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Abstract
Evolutionary aspects of the genetic architecture of common human diseases remain enigmatic.
The results of more than 200 genome-wide association studies published to date were compiled in
a catalog (http://www.genome.gov/26525384/). We used cataloged data to determine whether
derived (mutant) alleles are associated with higher risk of human disease more frequently than
ancestral alleles. We placed all allelic variants into ten categories of population frequency (0%–
100%) in 10% increments. We then analyzed the relationship between allelic frequency,
evolutionary status of the polymorphic site (ancestral versus derived), and disease risk status (risk
versus protection). Given the same population frequency, derived alleles are more likely to be risk
associated than ancestral alleles, as are rarer alleles. The common interpretation of this association
is that negative selection prevents fixation of the risk variants. However, disease stratification as
early or late onset suggests that weak selection against risk-associated alleles is unlikely a major
factor shaping genetic architecture of common diseases. Our results clearly suggest that the
duration of existence of an allele in a population is more important. Alleles existing longer tend to
show weaker linkage disequilibrium with neighboring alleles, including the causal alleles, and are
less likely to tag a SNP-disease association.
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Web Resources
The URLs for data presented herein are as follows.

• Catalog of published genome-wide association studies: http://www.genome.govds/26525384/

• dbSNP FTP site: ftp://ftp.ncbi.nih.gov/snp/
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1. Introduction
Genome-wide association studies (GWASs) are a powerful tool for uncovering the genetic
architecture of complex human diseases.1–3 The results of more than 200 GWASs have been
published to date.3 Although the ultimate goal of each individual GWAS is to identify
single-nucleotide polymorphisms (SNPs) associated with increased risk, the results of
GWASs can be used to address a broader range of questions, such as those related to the
evolution of the genetic architecture of common human diseases. A recent article by
Lachance4 demonstrated that GWAS-identified disease-associated alleles are enriched with
derived low-frequency variants. We and other researchers5–7 interpreted this association as
indicating that weak negative selection may hold the risk alleles at low frequencies,
increasing their proportion among rare alleles.

In this study, we used recent GWAS data to address the question of whether ancestral or
derived (mutant) alleles are associated with a greater risk (i.e. serve as a risk allele)
randomly. The answer to this question is important for understanding the evolutionary
history of the genetic control of human diseases.

We conducted separate analyses of early-onset (potentially undergoing negative selection)
and late-onset (likely to be evolutionarily neutral) diseases. Contrary to the currently
accepted point of view, our results suggest that negative selection is unlikely a major factor
underlying the association between allelic frequency and the probability of the allele to be a
risk variant. We hypothesized that the duration of existence of the allele (i.e., the time since
its origin) has a profound effect on the detection of an association between a SNP and a
disease. An original linkage disequilibrium (LD) block associated with a novel allele breaks
down as the allele ages, making it more difficult to detect an association by using tagging
SNPs.

2. Materials and Methods
We accessed an open-access database of GWAS results3 on February 9, 2011. Information
on the ancestral allele of the SNPs was retrieved from the dbSNP. All alleles of SNPs shown
to be significant in a GWAS were placed into 10 categories according to their population
frequency (from 0% to 100%, in 10% increments). We separately estimated the proportions
of risk alleles in each category, further stratified the alleles as ancestral or derived, and
estimated the proportions of risk alleles in these two groups. Next we stratified the diseases
as early or late onset and separately analyzed them. An early-onset disease was defined as
one with a typical onset before the age of 30 years. We chose this threshold because disease
onset before 30 years may affect the survival and fertility of the carrier. The early-onset
diseases include a number of autoimmune diseases, such as celiac disease, Crohn disease,
inflammatory bowel disease, Kawasaki disease, psoriasis, type 1 diabetes, and asthma. The
late-onset diseases include most cancers, Alzheimer disease, coronary disease, and
rheumatoid arthritis.

We used computer simulation to estimate the existence time of alleles from different
frequency categories. Our simulation model was described in detail earlier.8 Assuming a
diploid Wright–Fisher population of a constant size of 1000, we simulated the age of derived
alleles conditioning on their frequencies. A derived allele was either neutral or under a
positive or purifying selection with selection coefficient s. We used an additive model and
assigned fitness values 1, 1-s, 1-2s for genotypes AA, Aa, and aa, where a is derived. We
simulated the age of alleles with frequencies from 0 to 1 at an interval of 0.01, each with 100
replicates, and grouped the results into bins of 0.1.
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For statistical analysis, we used SAS statistical software (SAS Institute, Inc., Cary, North
Carolina, USA).

3. Results
Overall, 351 SNPs were used as being significant in at least one GWAS. Figure 1 shows the
proportions of risk alleles in the 10 frequency categories. The proportion was highest among
rare alleles and decreased as the population frequency increased. Note that the curve has
left–right and top–bottom symmetry. This is because for biallelic SNPs, the alleles are
complementary, so that if allele 1 is a derived, risk-associated allele with a frequency of 0.2,
the alternative allele will be ancestral and protective, with a frequency of 0.8. The right side
of the distribution, therefore, can be deduced from the left side. However, we show the
whole spectrum because it provides a better picture of the relationships between allele
frequency and risk. We found that among minor alleles (defined as those with a frequency of
<0.5), the proportion of risk alleles was 245/351 = 0.70 ± 0.02, whereas the proportion of
risk-associated variants among major alleles was 106=351 = 0.3 ± 0.02.

When we analyzed ancestral and derived alleles separately, we found that 0.96 ± 0.01 of
derived alleles with a frequency ≤0.1 were risk associated, whereas the proportion of risk
alleles among rare ancestral variants was only 0.67 ± 0.04 (Fig. 2). Among the minor alleles,
the mean proportions of the risk variants were 0.84 ± 0.05 for the derived and 0.63 ± 0.02
for the ancestral alleles.

The analysis of early- versus late-onset diseases (Fig. 3) showed that early-onset diseases
have a larger difference between ancestral and derived alleles. For the late-onset diseases,
the proportion of the risk alleles drops faster when frequency increases, compared to the
proportion for the early-onset diseases. The less dramatic overall drop in the proportion of
the risk alleles as frequency increases in early-onset diseases is driven by ancestral alleles
for which the trend is opposite to derived alleles.

4. Discussion
Our analyses showed that risk alleles are mostly derived, low-frequency (i.e. minor)
variants. These results are consistent with other studies, both theoretical and experimental,
that have demonstrated that derived alleles generally have a lower frequency than ancestral
variants.9–12 The analysis stratified by ancestral/derived status and frequency demonstrated
that rare derived alleles have a higher proportion of risk variants compared to ancestral
alleles.

Mutations causing early-onset diseases are subject to negative selection. Such mutations,
however, can reach substantial population frequency because of the effects of random
factors like genetic drift and founder and bottleneck effects. It is generally accepted that for
late-onset diseases, the negative selection will less likely affect allelic frequency, though
some studies13,14 demonstrate that negative selection may also affect allele frequencies in
late-onset diseases.

If we assume that mutations causing late-onset diseases are mostly neutral, they will have
stochastic dynamics and may completely replace ancestral alleles, leading to a situation in
which the risk allele is the derived (common) one and the protective allele is the ancestral
(rare) one. In this case, the proportion of risk alleles is expected to be the same (or similar)
for ancestral and derived variants as was observed in our analysis (Fig. 3). The proportion of
the disease-associated variants for the late-onset diseases was notably higher for rare alleles
regardless of their status as ancestral or derived.
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Because selection is less important in the case of late-onset diseases, there should be another
reason why rare alleles have a greater chance to be risk variants. It is generally accepted that
the majority of SNPs detected by GWASs are not causal variants but tagging SNPs linked to
unknown/ungenotyped causal variants.15 The linkage disequilibrium (LD) between tagging
and causal SNPs leads to co-segregation of causal and tagging SNPs, allowing the detection
of the tagging SNP by association analysis. Rare recombination events between causal and
tagging SNPs break down the LD over time, making it more difficult to detect an
association. We hypothesize that the breakdown of an original LD block near a tagging SNP
may explain differences in the proportions of risk-associated alleles between early- and late-
onset diseases. Our computer simulation shows that the existence time increases faster for
neutral alleles than for selected ones when we move from low to high frequency categories
(Fig. 4). The sharper increase in existence time for neutral alleles parallels the sharper
decrease in the proportion of the risk-associated alleles for the late-onset diseases,
suggesting that these two observations may be mechanistically connected.

If we assume that variants associated with early-onset diseases are under weak negative
selection, then it takes shorter for a slightly deleterious mutation to reach the same
population frequency it takes for a neutral or beneficial mutation.16 Rare derived slightly
deleterious alleles exist in a population for a shorter time than neutral alleles, so LD blocks
around a causal variant are better preserved and therefore may be detected more easily by a
GWAS. This may be the reason why the proportion of risk alleles is high in the group of rare
derived alleles. The existence time for a rare ancestral allele is longer than it is for a rare
derived allele. This suggests a weak LD and, as a result, a lower probability of detection.

In conclusion, the results of our analysis suggest that the existence time of the allele is a
major factor underlying the enrichment of rare variants for risk alleles. The practical
outcome of this analysis is that selecting evolutionarily young allelic variants to use in
GWASs may be beneficial because such variants are more likely to tag unbroken LD blocks
and therefore have greater power to detect blocks with causal SNPs.
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Fig. 1.
Proportions of the risk alleles in the different allele-frequency groups. Error bars = standard
error.
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Fig. 2.
Proportions of the risk alleles in the different allele-frequency groups of the ancestral and
derived alleles. Error bars = standard error.
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Fig. 3.
The proportions of risk variants in different frequency groups. Left panel, early-onset
diseases; right panel, late-onset diseases. Error bars = standard error.
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Fig. 4.
The existence time of alleles in different frequency categories. The number of generations
was used as a measure of existence time. Blue line: neutral model, red line: negative
selection.
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