the added number of read hits when various E-value cutoffs were
applied. For all four datasets, a nearly constant number of read hits can be added by using
assembled peptides at different similarity significance levels (E-values). In comparison, a
majority of read hits from the similarity searching using unassembled reads received high E-
values. For instance, there are only 14,127 read hits in the Arctic Ocean dataset with E-values
≤ 1e-10, whereas 43,098 additional read hits (i.e., 305% more!) can be added from the similarity
searching using assembled peptides.

3.4. Novel Assignments of Functional Categories by Assembled Peptides
We further assessed the performance of the ORFome assembly in improving the function
annotation on the Ocean Virus datasets. Table 2 summarizes the statistics of the number of
matched families in PANTHER database for all four datasets. Both the number of hits from
the searching of unassembled reads as well as the additional number of hits from the searching
of assembled peptide are listed. Although the additional numbers of families detected by using
assembled peptides are relatively low for all datasets, there are still some new protein families
(or novel protein functions) that can be annotated when assembled peptides were used. For
example, in the Gulf of Mexico dataset, the assembled peptides hit additional 25 PANTHER
protein families, one of which is ATP synthase mitochondrial F1 complex assembly factor 2
(Panther family ID PTHR21013). The results suggest that we may be able to improve the
protein function annotation using assembled peptides.

3.5. MetaORFA can Assemble Sequences with Synonymous Polymorphism
We further checked if MetaORFA can assemble sequences that have synonymous polymorphic
sites. The results show that about one third of the assembled peptides include at least one amino
acid that involves synonymous mutation. For example, in the Sargasso Sea dataset, out of 2,558
assembled peptides (here only the peptides that hit IMG sequences with E-value ≤ 1e-5 were
included, considering they are more likely to be real proteins as compared to other peptides
that have no homologs), total 825 peptides involve synonymous mutations. Fig. 6 shows an
example of these proteins with 11 synonymous polymorphic sites. These results demonstrate
that ORFome assembly does not feel the mutation at the DNA level that does not change the
amino acids (i.e., synonymous mutations), which is one of the MetaORFA’s main features.

cWe note that a direct comparison is not feasible since different databases were used for homology searching in these two studies.
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Once we have the protein sequence assembled (which can be not done otherwise at the DNA
level because of the mutations), we can map them back to the DNA sequences and further study
their polymorphism.

4. DISCUSSION
One of the main issues in whole genome assembly is the chimeric contigs that are resulted
from mis-assemblies. Tremendous finishing efforts have to be invested in order to identify and
correct these errors. This issue is expected to be more serious in metagenomic data analysis
because of the higher complexity of metagenomic sample and the short read length. Although
it remains unclear whether the mis-assemblies will dramatically influence the conclusion on
the principal aims of metagenomics, such as the assessment of species diversity in the sample,
many metagenomic projects avoided assembling sequencing reads, and analyzed the original
reads directly. The ORFome assembly provides a simple solution to bypass the assembly
obstacle, i.e. to conduct a small-scale but accurate assembly of protein coding regions that can
improve the sensitivity of homology search. In this study, although we showed the homology
searching was improved after the ORFome assembly, we have not systematically evaluated
the influence of these improvements on the diversity analysis. Our next step is to apply the
ORFome assembly approach to more datasets with various sequence coverage and sample
complexities (i.e., the approximate number of species and the range of abundances among these
species). Our intention is to estimate the minimal sequencing efforts required to get a good
assessment of species diversity for samples with different complexities.

There are several ways to further improve the ORFome assembly algorithm described here.
For example, the current method for predicting putative ORFs in sequencing reads can be
improved by incorporating additional features of gene coding sequences (e.g., the codon
usages) and utilizing sophisticated probabilistic models. This indicates that there is still room
for the further improvement of the ORFome assembly method by selecting more appropriate
parameters. Finally, as we mentioned in the METHODS section, the advantages of the ORFome
assembly have not been fully taken in the downstream data analysis in this study. The EULER-
ORFA method used here can assemble putative ORFs into a protein family graph, in addition
to the peptides represented by edges in the graph. Therefore, we can adopt a network matching
approach as used in Ref. 36 to achieve a more sensible database searching (which, however,
may be slower than BLAST based database searching). The network matching of a family
graph against a sequence database can also help to define the path that corresponds to the most
likely peptide among all the possible ones (including the chimeric ones).

Finally we point out that the basic method we adopted for ORF prediction may generate some
spurious peptides, and some of the assembled ORFs may be not real proteins. Those spurious
peptides may not cause serious problems in applications such as the homology search based
annotations as used in this paper. However, we should not neglect their impact on other types
of applications, such as comparison of the number of protein clusters (families) among different
metagenomic datasets. In the latter case, we may need to rely on non-homology based
approaches to filter out the spurious peptides.

5. CONCLUSION
We present a novel ORFome assembly approach to metagenomics data analysis. The
application of this method on four metagenomics datasets achieved promising results. Even
with low coverage short reads from these datasets, our method has assembled many long
peptides, which can hit annotated proteins by similarity searching that are not detectable
otherwise. The ORFome assembly provides a useful tool to retrieve rich information from
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metagenomic sequencing reads, and it shows potential to facilitate an accurate assessment of
the species and functional diversity in metagenomics.
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Fig. 1.
A schematic comparison of the ORFome assembly approach with the Whole Genome
Assembly (WGA) pipeline for the metagenomic sequence analysis. Both approaches attempt
to characterize the protein coding genes in the shotgun sequencing reads from the metagenomic
analysis of an environmental sample containing a number of different microorganisms (the
reads are shown as double-barreled, as currently several NGS techniques are capable of
generating such data; however, some early metagnomics projects, including the datasets used
in this paper, did not produce double-barreled sequencing reads, and thus the scaffolding step
is not feasible) (a). The whole genome assembly (WGS) pipeline (b-d) first assembles the reads
into contigs and scaffolds, and then annotates the genes in the assembled sequences. In
comparison, ORFome assembly approach (e-g) first applies gene finding in the unassembled
reads, and then assembles only those annotated (partial) ORFs into peptides. These peptides
may be further connected to form scaffolds if there are mate-pairs available from double-
barreled sequencing (g).
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Fig. 2.
A synthetic example for the ORFome assembly resulting into a protein family graph. Two
homologous proteins are encoded in the metagenome. Due to the short read length, it is difficult
to reconstruct the complete sequences of these two proteins. The EULER-ORFA approach
assembles them into a protein family graph, in which the common and distinct parts between
two proteins are represented by separate edges, and each protein corresponds to a path in the
graph.
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Fig. 3.
Comparison of the MetaORFA performance using different length cutoffs of input ORFs as
shown in the total number of long assembled peptides (of at least 60aa)(a), and the length of
the longest peptide (b).

Ye and Tang Page 13

J Bioinform Comput Biol. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
A long peptide with 155 aa (contig196081, highlighted in bold line) assembled from 18 putative
ORFs (represented as thin lines below the contig) in the Gulf of Mexico dataset shows strong
similarity with proteins in IMG database with known function (a). (b) shows the BLAST
alignment between the peptide and the PhoH-like protein from Roseophage SIO1 in IMG
database.
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Fig. 5.
Detailed comparison of the total number of read hits in IMG database using unassembled and
the total number of read hits including those read hits belonging to the assembled peptides at
different BLAST E-value cutoffs. The deviation between the two lines indicates the gain of
read hits by using assembled peptides from the ORFome assembly.
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Fig. 6.
A peptide involving 11 synonymous polymorphic sites (starting from position 30, ending at
position 60) assembled from the Sargasso Sea dataset. In the graph, the aligned protein
sequences are shown on the top and the corresponding DNA sequences are shown on the
bottom; the mutations are highlighted in bold and italic (if there are only two sequences
covering the site, one arbitrary codon is highlighted).
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Table 2

Summary of the family annotation of assembled peptides versus unassembled reads for the four ocean virus
datasets

Sample Family Add-on Example

Arctic Ocean 598 34 PTHR22748

Sargasso Sea 270 5 PTHR11527

Coast of British Columbia 361 9 PTHR10566

Gulf of Mexico 438 25 PTHR17630

The “Family” column lists the total number of protein families that are found from unassembled reads. The “Add-on” column lists the additional
PANTHER protein families that are detected by using assembled peptides. The last column gives a few examples of the additional protein families
(or functions) that are annotated based the assembled peptides only: PTHR22748, AP endonuclease (E-value = 5.4e-12); PTHR11527 (subfamily
SF15), heat shock protein 16 (E-value = 1.5e-07); PTHR10566 (subfamily SF7), ubiquinone biosynthesis protein AARF (E.coli)/ABC (Yeast)-related
(E-value = 7.3e-11); PTHR17630 (subfamily SF20), carboxymethylenebutenolidase (Evalue = 4.7e-08) .
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