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Metal ions have a major effect on the metabolic processes in cells either as inhibitors
or as integral components of enzymes. The inhibition of enzymes can take place either
through the inhibition of gene expression or through inhibition of protein function. A
particularly interesting example of the effect of a metal ion on metabolism is the observed
inhibition of Krebs cycle and alteration of energy metabolism by zinc (II) cations. In this
particular case metal ion inhibition of enzyme is linked to one of the major functions of
prostate cells of accumulation and excretion of citrate. Experimental results have shown
that increase in concentration of zinc (II) in prostate cells effectively blocks progression
of a part of the Krebs cycle leading to change in the concentration of several metabolites
with largest effect in the accumulation of citrate. Based on previously reported experi-

mental results, several distinct mechanisms for zinc (II) inhibition of Krebs cycle were
proposed. In order to determine the precise mechanism of inhibition in this system, a
mathematical model of glycolysis and Krebs cycle was constructed. Three different types
of inhibition were analyzed, including competitive and uncompetitive inhibition as well
as inhibition through the alteration of the expression level of m-aconitase. The effects
of different inhibition models on metabolite concentrations were investigated as a time
course simulation of the system of reactions. Several kinetic parameters in the model
were optimized in order to best resemble experimental measurements. The simulation
shows that only competitive inhibition leads to an agreement with experimental data.

Keywords: Inhibition; pathway modeling; Krebs cycle; glycolysis; prostate metabolism;
metal inhibition; prostate cancer; cancer metabolism; TCA; energy metabolism.
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1. Introduction

Understanding an organism’s metabolism at a system level and obtaining quantita-

tive predictions for the different metabolic variables requires the identification and

modelling of the physicochemical as well as regulatory constraints.1,2 An impor-

tant regulatory route in metabolism is the inhibition of enzymes with metal ions

either as part of normal cellular function or through exposure to toxic metals.3 The

effect of these metal regulators is thus far overlooked in computational and systems

biology level studies of cellular pathways and networks.

The effect of zinc (II) ions on Krebs cycle is a very important example of metal

ion regulation of metabolism. Human prostate secretory epithelial cells have the

uniquely specialized function of accumulating and secreting extremely high levels

of citrate. It has been proposed that their ability to accumulate high cellular lev-

els of zinc leads to inhibition of citrate oxidation, leading to the observed high

levels of citrate.4–11 In prostate cancer, the malignant cells undergo a metabolic

transformation from zinc accumulating–citrate-producing to citrate-oxidizing cells

metabolically more closely related to normal cells of other tissues. In fact, epidemi-

ological studies have demonstrated an association between zinc (II) concentration

and prostate cancer development.12 Based on experimental results, the inhibition of

the enzyme m-aconitase (ACO2) by zinc (II) is hypothesized to be the major reason

for altered metabolism in prostate cells leading to a higher citrate concentration

relative to other normal as well as prostate cancer cells.11 The malignant process

in prostate involves as yet unknown changes that lead to reduced zinc ion concen-

tration and a change in metabolism towards citrate oxidation rather than export.

The analysis of Krebs cycle metabolism in mitochondria of various cell lines showed

that increased levels of zinc (II) ion lead to an increased level of mitochondrial and

cytoplasmic citrate.4–9 The in vivo as well as ex vivo analysis of prostate tissues

also shows that normal tissues have much higher levels of citrate relative to the

prostate cancer tissues.13 In fact the oxidation of citrate in prostate cancer is used

for magnetic resonance spectroscopic diagnosis of prostate cancer as it is recently

reviewed in Ref. 14. The specific type of inhibition effect of zinc is still however

not understood, with some published experimental work proposing a competitive

inhibition route11 and other published work indicating that zinc is affecting gene

expression of m-aconitase and in this way regulating its function.10 In addition,

high levels of substrate present in the system make an uncompetitive inhibition a

possible route as well.

Quantitative system level models of biological networks provide a method for

testing experimentally derived hypotheses. These models generally aim to cap-

ture the underlying structure, dynamics and detailed mechanisms of their exper-

imental counterparts in a manner that recapitulates known behaviors, provides

means for understanding these behaviors and also predicts previously unmeasured

or new behaviors.1,2,15–18 The potential of mathematical models in describing

biological systems is well understood and there are several software tools that

allow system level modelling of networks.2 Different aspects of Krebs cycle where
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amongst the first biological processes modeled.25,26 The network models are now

increasingly being utilized for prediction, analysis and parameter determination

as well as experiment validation with some recent examples being the descrip-

tion of glucose-stimulated insulin secretion16 and receptor-tyrosine-kinase–activated

MAPK pathway.17

Three different avenues for zinc inhibition of the Krebs cycle were investigated

in this study. First was the competitive inhibition suggested by the experimental

work of Costello et al.11; second was the model of inhibition through the effect on

m-aconitase expression suggested by Tsui et al.10 Finally, we have tried uncom-

petitive inhibition model which is a form of enzyme inhibition where the inhibitor

binds to an already established enzyme and substrate complex. Ordinary differential

equation (ODE) models of glycolysis and the Krebs cycle including molecular shut-

tling across the mitochondrial membrane were developed. Concentration changes

of 38 metabolites were calculated at different concentrations of zinc for the three

different inhibition models. The simulation results were compared with a range of

previously published experimental results leading to a determination of the route

for inhibition.

In this paper we present the importance of the inclusion of metals and other

cellular inhibitors in kinetic models of biological pathways. Further, the goal of this

work was to show the ability of kinetic models of metabolic processes to analyze

inhibitor effects. The strategy in this case was based on a kinetic modeling approach

which takes into account both in vitro data on individual enzymes and in vivo data

characterizing metabolite concentration. Finally, the developed model was used for

the determination of most probable inhibition type. In the future this inhibition

mechanism will be further investigated both experimentally and theoretically in

order to optimize kinetic parameters and thus to obtain more accurate information

about metabolic fluxes. Also, further analysis needs to focus on the investigation

of molecular binding mechanism for this inhibition process.

2. Model

The basic components of the model which include glycolysis, Krebs cycle and trans-

port across the mitochondrial membrane are illustrated in Fig. 1.

All metabolic reactions are described in terms of kinetic equations which deter-

mine the change of metabolite concentrations as a function of time.1,2 The compo-

nents of the model are kinetic parameters and state variables. The model consists

of a system of ordinary nonlinear differential equations (ODE) with 21 enzymatic

reactions, 39 metabolic state variables and 147 parameters. The rate equations

inside the mitochondrion follow complex reaction mechanisms such as Ping-Pong,

Bi Bi Ordered Bi Bi, etc. The change in the concentration of a certain metabolite

[mi] over time is determined as the difference between the sum of reaction rates

producing mi and sum of rates of reactions consuming mi; i.e.,

d[mi]

dt
=

∑
vproduction −

∑
vconsumption. (1)
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Fig. 1. Schematic representation of pathways included in the model. Individual reactions are
labeled R1 to R21. Details of individual reactions, i.e. reaction kinetics as well as kinetic parameters
and full names of metabolites, are provided in Supplementary Material.

The simulation is performed by solving the differential equation:

d[mi]

dt
= f([mi], t), mt=0 = m0.

Reaction rate equations as well as initial concentration for metabolites, m0, and

kinetic parameters are primarily obtained from the literature16,18 and are listed

in Supplementary Material. The concentrations of glucose and zinc are set to be

constant in each calculation. Two compartments included in the model are the

mitochondrial matrix and the cytoplasm surrounding the mitochondrion. Path-

way Hunter Tool19 was used for metabolite choke point analysis. Choke points are

defined as biochemically essential points in the network and thus it is crucially

important to include them in the network model.

The major addition to this model is the inclusion and the analysis of the effect

of zinc on the oxidation of citrate to isocitrate (reaction R1 in Fig. 1) through inhi-

bition of the enzyme m-aconitase which is catalyzing this process. Three different

types of inhibition were tested.

First, we considered direct reduction of m-aconitase concentration through inhi-

bition of gene expression. In this approach we used previously suggested rate

equation for citrate ⇋ isocitrate reaction18 with changing concentration of the
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enzyme ACO:

v =
ACO × (kcf kp[Cit ] − kcrks[Iso Cit ])

(ks[Iso Cit ] + kp[Cit] + kskp)
, (2)

where kcf = 20.47, kp = 1.1e−4, kcr = 31.44 and ks = 5e−4 are previously deter-

mined kinetic parameters.16,18 ACO2 is the concentration of m-aconitase estimated

in the literature to 3.86e−4mM. Various microarray data show only minor changes

in ACO2 gene expression across different tissues. The prostate normal and can-

cer measurements provided by Singh et al.20 include measurement of expression

level for ACO2 gene. Although there is variation of expression of this gene across

different prostate normal and cancer samples, there is an overall trend of higher

expression in tumour samples. The overall fold change between average prostate

tumour and normal expression levels in this dataset is 1.22. Therefore in the model

we have tested the effect of ACO2 concentration change of 1.22 fold as is observed in

prostate tumours. The effect of large, 10 times increase and decrease of expression

of ACO2 is also investigated and presented.

Second, we tested a general competitive inhibition model at the point of enzyme–

substrate binding. The equation for competitive inhibition is derived from the reac-

tion path:

E + S + I ⇋ EI + S ⇋ ES + I → E + P + I.

The kinetic equation can be derived following the steady state assumption for the

concentration of each enzyme species, E, EI, ES, and is:

v =
vmax × [Cit ]

[Cit ] + km(1 + [Zn]
ki

)
, (3)

where Vmax = 1e−6; Km = 5e−5; Ki = 7e−6 are the parameters calculated from

experimental results.11 In this model we have tested different concentrations of

zinc, [Zn], within the range that was previously obtained experimentally for dif-

ferent cell types. The largest concentration observed in prostate normal cells was

approximately 1mM.

Finally, we tested the uncompetitive inhibition. The kinetic equation for this

type of inhibition is derived from the reaction path:

E + S + I ⇋ ES + I ⇋ EP + I → E + P + I

↿⇂

ESI

This inhibition route is often utilized in the presence of a large concentration of

substrate as is the case in prostate cells. The kinetic equation derived from this

model of inhibition is:

v =
vmax × [Cit ]

km + [Cit ](1 + [Zn]
ki

)
. (4)
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The values of kinetic parameters were the same as in the competitive inhibition

model.

All models were implemented, simulated and analyzed using Matlab (The Mat-

works, Natick, Massachusets, USA) computing environment. All calculations were

performed on desktop PC. Differential equation calculations were performed using

Ode15s solver.

3. Results

The model provides time variation information for 38 metabolites in addition to

zinc. Previous experimental measurements were primarily focused on the concen-

tration measurements for citrate, isocitrate and lactate. The model determined

variations in the concentration of these metabolites and the results are shown in

Figs. 2–4. Figure 2 shows the variation and the final concentrations (long-term

limit at 10,000s simulation time) for mitochondrial and cytoplasm citrate (Cit-m

(a) (b)

Fig. 2. Concentration changes in citrate, isocitrate and lactate at two different concentrations
of Zn in competitive inhibition model. (a) High zinc concentration (1 mM) — normal prostate
cell, and (b) low zinc concentration (0.15 mM) — prostate cancer cell. Tables in (a) and (b)
provide the concentrations for zinc used in the model as well as final, long-term limit, concentra-
tions for lactate (Lac), mitochondrial citrate (Cit-m), cytoplasmic citrate (Cit-c) and IsoCitrate
(IsoCit).
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and Cit-c), lactate and isocitrate for two different concentrations of zinc using the

competitive inhibition model for the effect of zinc.

The rate constants for the reactions IsoCitrate → Oxoglutarate (R2, Fig. 1) and

Pyruvate → Lactate (R8, Fig. 1) were optimized to give, for low concentrations

of zinc, better agreement with experimental measurements, i.e. Citrate/IsoCitrate

ratio of approximately 10 and comparable concentrations of Lactic acid and

Citrate.5,11

The effect of zinc on citrate, isocitrate and lactate concentrations with the

uncompetitive inhibition model is presented in Fig. 3.

Finally, Fig. 4 shows the same concentration changes of the metabolites as

in Figs. 3 and 4 at different concentrations of m-aconitase following the model

described in Eq. (2). In this model the effect of zinc is assumed to be on the expres-

sion of m-aconitase gene rather than directly on m-aconitase enzymatic function.

We have used the originally proposed model for Krebs cycle.16 The concentration of

m-aconitase in this model was 3.86e−4mM. From microarray measurements20 we

(a) (b)

Fig. 3. Concentration changes in citrate, isocitrate and lactate at two different concentrations of
zinc. (a) High zinc concentration (1 mM) — normal prostate cell, and (b) low zinc concentration
(0.15 mM) — prostate cancer cell. The inhibition of m-aconitase with zinc is modeled here as

uncompetitive.
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(a) (b)

Fig. 4. Concentration changes in citrate, lactate and isocitrate at two different concentrations of
m-aconitase. Although only minor expression changes in ACO2 gene are observed in this example,
we have modeled metabolite concentration changes at different ACO2 concentrations. (a) 10 fold
decreased expression of ACO2; (b) concentration of ACO2 observed in nonprostate cells.

have determined that in normal prostate cells relative to tumour cells there is a 1.22-

fold decrease in concentration of m-aconitase mRNA. The effect of this change is

negligible on the concentrations of metabolites and even 10-fold decrease in ACO2

enzyme causes only minor concentration change. With the 10-fold concentration

reduction, the Citrate/Isocitrate ratio changes from 36 to 39 (Fig. 4).

For the competitive model concentrations were determined for citrate, isocitrate

and lactate at 14 different concentrations of zinc within the range of 0 to 1.95mM.

The results are presented in Fig. 5.

4. Discussion

The models presented here demonstrate the effects of the inclusion of one inhibitor

of one reaction step on the whole metabolic system. As could be expected, different

avenues for inhibition lead to distinct overall effects on the modeled system as well

as different concentration changes of specific metabolites. All three kinetic models

resulted in a change in citrate concentration following the increase of zinc concen-

tration as well as in the change in the citrate/isocitrate ratio. The comparisons of

the citrate/isocitrate ratios obtained from three computational models of inhibition

with the experimental results allowed determination of the most probable route for

aconitase inhibition.

The published experimental analysis of prostate tissues has shown that zinc (II)

ion concentration in prostate cells is 2–20 folds higher than in other cell. At the
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Fig. 5. Variation of metabolites cytoplasmic citrate (Cit-c), mitochondrial citrate (Cit-m), lactate
(Lac) and IsoCitrate (IsoCit) with zinc in a competitive inhibition model.

same time the citrate/isocitrate ratio in prostate cells is determined to be of the

order of 30/1 in comparison to 10/1 in other cells. The in vivo measurements of

prostate normal and prostate cancer cells have further shown a significant change

in the concentration of citrate and only small change of concentration of lactate

in two prostate cell phenotypes.13 Furthermore, we have determined from microar-

ray analysis of prostate normal and cancer tissues that the concentration of m-

aconitase gene changes up to approximately 1.22 times between cancer and normal

tissues.20

The experimentally observed changes in zinc or aconitase concentrations were

included in three different models for aconitase inhibition, namely competitive,

uncompetitive and gene expression inhibition. Kinetic parameters for reactions of

isocitrate and lactate (reactions R2 and R18 in Fig. 1) were optimized from the val-

ues published for Homo sapiens cell lines in order to get experimentally observed val-

ues for the citrate-to-isocitrate ratio. Competitive inhibition model led to a change

in citrate/isocitrate ratio from 36 for a zinc concentration of 1 mM to ratio of

approximately 6 for an approximately 7-fold reduction in zinc concentration. These

values correspond very well with the experimentally determined citrate/isocitrate

ratio level changes with variation of zinc concentration.5,11 Additionally, the com-

petitive inhibition model shows only minor changes in lactate concentrations. This

is once again in agreement with experimental observations obtained by in vivo

magnetic resonance spectroscopy. In the uncompetitive model, the large concentra-

tion of zinc leads to the citrate/isocitrate ratio of 41, which is comparable to the

experimentally observed values of about 30. However, the reduction of zinc con-

centration leads to the dramatic increase of citrate oxidation. The 7-fold decrease
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in zinc concentration leads to the citrate/isocitrate ratio of 0.57 which is signifi-

cantly lower than the ratio of about 10 that was observed in prostate cancer as

well as non-prostate normal cells. The method for zinc inhibition of citrate oxida-

tion proposed by Tsui10 through the effect on the m-aconitase gene expression was

also explored. In this model the reaction kinetic for citrate oxidation previously

utilized for other cell types16,18 is employed and the effect of zinc is explored by

changing concentrations of the enzyme. The initial concentration of m-aconitase of

3.86e−4mM was previously published for normal, nonprostate cells that have low

zinc ion concentrations. In this case the citrate-to-isocitrate ratio at low concentra-

tions of zinc is approximately 36 — significantly higher than ratio measured in the

conditions of low concentration of zinc. The concentration of m-aconitase is lower

in normal prostate cells but is only 1.22 times lower as determined from microarray

data. This small change in m-aconitase in the model does not lead to any signifi-

cant change in the citrate-to-isocitrate ration. In fact, even the tenfold reduction

of m-aconitase concentration leads to the citrate-to-isocitrate ratio of 39 which is

once again higher than observed in normal prostate cells and only insignificantly

different than the ratio determined for higher concentrations of ACO2. The exact

citrate/isocitrate ratio for high or low levels of ACO2 can possibly be obtained by

optimization of kinetic parameters, in order to fit the experimental values better.

However, the insensitivity of this model to large concentration changes of ACO2,

in fact much larger concentration changes than observed experimentally, shows the

inability of this inhibition route to explain the effect of zinc (II) on Krebs cycle.

From these simulations, it can be suggested that the competitive inhibition

model mirrors the behavior observed experimentally in terms of relative citrate-to-

isocitrate concentration as well as concentration changes for different metabolites.

The dependence of citrate, lactate and isocitrate on zinc, as obtained from the

model with competitive inhibition (Fig. 5), matches very well the values observed

experimentally. Absolute value differences between this simulation and the experi-

mental results are expected and clearly show that further optimization of parame-

ters is necessary through a combination of computational and focused experimental

measurements.

There is a growing understanding of the relevance of metabolism in cancer devel-

opment.22 The glycolysis-citrate-lipogenesis pathway is understood to be a major

source of synthetic and bioenergetic requirements that are essential for growth and

proliferation of tumour cells.23 In the case of prostate tissue and prostate can-

cer development, specific changes to the glycolysis and tricarboxyl acid (TCA)

cycle are crucially important.9 Previous analyses of glycolysis and TCA pathways

resulted in highly detailed models.16,18,25,26 However, the effect of zinc inhibition

on one of the TCA cycle enzymes was never included in computational models.

The inhibition of m-aconitase by high concentration of zinc is a major feature in

normal prostate cells. In cancer cells, zinc concentration is reduced to the level of

non-prostate cells and the m-acotinase function is restored. The presented model

of TCA cycle and glycolysis pathway which includes competitive inhibition of



The Importance of Inhibitors for the Simulation of Metabolic Processes 713

zinc (II) ion on m-aconitase simulates the behavior of prostate and normal cells

correctly.

5. Conclusions and Future Prospects

This study compares three different routes for Krebs cycle inhibition by zinc ion.

The results obtained from these models indicate competitive inhibition as the only

possible route for Krebs cycle inhibition through the inhibition of m-aconitase.

The accumulation of citrate caused by the inhibition of m-aconitase is one of the

major features of normal prostate cells function. At the same time, one of the

characteristics of prostate cancer cells is the reduction in the concentration of cit-

rate. Therefore, detailed description of Krebs cycle including this major regulatory

mechanism is essential for understanding of the metabolism of prostate normal as

well as cancer cells. The determination of the type of enzyme inhibition caused by

high concentration of zinc ion allows further molecular mechanics analysis of the

interaction between zinc ions and m-aconitase. Future work of molecular models

will allow development of specific m-aconitase inhibitors. In addition, the study

presented here shows the importance of inclusion of the effect of metal ions on

enzymes in pathway and network models, as without this step it would not have

been possible to get a true presentation of cellular metabolism.

Zinc ions are known to have regulatory effects on other targets in metabolism

and energy production pathways as well as in other cellular process.24 At the same

time other factors, such as other metal ions and small molecules, are likely to have

a regulatory role on the metabolic processes. Therefore, a complete prediction of

concentration changes of metabolites requires testing of the inhibitory effect of

zinc ion on other reactions as well as careful consideration of the effects of other

major regulators. Future work will aim to expand the system in order to include

other related pathways and interactions. In addition, we will work on improving

the accuracy of the model by focused experimental measurement of metabolite

concentrations and kinetic factors in the prostate cellular system.
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