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Abstract

Alignment of peaks in electropherograms or chromatograms obtained from experimental 

techniques such capillary electrophoresis remains a significant challenge. Accurate alignment is 

critical for accurate interpretation of various classes of nucleic acid analysis technologies, 

including conventional DNA sequencing and new RNA structure probing technologies. We have 

developed an automated alignment algorithm based on dynamic programming to align multiple-

peak time-series data both globally and locally. This algorithm relies on a new peak similarity 

measure and other features such as time penalties, global constraints, and minimum-similarity 

scores and results in rapid, highly accurate comparisons of complex time-series datasets. As a 

demonstrative case study, the developed algorithm was applied to analysis of capillary 

electrophoresis data from a Selective 2′-Hydroxyl Acylation analyzed by Primer Extension 

(SHAPE) evaluation of RNA secondary structure. The algorithm yielded robust analysis of 

challenging SHAPE probing data. Experimental results show that the peak alignment algorithm 

corrects retention time variation efficiently due to the presence of fluorescent tags on fragments 

and differences in capillaries. The tools can be readily adapted for the analysis other biological 

datasets in which peak retention times vary.
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1. INTRODUCTION

Bioinformatics is the application of computer sciences and mathematics to the management 

and analysis of complex datasets to aid the solution of biological problems [1]. Alignment of 

time-scaled and time-shifted signals is often necessary in the analysis of datasets obtained in 

biological experiments. [2]. Time shifts can occur when a signal is measured as a function of 

time for two or more datasets with small or large-scale differences in experimental 

conditions across repeated samples, which could be due to factors including temperature or 

voltage changes, instrument imperfections, or variations in flow rates. Thus comparison of 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Bioinform Comput Biol. Author manuscript; available in PMC 2015 August 07.

Published in final edited form as:
J Bioinform Comput Biol. 2013 October ; 11(5): 1350011. doi:10.1142/S021972001350011X.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different samples can be complicated by differences in their time scales or axes or the 

differences in the lengths of sample vectors.

Many different methods based on dynamic programming approaches have been used to 

correct drift in retentions times. One of the well-known algorithms used to compare two 

discrete signals is Dynamic Time Warping (DTW) [3]. DTW is a method of solving 

complex problems by breaking them down into simpler steps [12]. Although it was 

originally developed for speech recognition [3], classical DTW and its variations have also 

been applied to many other fields, and DTW is a fast and efficient method for alignment of 

time-dependent sequences. For example, dynamic programming has been applied to 

alignment of peaks in gas chromatography-mass spectrometry (GC-MS) spectra [9], and 

dynamic programming and a similarity function based on position, width, and amplitude are 

used to align nuclear magnetic resonance(NMR) spectra [10]. Methods for analysis of peak 

similarity have been reviewed in [2].

The data generated by capillary electrophoresis (CE) of nucleic acid fragments can be 

corrected automatically for shifts in retention time using a dynamic programming approach. 

The dynamic programming approach attempts to find an optimal alignment by considering 

three options for each location in the sequence and selecting the best option before 

considering the next location [3]. Each iteration considers the alignment of two bases (one 

from each sequence) or the insertion of a gap in either one. The best of the three is chosen 

and the system then moves on to the next element in the sequence. To handle this efficiently, 

the computer program maintains scoring and trace back matrices using a cost matrix. The 

Needleman-Wunsch (NW) [4] and DTW [5,6] approaches are widely used to align CE data, 

but neither approach optimally handles data collected over time.

In this work, we have developed a local and global peak alignment algorithm to solve the 

shift problems in capillary electrophoresis data obtained for samples collected over a time 

course. To improve the performance, the new algorithm combines properties of the NW and 

DTW algorithms. This algorithm creates mobility shift corrections that effectively solve the 

retention time shift problem. In addition, preprocessing tools and further optimizations were 

developed to improve the performance of the algorithm. To demonstrate the utility of the 

algorithm, it was applied to analysis of CE data from RNA structure-probing experiments 

using Selective 2′-Hydroxyl Acylation Analyzed by Primer Extension (SHAPE) [8].

1.1 Overview of the SHAPE Experiment

SHAPE substantially increases the accuracy of RNA secondary structure prediction [7, 17] 

by providing measurements of RNA flexibility at single-nucleotide resolution. SHAPE 

reagents are electrophilic small molecules that preferentially react to form 2′-O-adducts with 

flexible nucleotides that are typically found in single-stranded regions [17]. SHAPE 

experiments can be quantified using CE to resolve fluorescently labeled cDNA libraries. In 

order to quantify SHAPE experiments, cDNA libraries are prepared from RNA samples that 

have been treated with SHAPE reagent or left untreated. These cDNA libraries are mixed 

with a common dideoxy sequencing ladder and run in the capillary. The result is four 

individual channels of fluorescence intensity versus elution time data: plus SHAPE reagent 

(RX), without SHAPE reagent or background (BG), and two sequencing ladders (SL1 and 
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SL2) (Figure 1a). A sample of raw data is shown in Figure 1b. A plot of normalized SHAPE 

reactivities is shown in Figure 1c. Nucleotides with higher SHAPE reactivity (>0.7) are 

flexible and likely to be single-stranded, and those with lower SHAPE reactivity (<0.3) are 

constrained and likely to be base-paired or involved in tertiary contacts.

Analysis of CE data obtained from SHAPE experiments presents two challenges. First, each 

reaction is analyzed using a DNA primer labeled with a different fluorophore. The dyes alter 

electrophoretic migration rates such that cDNAs of the same length have slightly different 

elution times when labeled with different fluorophores. Secondly, experimental conditions 

in each capillary may differ, resulting in retention time differences for cDNAs of the same 

length.

ShapeFinder software [8] has been widely used to analyze SHAPE data. Mobility shift tools 

are an important part of the analysis of raw SHAPE capillary electrophoresis data in 

ShapeFinder. ShapeFinder has several mobility shift tools that can be combined serially to 

correct for time offsets. However, parameters for the mobility shift require manual 

intervention and the process is time consuming to implement (about 15–30 minutes per set 

of traces) and must be optimized for each RNA sequence. We set out to automate this 

process using a combination of dynamic programming and preprocessing tools.

2. METHODS

2.1 Preprocessing

2.1.1 Smoothing—Several preprocessing techniques are used to improve performance of 

the alignment algorithm. Since the raw data have some high frequency noise, a triangular 

smoothing method is applied. The triangular smoothing filter is similar to a boxcar (i.e., 

rectangular) filter, except that it uses a triangularly weighted smoothing function [11]. This 

filter more effectively reduces high-frequency noise than does the boxcar filter. The 

smoothing coefficients are symmetrically balanced around the central point. Since peaks are 

the most important measurement objective, it is important to preserve the peaks and their 

related features in the signal. Triangular smoothing reduces noise and preserves the peak 

shapes.

2.1.2 Enhancement—To localize the peaks more accurately and to detect low-quality 

peaks, a second-derivative-based resolution enhancement technique may be applied after 

smoothing. In this enhancement method, the second derivative of the input signal is 

subtracted from the input. A useful property of this procedure is that it does not change the 

total peak area, because the total area under the curve of the second derivative of a peak-

shaped signal is zero [11].

2.1.3 Baseline Adjustment—The baseline adjustment algorithm is used to remove 

background signal and to normalize the baseline. In this algorithm, the minimum signal 

intensity points within the specified window size (typically ten times the average peak 

width) are found, and then the baseline signal is obtained by applying linear interpolation to 

these minimum points. Finally, the baseline drift is subtracted from the data signal to obtain 

the baseline-adjusted signal [7].
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2.1.4 Normalization—Experimentally derived data commonly have experimental biases 

that stem from variations in concentrations of chemicals used in experiments or from 

imperfections in the detection equipment. In order to compare experiments, it is necessary to 

remove such biases; this process is usually accomplished through normalization. In this 

study, the commonly employed zero-mean, unit-variance statistical normalization is used. 

The mean of the data is subtracted from each data point and then these differences are 

divided by the standard deviation to obtain normalized data.

2.2 Peak Detection and Similarity

Peak detection is performed by looking for the downward zero-crossing in the first 

derivative of the time-series data sets. Peak maxima are identified as the points where 

derivatives transition from positive to negative. After detection of peak positions, peaks are 

represented in a list. Each time series is represented by its own peak list, in which peaks are 

ordered by their retention times. Retention time, amplitude, and shape characterize each 

peak in a peak list. The peak shape is obtained from interpolation (using cubic spline) of the 

intensity functions at the midpoints of several (usually 3) consecutive time points on each 

side of the peak center, thus deriving a peak shape function defined over a number of time 

points (N=2kn+1; here k is used as a factor to increase the number of points).

In order to represent the peaks, we employ two vectors A = [a1,a2,…, an]and B = (b1,b2,

…,bn ) both of length n. A and B vectors represent the points in the peaks. The point ai is the 

ith element of the time series A. The length of the vectors used to represent the peaks must 

be same to obtain similarity.

A number of different functions have been used to measure similarity of two peaks. For 

example, Robinson et al. [9] used cosine similarity, which measures similarity between two 

vectors as the cosine of the angle between them. The peak amplitude and width have also 

been used [2], and our approach is based on this latter method. Our approach differs from 

the previously described method in that we use the derivative of the peak shape function 

instead of the actual data points to find the similarity. Derivatives retain the information 

about peak shapes while reducing differences due to baseline drift. The peak similarity 

function is:

(1)

Note that the range of the peak similarity value should be between −1 and +1. Additional 

mathematical operations may be used if necessary to correct the range. The result of 

equation (1) is multiplied by 2 and then subtracted by 1 to obtain same similarity range.

2.3 Global Peak Alignment

After applying preprocessing tools and peak detection to two different datasets, we have two 

peak lists PLA = [a1, a2,…, aN ] and PLB = [b1, b2,…, bN] that contain N and M peaks, 

respectively. The alignment of the peak lists PLA and PLB refers to the establishment of a 
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one-to-one correspondence between the peaks from the two lists with the possibility that any 

peak from one list has no matching peak in the other list. The alignment between the peak 

lists PLA and PLB can be represented by a list of peak pairs where pairing implies peak-to-

peak matching. For example,

(2)

where a1 is matched with b1 and a2 is matched with b2. In this example, the peak a3 from 

PLA does not have a matching peak in PLB. The number of elements in the above list will 

depend on the optimal alignments, but cannot be less than the lesser of Nor M and cannot 

exceed N+M.

The developed global peak alignment algorithm is based on dynamic programming. Some 

features of NW sequence alignment approach [4] and of DTW [5] were adapted to improve 

the performance. The global peak alignment algorithm includes three main steps:

1. Construction of a cost matrix using peak similarity,

2. Calculation of the score and the traceback matrices,

3. Deduction of the alignment from the traceback matrix.

2.3.1 Construction of the Cost Matrix—The cost matrix (CM) size is (N+1)×(M+1), 

where N and M are the lengths of the first and second peak lists, respectively. The CM is 

obtained by applying a peak similarity function to PLA and PLB one peak at a time. In this 

way, the score between the peaks are obtained.

After measuring similarity of two peaks, a time penalty function can be applied:

(3)

Here i and j are retention times of the two peaks. T is the retention time tolerance parameter, 

which determines the importance of retention time to the distance score. In other words, T 

determines the growth rate of the exponential function. T may be between 0 and 1. If T=0 

there is no effect of the retention time on the distance. The time difference penalty will be 

more effective for higher values of T. For the examples shown here, T was 0.05.

2.3.2 The Score and Traceback Matrices—In this step, a two-dimensional score 

matrix (SM), with rows indexed with the peaks of one peak list and columns indexed with 

the peaks of the other peak list, is initialized. The cells of the score matrix are filled based on 

the peak similarity function and the gap penalty (GP). The SM maintains the current 

alignment score for the particular alignments. Since it is possible to insert a gap at the 

beginning of a sequence, the size of the scoring matrix is (N+1)×(M+1).

The peak similarity function gives the “cost” of matching any two peaks. In addition to this, 

the dynamic programming requires a GP to be defined. Since the peak similarity range is 

[−1,1], the meaningful GP value should be below 0. A low value of GP would favor the 
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insertion of gaps even when peaks are similar, a high value of GP would favor the alignment 

of peaks that are actually different. In this study, GP was −1.

The first step in the construction of SM is to establish the first column; the possibility of an 

initial gap in the alignment must be considered. The next step is to fill in each cell in a raster 

scan. There are three choices, and the selection is made by choosing the option that provides 

the maximum value,

(4)

CMm− 1,n− 1 indicates the similarity of the peak am−1 from PLA and the peak bn−1 from PLB, 

and GP is the gap penalty.

It is necessary to keep track of the choices made for each cell. Once the entire SM is filled, it 

will be necessary to use it to extract the optimal alignment. This process uses the traceback 

matrix (TM) to determine which cell was influential in determining the value of the 

subsequent cell. Traceback is the process of deduction of the best alignment from the TM. 

The traceback always begins with the last cell to be filled (i.e., the bottom right cell). One 

moves according to the traceback value written in the cell. There are three possible moves: 

diagonally (toward the top-left corner of the matrix), up, or left. As the SM is created, the 

TM is filled using the selected option in equation (4). If option 0 is selected, the 

corresponding cell in the TM has a value of 0; if option 1, 1; and if option 2, 2.

2.3.3 Extracting the Aligned Peak Lists—The final step is to extract the aligned 

sequences from the TM. The process starts at bottom-right corner of the TM and works 

toward the top-left corner. Thus the aligned peak lists are created from back to front. A 

value of 2 indicates that a letter from both peak lists is matched and the traceback moves up 

and to the left. Each time 1 is encountered, the peak from PLA is aligned with a gap and the 

traceback moves to the left. Each time 0 is encountered, the peak from PLB is aligned with a 

gap and the traceback moves up one location. The traceback is completed when the first 

(topleft) cell of the matrix (cell SM0,0) is reached.

An example of a completed scoring matrix is shown in Figure 2. The aligned peaks are 

shown in gray. The quality of the alignment can be measured by using the cost matrix and 

gap penalty. In this case, the quality of this alignment is taken as the value of the bottom-

right cell of score matrix.

In order to observe the alignment result, a figure is created to show the matched peaks. As 

can be seen clearly in Figure 3, the peaks are aligned correctly.

Some further modifications improved the performance of the peak alignment algorithm. 

Global constraint and minimum similarity scores were used to improve the accuracy of score 

matrix. The imposition of global constraints on the admissible warping paths is an often 

used dynamic programming variant. Such constraints speed up the alignment computations 
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and also prevent pathological alignments by globally controlling the route of the path. Two 

well-known global constraint regions are the Sakoa-Chiba band and the Itakura 

parallelogram [5,6]. In this application, The Sakoe-Chiba band, which runs along the main 

diagonal and has a fixed (horizontal and vertical) width, is used as a global constraint. 

Alignment of time points can be selected only from the defined region. Also, the distance 

function is not calculated for all data points but only in a defined region. This reduces 

execution time. Two peaks will not be aligned if they do not achieve the minimum 

acceptable similarity. In this application, the minimum score was 0.8. During the traceback, 

if the score of the matched peaks below the minimum score, these peak are not matched and 

a gap is inserted to the both peak lists.

2.4 Local Peak Alignment

A global alignment algorithm attempts to align two sequences from tip to tail. The traceback 

begins with attempts to align last two peaks in the strings and ends with attempts to align the 

first two peaks. In contrast, a local alignment algorithm – also known as the Smith-

Waterman algorithm – attempts to find the best substring within the two strings that align. It 

accomplishes this through two modifications to the global alignment protocol. The first is to 

adjust the selection equations such that no negative numbers are accepted:

(5)

The other modification is done in the traceback algorithm. Instead of starting in the lower-

right corner of the traceback matrix, the trace starts at the location with the largest value in 

SM. The trace continues until the fourth choice in above equation is reached. When the 

scoring matrix is created, the first line and column are not initialized.

Local alignment tools find an alignment describing the most similar region within the peak 

lists to be aligned. As can be seen in Figure 4, the shorter peak-based signal is aligned with 

the some part of the longer signal. Local alignment is useful analyses of time-series data to 

find the matched signals.

2.5 Signal Stretching and Compressing

After obtaining matching points, a cubic spline interpolation-based approach is used to 

compress or stretch the signals to obtain the same elution time scale. Cubic splines are 

readily implemented; they are constructed of piecewise third-order polynomials to produce a 

curve that appears to be perfectly smooth [11]. The objective is to fit a cubic spline to data 

points without oscillation, which is one of the common problems in curve fitting. In general, 

the cubic spline provides a good curve fit for arbitrary data points [11]. In case the number 

of points between the consecutive matching points differs (as in the case of gaps in the 

alignment), cubic spline interpolation is used to obtain same number of points.
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3. RESULTS AND DISCUSSION

3.1 Mobility Shift Correction

In a SHAPE experiment, each reaction is analyzed using a DNA primer labeled with a 

different fluorophore. In any separation involving multiple dyes linked to DNA, as is done 

in dideoxy sequencing, the dye molecules alter the relative speed at which the attached DNA 

fragments travel. The overall effect is that DNA fragments of the same length labeled with 

different dyes elute at slightly different times. Correction for mobility shifts must be 

performed accurately to facilitate accurate location and linking of corresponding channels.

Alignment of traces obtained from a capillary gel separation must also correct for 

differences in the properties of dyes used to label each trace. In experiments using 

instruments from ABI, commonly used dyes are VIC, NED, FAM, and JOE. JOE- and 

FAM-labeled fragments have almost identical migration times, as do those labeled with VIC 

and NED, and the fragments labeled with JOE and FAM migrate faster than those labeled 

with the other two dyes. Our procedure for determining the necessary signal shift is 

explained in the following example using FAM for RX and VIC for the SL ladder. Since 

FAM fragments migrate faster than VIC-labeled fragments, the SL signal must be shifted 

left to match the left ends of the two time series. After shifting the SL point-by-point, 

dynamic programming is applied to obtain the match score. The score is calculated using the 

time penalty function (Eq. 3). After calculating the match scores for different shifts, the shift 

with the maximum score is selected and signals are aligned using the signal stretching/

compression approach described in Section 2.3.4. An example of raw data and a resulting 

alignment are shown in Figure 5.

3.2 Capillary Alignment

A second challenge with electrophoresis data is to align data obtained from different 

capillaries. Since the parameters such as temperature and voltage may differ from run to run, 

the same sample may yield traces that vary in fragment retention times or peak intensities. 

Since nucleotide sequence traces (SL1 or SL2) are more similar than traces from samples 

treated with SHAPE reagents (RX and BG), they are used to align the data sets from 

different capillaries. The patterns of the sequence ladders with the same ddNTPs are similar, 

but elution times and intensities are generally not (Figure 6).

The sequence traces are aligned using the algorithm outlined above, combined with an 

additional optimization that controls the widths of the identified and aligned peaks. Since 

peaks are spaced at a fairly regular interval in SHAPE traces, the distance between the 

consecutive peak centers should be similar. Our enhanced algorithm produces excellent peak 

alignments of traces obtained from different capillaries. The aligned sequence traces are then 

used to align the other traces in the capillary.

3.3 Defining Regions of Interest Automatically

The other application of this algorithm is to define region of interest automatically. In 

fluorescent primer-based sequencing, sequence data is collected after the primer peak, which 

is the first wide peak in a trace (see Figure 7). In order to increase the accuracy of the next 
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steps, it is useful to remove the data that do not contain any sequence information. In order 

to find the same region of interest in traces from different capillaries, the peak alignment 

algorithm may be used.

Since each capillary has the same ddNTP-sequencing ladder, SL1 and SL2 signals are used 

to select the same region. After selecting the region of interest in the reference capillary 

manually, the selected data is used to find the same region in the other capillary. The local 

peak alignment algorithm is applied using the peaks in the reference SL1 data and sample 

SL1 data. The maximum value in the scoring matrix gives the best-matched point in both 

data. This maximum value is used to find the region of interest in the sample data. The first 

aligned peak positions are defined as a0 and b0, and the last aligned peaks as a1 and b1 in 

reference SL1 and sample SL1, respectively. The region of interest in the sample data is 

between (b0-a0) and (b1+(N- a1)). Here N is the number of peaks in the sample data.

3.4 Comparison of peak similarly functions

Table 1 gives the performance of the peak similarity functions used in global peak alignment 

algorithm. Data corresponding to over 800 nucleotides from five different SHAPE 

experiments were evaluated. The peak alignment algorithm produced the best results when 

the derivative-mean similarity function was employed.

3.5 Comparison with DTW

As DTW is widely used, we compared the performance of DTW and our algorithm. DTW 

nonlinearly warps the two trajectories in such a way that similar events are aligned and a 

minimum distance between them is obtained. The DTW algorithm finds an optimal match 

between two sequences of feature vectors, which allows for stretched and compressed 

sections of the sequence. DTW works by warping the time axis iteratively until an optimal 

match between the two sequences is found. Accuracy and execution time were determined 

to compare the effectiveness of DTW and our peak alignment algorithm. The DTW 

approach was able to achieve only 87.48% accuracy, whereas our approach was 98.79% 

accurate. The DTW was much faster than the peak alignment algorithm, however. The DTW 

alignment of 5000 time-point, 393 peak traces was completed in 2.39 sec on 2 GHz, 2 GB 

RAM laptop computer; whereas the peak alignment algorithm required 4.28 sec on the same 

system. In practical terms, however, this difference in execution time is insignificant, and 

the accuracy of the new dynamic programming based algorithm is clearly superior. The 

other drawback of DTW approach is that the signals are aligned globally not locally.

3.6 Implementation

All preprocessing tools and signal alignment methods are implemented using version 2.6 of 

Python programming language [13]. NumPy[14] and SciPy[14] packages are used to 

manipulate array and data. NumPy is the fundamental package needed for scientific 

computing with Python. Matplotlib[15] is used to draw the figures. Matplotlib is a Python 

2D plotting library, which produces quality figures in a variety of hardcopy formats and 

interactive environments across platforms. All packages are open-source software and can 

be downloaded at no cost from vendor websites.
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4. CONCLUSION

In this study, a new global and local peak alignment procedure based on dynamic 

programming was developed to automatically align time-series data obtained in SHAPE, 

and other nucleic acid probing and sequencing experiments, resolved by capillary 

electrophoresis. This approach is significantly more accurate than the DTW method. The 

test results prove that the shift problems, which make SHAPE data analysis challenging, are 

solved correctly and efficiently using the algorithms developed in this work. The algorithms 

will be useful in solving time-shift problems in other types of datasets in which peak 

retention times and areas must be compared. These results have encouraged us to begin 

developing fully automated software with a graphical user interface based on the peak 

alignment algorithm described here.
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Figure 1. 
Overview of SHAPE experiment. (A) Microtubes containing cDNA libraries prepared from 

RNA treated with SHAPE reagent or not and a sequencing reaction. cDNA libraries were 

prepared suing the same primer pairs of the same sequences but labeled with different 

fluorophores. (B) Raw SHAPE data obtained from CE. (C) Reactivity of each nucleotide 

after processing. Nucleotides are considered as unreactive, moderately, and highly reactive, 

and colored red, yellow, and black, respectively.

Karabiber Page 12

J Bioinform Comput Biol. Author manuscript; available in PMC 2015 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
An example of a completed scoring matrix. The first column and row of the matrix represent 

the peaks. Here peaks are labeled by their retention time. The result of the alignment is 

shown as a chromatogram in Figure 3.
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Figure 3. 
Result of the peak alignment algorithm for representative RX and BG data. The arrows link 

the matched peaks in PLA and in PLB.
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Figure 4. 
Local alignment was used to match peaks in the shorter tract with those in the longer.
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Figure 5. 
Mobility Shift Correction. (a) The peaks in the same capillary traces (RX, SL) are not 

aligned. (b) Traces of signals in the same capillary after application of the mobility shift 

algorithm.
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Figure 6. 
Alignment of data obtained from different CE analyses.(a) The sequence traces obtained 

from different capillaries are not aligned. (b) Traces from different capillaries are aligned 

after application of the capillary alignment algorithm.
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Figure 7. 
Representation of a region of interest and identification of a primer peak in a raw trace.
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Table 1

Comparison of peak similarly functions

Similarity Function Accuracy

Amplitude [2] 96.78%

Mean [2] 97.99%

Correlation Coefficient [2] 92.87%

Cosines [9] 94.35%

Proposed Derivative-Mean 98.79 %
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