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ABSTRACT:

Volcano plot displays unstandardized signal (e.g. log-fold-change) against noise-adjusted/standardized sig-

nal (e.g. t-statistic or − log10(p-value) from the t test). We review the basic and an interactive use of the

volcano plot, and its crucial role in understanding the regularized t-statistic. The joint filtering gene selection

criterion based on regularized statistics has a curved discriminant line in the volcano plot, as compared to

the two perpendicular lines for the “double filtering” criterion. This review attempts to provide an unifying

framework for discussions on alternative measures of differential expression, improved methods for estimating

variance, and visual display of a microarray analysis result. We also discuss the possibility to apply volcano

plots to other fields beyond microarray.
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1 Introduction

The microarray technology allows simultaneous measurements of messenger RNA level of

thousands of genes, and its adoption dramatic changes the way biological and biomedical

research is carried out [1–7]. In particular, the more labor-extensive real-time PCR can be

1
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replaced by microarray profiling in a preliminary round, as the general agreement between

the two methods is considered to be good [8–10]. As an emerging technology, there are still

many issues to be worked out, such as the consistency among different platforms [11–19] as

well as their integration [20], batch effect [21–26], level, source, and distribution of noise [27–

35], limit of dynamic range [36], etc. However, with better probe design [7, 37], better data

quality control [38–40], better data reporting requirement [41, 42], better normalization scheme

[43–50], and better understanding of the study goals, these are not insurmountable problems.

Analyzing large amount of expression data from microarray experiments was thought as a

major challenge in early days, but this problem was over-estimated. First, the amount of data

from thousands of genes and a hundred or so samples is still much smaller than, e.g., the data

generated by whole-genome association studies [51] or next generation sequencing [52], and a

moderately sized computer might handle the data without problems. Second, no brand-new

statistical learning methods have to be invented and existing machine learning techniques [53]

could already extract meaningful information from the data. Third, the problem of larger

number of false positives due to the large number of genes being profiled has been addressed

and properly handled [54–58]. Fourth, in using multiple genes in constructing classifiers, the

well known “large p, small n” problem (large number of variables with small number of sample

size) can be solved by the variable/subset/feature/model selection techniques [59–66]

One of the most common applications of microarrays is “differential expression” profiling:

identifying mRNAs/genes whose expression level is very different under two conditions, e.g.,

with disease and being healthy. Not only could differentially expressed genes provide insight

into the biological processes involved in disease etiology, but also these can be used as biomark-

ers for diagnosis [67–71] or prognosis [72–75]. The phrase “differential expression” means that

the averaged expression level of a mRNA/gene in one phenotype-specific group is much larger

or smaller than that in another group. However, the terms “average” and “larger/smaller” are

up to various interpretations.

There are at least two definitions of average: arithmetic mean (E[x] = 1

n

∑n
i=1 xi) or geomet-

ric mean (G[x] = (x1x2 · · ·xn)
1/n). For fluorescence-light-intensity based microarray data x, it

is a common practice to logarithmically transform the data x′ = log10(x), because x
′ fits better

than x to a normal distribution (without losing generality, the base of the logarithmic func-
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tion is chosen at 10 in this review). Then E[x′] = 1

n

∑n
i=1 log10(xi) = log10(x1x2 · · ·xn)

1/n =

log10 G[x], connecting the two means. Yet another measure of average is the median, being

unaffected by log-transformation, which has been used in [76].

Deciding “how large one group’s average is compared to the other” is no less trivial. Fold-

change and t-statistic are the two main choices for measuring differential expression. In mi-

croarray analysis field, these two measures have been in and out of favor at various time.

Fold-change had been commonly used before it was pointed out that it did not take the noise

into account [77, 78]. t-statistic enjoyed its acceptance until another round of papers suggesting

that genes selected by fold-change are more consistent among different microarray platforms

than those selected by t-statistics [39, 79, 80]. This result led to more discussion on the rela-

tionship between reproducibility and accuracy [81–83], and between biological and statistical

signal [84].

Despite development of sophisticated methods for microarray analysis, one question we

analysts hear the most from the end-users is “should I use fold-change or t-statistic?”. The

problem with fold-change is that the same fold-change value will be less impressive if the

variance is large. Although t-statistic aims at taking the noise level into account, the practical

problem is that the variance may not be estimated reliably, especially when the sample size is

small. An answer provided by this review is basically “use both”: the volcano plot is exactly

such a visual tool to display both fold-change and t-statistic.

This review is organized as follows: Section 2 establishes a relationship between the fold-

change and t-statistic; Section 3 introduces volcano plots and its basic usage; Section 4 summa-

rizes the idea of “moderated”, “regularized”, “penalized” statistics by adding an extra positive

term to the sample-based variance or standard error; Section 5 discusses the regularized statis-

tics in the context of volcano plot; Section 6 surveys the software packages in Bioconductor

that are relevant to this review; Section 7 introduces the idea of stratified volcano plots; and

the final Section is the discussion and conclusion section.

All plots in this paper use the same published dataset containing 37 case/patient samples

and 18 control samples, with 48804 probesets in Illumina platform, normalized by “quantile

normalization”.
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Figure 1: Histogram of expression levels of a microarray experiment: (A) in linear scale. (B) x-axis in a log

scale. (C) for log-transformed expression.

2 Fold-change and t-statistic: signal and signal-to-noise ratio

Fold-change (FC) and t-statistic seem to be two very different quantities: one is intuitive

and a straightforward measure of differences, another is rooted deeply in the field of statistics.

However, with logarithm transformation there is a relationship between the two.

The need for logarithmic transformation can be illustrated by Fig.1. Fig.1 shows the three

histograms of fluorescence-light intensity E of a microarray experiment which is indicative of

the number of mRNA copies hybridized to the probe, thus a measure of mRNA expression level:

(A) in regular scale, (B) in log-transformed x-axis scale, and (C) of log10(E) itself. Without

the logarithmic transformation, the distribution of E is very long-tailed, and very skewed

(asymmetric). With the log transformation (or other similar transformations in a recognition

that log transformation cannot handle zero level [85]), even though the distribution is still not
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Figure 2: Comparison of two definitions of fold-changes. The x is FC = 〈E1〉/〈E0〉 in log scale. The y is the

log10(FC′) = 〈log10 E1〉 − 〈log10 E0〉 (Eq.(1)).

a perfect normal distribution, it is much more “normal-like”.

There are other advantages of a log transformation, e.g. variance is more stablized and

does not tend to increase with the mean; it is consistent with a psycho-physics law relating

human sensation to the logarithm of the stimulus level [86]. Note that for non-fluorescence-

light-density-based technologies for measuring expression level, such as digital expression and

RNA-seq [87] we lose this ground for justifying log-transformation. The decision on whether to

use a transformation to become a normal distribution, or whether to model the data by another

distribution completely, such as the Poisson distribution, is empirically based on the histogram

of the data [88–99]. However, we also notice that Poisson distribution is approximately a

normal distribution when its mean is large.

The simplest definition of FC is: FC = 〈E1〉/〈E0〉, where the arithmetic average is over

the fluorescence-light intensity of samples in group 1 (e.g. diseased group) and group 0 (e.g.

control group). The logarithm of FC is: log10(FC) = log10〈E1〉/〈E0〉 = log10〈E1〉−log10〈E0〉 ≈
〈log10E1〉 − 〈log10E0〉. Reversing the order of averaging and log-transformation operations
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usually does not lead to identical values, so the above expression is only an approximation.

We can have a second definition of FC called FC’:

log10(FC ′) = 〈log10E1〉 − 〈log10 E0〉 (1)

Fig.2 shows that FC is mostly similar to FC’ and we do not distinguish the two definitions.

The same conclusion is also reached in [84].

The t-test is an example of statistical testing whose goal is to compare any observed result

with chance events. The statistic used in t-test (e.g. [100]) is the difference of arithmetic

means in two groups divided (“standardized”) by the estimated standard deviation of that

difference. Standard deviation of parameters (e.g., sample mean, sample variance) is often

called “standard error” (SE) [100]. One requirement for using t-test is that values in two

groups roughly follow normal distributions. As discussed above, we need to log transform the

fluorescence light intensity E to have a normal-like distribution, so t-statistic is:

t =
〈log10E1〉 − 〈log10E0〉
SE〈log10 E1〉−〈log10 E0〉

=
〈log10 E1〉 − 〈log10E0〉

√

s2
1

n1

+
s2
0

n0

(2)

where the second formula was due to Welsh [101], who assumed different variances in group

1 and group 0 and provided an estimation of SE (s21 and s20 are the estimated variances (of

log10(E)) of group 1 and 0, and n1, n0 are number of samples in the two groups).

Comparing Eq.(1) and Eq.(2), we establish a relationship between log10(FC) and t-statistic:

t is log10(FC) standardized by the noise level as measured by the pooled standard error. There

are parallel contrasts of measures in other fields, such as the signal-to-noise ratio (vs. signal

by itself) in engineering, standardized effect size (vs unstandardized effect size) in statistical

behavioral science, quantitative psychology, epidemiology, and meta-analysis [102]. The exact

relationships between them, however, require more careful examination; for example, t-statistic

increases with sample n by the factor of
√
n when it is not zero, whereas standardized effect

size does not change with the sample size.

3 Volcano plot and its basic use

If the noise level is known or can be reliably estimated, it is of course preferable to measure
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Figure 3: (A) x-axis: t-statistic, y-axis: − log10(p-value) of t-test. (B) Volcano plot using t-statistic as the

y-axis (x-axis is log10FC). (C) Volcano plot using − log10(p-value) as the y-axis.

differential expression that takes the noise level into account, such as t-statistic. In reality,

not only is smaller sample sizes an issue for variance estimation, but also, if systematic error

exists, we may not improve the situation by increasing the sample size. For example, it is

observed that noise level during the hybridization stage is much higher than that during the

sample preparation or amplification stage [103]. If a probe sequence for an mRNA is highly

represented in the genome, cross-hybridization can be a cause of error and variation, and the

probability of this error does not seem to decrease with large sample sizes.

Facing this reality, we might just display and use both FC and t-statistic, and this is

what the volcano plot does. Volcano plot most often refers to the scatter-plot with − log10(p-

value) from the t-test as the y-axis and (log10)FC as the x-axis [104–106]. However, t-statistic

and − log10(p-value) are highly correlated (see Fig.3(A)), and whether the t (Fig.3(B)) or

− log10(p-value) (Fig.3(C)) is used in the y-axis, the outcome is very similar. The reason why

t and p-value from t-test is not one-to-one corresponding (Fig.3(A)) is because in determining

p-value, Welsh’s t distribution has a degree of freedom parameter which also depends on the
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data [107].
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Figure 4: Illustration of the double filtering criterion (upper-left and upper-right corners shaded by sparse

lines), FC-only single-gene criterion (lower-left and lower-right corners shaded by dense lines), and t-test-only

single-gene criterion (“football goalpost” in the middle shaded by dense horizontal lines).

The basic use of volcano plots is to survey genes that could be selected by one differential

expression criterion but not the other. The familiar “double filtering” [108] used by many

groups is to set the gene selection criterion by: (i) | log10 FC| > log10 FC0; and (ii) t > t0.

Equivalently, it can be defined as (i) | log10 FC| > log10 FC0; and (ii) p−value < p0. FC0,

t0, p0 are preset threshold values for fold-change, t-statistic, and t-test p-value. The double

filtering criterion corresponds to a cutting out of two rectangular corners away from the origin

(Fig.4). The single filtering criterion corresponds to delineating (away from origin) regions by

horizontal and vertical lines. Then genes chosen by the single but not by the double filtering

criterion are in the three disjointed regions shaded in Fig.4.

These genes in the shaded area are often not selected for good reasons: (i) genes with large

fold-change but nevertheless insignificant test result may be caused by a few outliers with

very large values in one group. (ii) genes with significant test result (large t’s and small t-test

p-values) but low fold change could be false signal due to low variance, which can be caused
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Figure 5: (A) a gene with a significant t-test result (p-value = 7.7 × 10−17) but only moderate fold-change

(FC=1.38). (B) a gene with large fold-change (FC=2.66) but weaker t-test significance (p-value= 3 ×10−3).

by batch effect [109], or low expression level (to be discussed later). A volcano plot allows us

to pick some genes from the shaded regions in Fig.4 for further examination.

To understand better the difference between the two single-gene filtering criteria (horizontal

and vertical lines in Fig.4), we show two examples of genes selected by the two single filtering

criteria in Fig.5. Fig.5(A) is a gene selected by t-test p-value only (p = 7.7× 10−17) while FC

is lower than 2 (FC=1.379). If the true variance is indeed low and we estimated it correctly

from 17 control samples, then we trust that this gene is significantly differentially expressed.

On the other hand, The gene in Fig.5(B) is selected by FC only (FC=2.66) whereas the

p-value is only 3×10−3. This gene can still be a significantly differential-expression if the large

variance in the case group is due to something else, e.g. sub-disease types. Statistical test

alone should not be the only foundation for selecting potentially relevant genes, and volcano

plot is a way to pick genes that may not lead to the smallest p-values.

Interactively selecting genes in a volcano plot can be done in the statistical package R

(http://www.r-project.org/). The R function for this purpose is identify, which identifies the

closest point in a scatter plot to the position clicked by the mouse button. Then information

about that point can be printed on screen or in an R session window. Because volcano plot

http://www.r-project.org/
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FC <- c(1.03, 2.4, 0.49, 0.6, 1.3, 0.9)

pv <- c(0.5, 3E-7, 2E-4, 5E-3, 0.08, 4E-4)

gname <- c("AAC","ARG1", "CCDC4", "DEFB4", "EIF1", "GNAQ")

x <- log10(FC)

y <- -log10(pv)

plot(x,y)

identify(x,y, n=6, labels=gname)

Figure 6: An R script illustrating the use of interactive plotting function identify in volcano plots. Suppose

there are 6 genes whose fold-changes (FC) and t-test p-values (pv) are given, and the gene names are in gname.

After the logarithmic transformations, the volcano plot is drawn by plot(x,y).

is usually crowded already, one would prefer to avoid printing long character strings to the

screen – a gene name should be often appropriate (human gene names are standardized by

HUGO gene nomenclature committee: http://www.genenames.org/). An illustrative R script

for using identify is included in Fig.6.

Volcano plot does not show the average expression level of a gene, thought this information

can be added using colors (X Hua, X Yan, S Yancopoulos, Y Yang, W Li, “STRAT-VOL:

stratified volcano plot for microarray expression analysis”, unpublished draft). Nevertheless,

the relative magnitude of standard deviation of a gene is provided by the volcano plot, as it

is proportional to the tangent of the angle between the point-to-origin line and the y-axis (see

Section 5 for more details).

4 Robust variance estimation and regularization

The essential difference between FC and t-statistic is the consideration of statistical noise

(variance), but the challenge behind it is how to estimate the variance from a small number of

samples [110]. Since variance is calculated around the mean which is also estimated, one idea

for robust variance estimation is to iteratively remove outliers then calculate mean and variance

[111]. The drawback of this approach is that the number of samples used is further reduced.

Artificially increasing the sample size by resampling (Bootstrapping) has been considered [112].

Yet another approach is to use non-parametric tests in place of the t-test (e.g. Mann-Whitney-

http://www.genenames.org/
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Wilcoxon test), so that the variance estimation is not required.

The line of thoughts we pursue for a robust variance estimation is motivated by the typical

“large p small n” situation for a microarray experiment [60]. Though the sample size n could

be small, the number of genes p is nevertheless large, and that large number of genes make

it possible for a reliable estimation of common variance cross all genes [76, 107, 113, 114], at

least for the control group.

One main worry about variance estimation is that its value can be low due to the low

expression level. To avoid the estimated variance being too low, we may add a constant

“penalty” term s0 to the sample-estimated standard deviation [115] (under a not-so-informative

name “SAM” for significance analysis of microarrays):

tsam =
〈log10 E1〉 − 〈log10E0〉

√

s2
1

n1

+
s2
0

n0

+ s0

. (3)

The penalty is also called “regularization”, reflecting the prior belief (in the Bayesian frame-

work) that variance estimation across different genes should exhibit certain smooth behavior

[53, 78].

A popular software package called SAM (Significance Analysis of Microarrays) [116] (http://www-stat.stanford.edu/˜tibs/SAM/

version 4.0, July 2010) is based on Eq.(3). Another R implementation of the same idea, siggenes

[117], is available at

http://www.bioconductor.org/packages/release/bioc/html/siggenes.html. In SAM [116], the

s0 value is chosen to minimize the variability of tsam with respect to the gene-specific standard

error term of
√

s21/n1 + s20/n0. In [118], s0 is set at the 90% percentile of standard errors of

all genes. In practice, any small value of s0 can stabilize the variance estimation.

A Bayesian derivation of the extra term in variance estimation is derived in [78]. In this

framework, mean, variance of a normal distribution (of log10(x) = x′) has a prior distribution,

as well as a posterior distribution after data are observed. For convenience, the inverse Gamma

distribution for the variance parameter and the normal distribution for the mean parameter

is chosen to ensure both prior and posterior distribution to have the same functional form. It

can be shown that (the mean of) posterior variance is a weighted sum of prior variance (σ2
0)

http://www-stat.stanford.edu/~tibs/SAM/
http://www.bioconductor.org/packages/release/bioc/html/siggenes.html
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and the sample-estimated of variance s2 [78]:

E[σ2
posterior] = ws2 + (1− w)σ2

0 (4)

where weight w (n is the sample size, ν0 is the prior degree of freedom for the inverse Gammar

distribution):

w =
n− 1

ν0 + n− 2
(5)

tend to close to 1 for larger sample size.

The moderated or regularized variance σ2
posterior in Eq.(4) has the effect of drawing gene-

specific variance towards the middle, since its change from the sample estimated variance:

σ2
posterior − s2 = ws2 + (1− w)σ2

0 − s2 = −(1 − w)(s2 − σ2
0), (6)

is negative when s2 > σ2
0 and positive when s2 < σ2

0 . Note that in Eq.(4), it is the variance

that is additive, whereas it is standard error that is additive in the denominator of Eq.(3).

However, the idea of moderation/regularization by adding an extra positive and constant term

to the sample-estimated one is the same.

In fact, there is a second extra term in variance estimation if the sample-estimated mean

is not a good estimate of the true mean [78]. For this reason, it is reasonable to consider

removing outliers to make sure the mean is estimated robustly [111].

5 Regularized t-statistic as a joint filtering criterion

What is the relationship between robust variance estimation or regularization discussed in

the last section and the volcano plot? If FC can be considered to be the special case when

variances of all genes are equal, t-statistic of course contains gene-specific variance, then tsam in

Eq.(3) is somewhere in-between [108]. Rewrite |〈log10 E1〉 − 〈log10E0〉| as δ (log-fold-change),
√

s21/n1 + s20/n0 as s (standard error), the regularized t-statistic in Eq.(3) can be split into two

terms [108]:

tsam =
δ

s+ s0
=

1

2(s+ s0)
· δ + s

2(s+ s0)
· δ
s

(7)

In other words, tsam is a weighted sum of log10(FC ′) and t-statistic, tsam = aδ+ b(δ/s), where

a = 0.5/(s+ s0), b = 0.5s/(s+ s0).
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Figure 7: Illustration of the regularized t-statistic (tsam) in volcano plot. For a gene with x = δ = log10(FC′) =

0.6 and y = δ/s = t = 3 (or s = 0.2, θ = 5.655o), the forced linear line (under conflicting limits) for s0 = 0.02

is shown. Also shown are the discriminant lines tsam ≥ t0 = 3 at s0 = 0.02, 0.05, 0.1, 0.2. (B) Decreasing t0

when s0 is increased: s0 = 0.02, t0 = 3, s0 = 0.05, t0 = 2.5, s0 = 0.1, t0 = 2, and s0 = 0.2, t0 = 1.5,

Eq.(7) might suggest that tsam is a linear combination of log10(FC ′) and t, and the gene

filtering criterion tsam ≥ t0 discriminant line is a straight line in the volcano plot. However,

this geometric interpretation is incorrect. The first hint comes from the fact that the split of

tsam into two terms in Eq.(7) can also be carried out for t itself: t = (1/2s)δ + (1/2)t. This is

apparently paradoxical as t ≥ t0 without regularization should be the plane above the line of

y = t0, without a contribution from the x-axis. The second hint is from the observation that

the coefficients of “linear function” (a and b) are not constants, but function of the variables

themselves.

The third hint can be seen if you want to draw an actual discriminant straight line: the

y-intercept is obtained in the limit of δ → 0, s → 0, but δ/s > 0. Since x/y = δ/(δ/s) = s,

the standard error s has a simple geometric meaning as tan(θ) where θ is the angle between

the y-axis and the line linking the point and the origin. The above s → 0 limit corresponds to

the point to move closer to the y-axis. Similarly, in order to obtain the x-intercept, the limits

to be taken are δ/s → 0, δ > 0, and s → ∞. This is the limit for the point to move away from

the y-axis to infinity. Interestingly, under these two conflicting limits, both y- and x-intercept
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can be obtained: y-intercept equal to 2t0(1 + s0/s), x-intercept equal to 2st0(1 + s0/s) (see

Fig.7(A)).
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Figure 8: Green, red, green, black dots are the top 100 probes/genes selected by tsam, FC′, t-statistic, and

p-value of t-test. (A) on volcano plot, x: log10(FC′), y: − log10(p-value). (B) x: mean of all samples, y:

standard deviation of all samples. (C) x: mean of control samples, y: standard deviation of control samples.

(D) x: mean of diseased samples, y: standard deviation of diseased samples.

The correct decomposition of tsam splits it into t and s:

tsam =
δ

s+ s0
=

δ

s
(1 +

s0
s
)−1 ≥ t0

or, t ≥ t0(1 +
s0
s
) (8)

In other words, the discriminant line is a curve which moves up for smaller s’s (smaller angles,

smaller FC’s). A large t-statistic but a small FC (the t-filtering only area in Fig.4) is more
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difficult to pass the filtering in Eq.(8). And a large FC without a minimum t-statistic (t0)

(the FC-filtering only area in Fig.4) would not pass the filtering no matter what. These are

very different conclusions when compared to the linear discriminant line illustrated in Fig.7(A)

where a large FC but a small t may still be selected.

Fig.7 also illustrates the effect of s0. Besides the discriminant lines at s0 = 0.02, three more

lines are shown at s0 = 0.05, 0.1, and 0.2, or 20%, 50%, and 100% of s. We may increase s0

while decrease t0 at the same time so that these lines are similar, as shown in Fig.7(B). Under

the condition that the same number of top-ranking genes are selected, the exact value of s0 is

less important than the fact that this term is added (s0 > 0), though Fig.7(B) does show that

with a larger s0 value, more genes with less significance but larger FCs are selected.

Fig.8(A) compares the top 100 genes selected by SAM (regularized t) (blue) with those

selected by FC (red), t-test p-value (black), and t-statistic itself (green). Although there are

certain overlaps among different selection criteria, SAM is able to pick up genes that are

not selected by either FC or t-test p-value alone. To address the question on whether t-test

criterion tends to select genes with low variance and low expression level. Fig.8(B)(C)(D)

show the standard deviation (y-axis) vs. mean (x-axis) for all samples, control samples only,

and diseased (CLL) samples only. Indeed, FC-based criterion tend to select genes with high

variances, t-test based criterion selects relatively low variance genes, and SAM achieves a

balance between the two criteria, selecting genes with intermediate variance values. On the

other hand, there is no strong evidence that any selection criterion tends to select low expression

level genes.

6 Relevant Bioconductor programs

There are many commercial microarray data analysis programs that include volcano plots.

There are also many general graphic packages that intend to handle large number of points,

such as ggplot2 [119]. To make our discussion managable, we limit our summary to Biocon-

ductor programs. Bioconductor site (version 2.10) is a major repository of microarray analysis

softwares written in R (http://www.r-project.org/) [120, 121]. Table 1 lists packages that are

relevant to the discussions in this review, roughly grouped into three types:

http://www.r-project.org/
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• volcano plots: These are straightforward implementations of the scatter plot, with x-axis

usually the log-fold-change and y-axis any other measure of differential expression. We

list packages not only for analyzing fluorescence-light intensity-based mRNA expression

data (Affymetrix, Illumina, etc.), but also for mRNA expression level based on count data

(RNA-seq), and protein expression levels, etc.

• alternative measures of differential expression: The fold-change and t-statistic (or− log10(p-

value), or the regularized t-statistic (SAM), are not the only measures of differential ex-

pression. One large group of alternative measures is the Bayesian calculation of the pos-

terior probability that a gene belong to the differential expression subset (e.g. empirical

Bayes analysis of microarray (EBAM) ). The packages DEDS [122] and GeneSelector [83],

in particular, include large number of these measures (F-statistic, B-statistic, moderated-

F, moderated-t, shrinkage-t, etc.).

• improvement on error/variance estimation: Robust and reliable variance estimations are

at the heart of the dichotomy choices between t and FC. Some functions in Bioconductor

packages directly address this issue, and are listed in Table 1. For example, using varia-

tion among replicated samples, using variance between similar probesets, pooling errors,

removing outliers, etc.

7 Stratified volcano plots by external information

Volcano plot is a 2-dimensional graphic tool, with potentially interesting genes scattered

outward away from the origin. We can make volcano plots even more useful by coloring points

with external information. If that external piece of information is relevant to differential

expression, we can easily recognize the fact by a visual impression of the plot. This coloring of

a volcano plot can be called “stratified volcano plot”. One example is to label all probes/genes

that belong to a particular pathway, cellular component, function, or process coded in gene

ontology (GO) categories [124].

Fig.9 illustrates a stratified volcano plot by marking 1614 probes/genes that are located

on chromosome 6 (red), and 31 probes/genes whose annotation contains the word “cytokine”.
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package functions comments

a4[131] volcanoPlot, topTable, limmaTwoLevels A4 for “automatic Affymetrix array analysis”

ABarray doPlotFCT, doLPE AB for “Applied Biosystems”

FCT for “fold-change and t-statistic”

DEDS for “differential expression via distance synthesis”

ArrayTools selectSigGene double filtering criterion

baySeq[91] plotPosteriors Bayesian, RNA-seq

cummeRbund csVolcano

DEDS[122] deds.stat/deds.stat.linkC include: t, F, FC, SAM, modt, modF, B

DEDS for “differential expression via distance synthesis”

SAM for “significance analysis of microarrays”

DEGseq[92] samWrapper RNA-seq

DESeq[90] estimateDispersion, nbinomTest RNA-seq

diffGeneAnalysis[132] biasAdjust

GeneSelector[83] RankingBaldiLong/Ebam/FC/FoxDimmic, EBAM for “empirical Bayes analysis of microarrays”

FoxDimmic/Limma/Permutation/Sam, the function names preceded by “Ranking”

ShrinkageT/SoftthresholdT/Tstat

WelchT/WilcEbam/Wilcoxon,

limma[133] lmFit, eBayes, volcanoplot, topTable Bayesian

maanova[134] volcano

maDB drawVolcanoPlot

nudge[135] nudge1 Bayesian

oneChannelGUI dfMAPlot draw from limma’s topTable

pickgene[136] pickgene

plgem[137] plgem.obsStn, plgem.deg PLGEM for “power law global error model”

STN for “signal-to-noise (ratio)”

DEG for “differentially expressed genes”

PLPE[138] lpe.paired protein level. PLPE for “paired local pooled error”

plw[139] plw, topRankSummary PLW for “probe-level locally-moderated weighted (t-test)”

puma[140] pumaDE, calculateLimma, topGenes PU for “propagating uncertainty”

RankProd[141] RP, RPadvance, topGene RP for “rank product”

SAGx[142] samrocN

samr SAM. not distributed through bioconductor

siggenes[117] sam, d.stat, ebam SAM, Bayesian

XDE[143] xde, calculateBayesianEffectSize Bayesian

xps17 plotVolcano XPS for “eXpression Profiling System”

Table 1:
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From the stratified volcano plot, we can easily identify interesting candidate genes involving

cytokines such as CLCF1 (cardiotrophin-like cytokine factor 1, p-value= 1.4×10−16, FC’=0.22),

SOCS2 (suppressor of cytokine signaling 2, FC’= 0.11, p-value= 3.8×10−8), SOCS3 (suppressor

of cytokine signaling 3, FC’=0.28, p-value= 6.2×10−8), etc. The visual impression immediately

shows the top-ranking cytokine-linked genes are all down-regulated instead of up-regulated.
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Figure 9: Stratified volcano plot: probes/genes on chromosome 6 are marked by red, and those with “cytokine”

in gene annotation is marked by blue.

8 Discussion and conclusions

Finding effect measure of differential expression remains an active research topic [123].

However, the idea of regularization (adding a small positive term to the observed standard

error to standardize the differential expression signal) has already successfully combined the

two most well known quantities, log-fold-change and t-statistic, in gene filtering. And volcano

plot is a natural visual tool to illustrate this procedure.

Simultaneous displaying of noise-level-standardized signal and unstandardized one can also

be useful beyond the field of microarray. In genetic association studies, the association signal
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of a single-nucleotide polymorphism (SNP) is usually measured by two quantities. One is the

odds-ratio (OR) of the 2-by-2 count table with disease status as row and two alleles as column.

OR is not standardized by the noise level or sample size, though the 95% confidence interval

of OR does become narrower for larger sample sizes thus lower level of chance events [125].

On the other hand, the chi-square statistic or the p-value of the chi-square (χ2) test strongly

dependent on sample size, thus chance event probability. In fact, the chi-square statistics is

proportional to the total number of samples for a SNP that contains association signals.

Besides using OR in x-axis (in log scale), another choice is to use the allele frequency

difference in case and control group. Denote the four counts in the 2-by-2 table (row for case

control status, columns for presence of absence of a particular allele/genotype) in case-control

association analysis are a, b, c, d, log10OR is log10(ad) − log10(bc), whereas allele frequency

difference is a/(a+ b)− c/(c+ d) = (ad− bc)(a+ b)−1(c+ d)−1. In other words, the difference

between the two choices is whether ad and bc are compared in the logarithmic or regular scale.

It is rare for volcano plots being applied to genetic association studies (some examples can

be found in [126, 127]). We believe that many extensions and applications of volcano plots

in microarray analysis can be equally useful in genetic association analysis. For example, the

joint filtering criterion, the stratified volcano plot coloring external pieces of information, and

uncovering of systematic patterns when points are colored by other information. We have

found that the location of a SNP on the volcano plot is intrinsically related to its minor allele

frequency. This will provide further insight on how one should balance the chi-square test

result and odds-ratio in selecting genetically associated genes.

In conclusion, volcano plot, together with heatmaps [128], MA plots [129], and cluster/PCA

plots [109, 130], is among the most useful and most frequently used visual tools in microarray

analysis, Volcano plots display both noise-level-standardized and unstandardized signal con-

cerning differential expression of mRNA levels. Regularized test statistic and joint filtering

have an intuitive geometric interpretation in volcano plot, and its advantage over double filter

criterion of genes can be easily understood. As a scattering plot, volcano plot can incorporate

other external information, such as gene annotation, to aid the hypothesis generating process

concerning a disease or phenotype.
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[140] R.D. Pearson, X. Liu, G. Sanguinetti, M. Milo, N.D. Lawrence, M. Rattray, “puma: a Bioconductor

package for propagating uncertainty in microarray analysis”, BMC Bioinf. 10, 211 (2009).

[141] R. Breitling, P. Armengaul, A. Amtmann, P. Herzyk, “Rank products: a simple, yet powerful new

method to detect differentially regulated genes in replicated microarray experiments”, FEBS Lett. 573,

83-92 (2004).

[142] P. Broberg, “Statistical methods for ranking differentially expressed genes”, Genome Biol. 4, R41 (2004).

[143] R.B. Scharpf, H. Tjelmeland, G. Parmigiani, A.B. Nobel, “A Bayesian model for cross-study differential

gene expression”, J Am. Stat. Assoc. 104, 1295-1310 (2009).


	1 Introduction
	2 Fold-change and t-statistic: signal and signal-to-noise ratio
	3 Volcano plot and its basic use
	4 Robust variance estimation and regularization
	5 Regularized t-statistic as a joint filtering criterion
	6 Relevant Bioconductor programs
	7 Stratified volcano plots by external information
	8 Discussion and conclusions

