
DYNAFOLD: A DYNAMIC PROGRAMMING APPROACH TO
PROTEIN BACKBONE STRUCTURE DETERMINATION FROM
MINIMAL SETS OF RESIDUAL DIPOLAR COUPLINGS

RISHI MUKHOPADHYAY*, STEPHANIE IRAUSQUIN†, CHRISTOPHER SCHMIDT‡, and
HOMAYOUN VALAFAR§

Department of Computer Science and Engineering, University of South Carolina, Columbia, SC
29208, USA

Abstract

Residual Dipolar Couplings (RDCs) are a source of NMR data that can provide a powerful set of

constraints on the orientation of inter-nuclear vectors, and are quickly becoming a larger part of

the experimental toolset for molecular biologists. However, few reliable protocols exist for the

determination of protein backbone structures from small sets of RDCs. DynaFold is a new

dynamic programming algorithm designed specifically for this task, using minimal sets of RDCs

collected in multiple alignment media. DynaFold was first tested utilizing synthetic data generated

for the N-H, Cα-Hα, and C-N vectors of 1BRF, 1F53, 110M and 3LAY proteins, with up to ±1 Hz

error in 3 alignment media, and was able to produce structures with less than 1.9Å of the original

structures. DynaFold was then tested using experimental data, obtained from the Biological

Magnetic Resonance Bank, for proteins PDBID:1P7E and PDBID:1D3Z using RDC data from

two alignment media. This exercise yielded structures within 1.0Å of their respective published

structures in segments with high data density, and less than 1.9Å over the entire protein. The same

sets of RDC data were also used in comparisons with traditional methods for analysis of RDCs,

which failed to match the accuracy of DynaFold's approach to structure determination.
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Introduction

Traditional experimental methods for protein structure determination include X-ray

crystallography and Nuclear Magnetic Resonance spectroscopy (NMR). Presently, X-ray

crystallography is considered the more mature approach1 and continues to be the most

applied technique2. NMR, on the other hand, is still a relatively young approach3 that allows

for solution-state study of the structure of interest and typically focuses on collecting

Nuclear Overhauser Effect (NOE)4 data as structural restraints. However, not every arbitrary
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target is amenable to either of these experimental methods. This is particularly true for

membrane proteins, which seem to resist either crystallization, or the acquisition of

sufficient numbers of NOEs to uniquely determine their structure. As a result, this important

class of proteins is highly under-represented in the Protein Data Bank (PDB)5. Whereas

most estimates place membrane proteins at between 20 and 30 percent of all open reading

frames in all genomes6, the number of membrane proteins whose structures have been

determined is fewer than 3007,8 as compared to the 82235 structures deposited in the PDB as

of March 20135.

Residual Dipolar Couplings (RDCs) have recently emerged as a promising alternative for

structural study of challenging macromolecules. Although first observed in the 1960's9, it is

only recently that RDCs have been developed as a new, powerful, and cost-effective NMR-

based source of information. In addition, structure determination by RDCs requires less data

acquisition than NOE-based methods. For example, NOEs report mostly on atoms located in

the side-chains; this adds many more dimensions to the search space and is one reason why

significantly more NOE restraints10–12 are required to uniquely determine a protein

structure. RDCs on the other hand can be reported on backbone atoms, allowing for direct

investigation of protein backbone structure. Subsequently, other computational means can

then be deployed for calculating the atomic coordinates of the side-chains13, allowing for

fewer RDC restraints to be acquired for structure determination. RDCs have been the subject

of a number of reviews14–20, and have been used in the study of carbohydrates21–24, nucleic

acids14,25–28 and proteins29–35. More importantly, they have recently demonstrated promise

as a viable approach to the structural characterization of challenging proteins such as

membrane proteins36.

Nearly all NMR analysis programs such as Xplor-NIH37, CNS38, Gromacs39 and Cyana 
40

have been modified to include analysis of RDCs. These methods are powerful in instances

where large heterogeneous data sets, combining many different kinds of structural restraints,

are used. When restricted to only RDC data however, without a good starting structure, these

methods typically are susceptible to entrapment in local minima and usually never recover.

While a Monte-Carlo approach to starting structures may be used, in practice this is rarely

feasible without depending on less reliable information such as secondary structure

assignment or torsion angle restraints. Other programs such as RDC-analytic41, Meccano42,

and REDCRAFT10,43–45 incorporate a more systematic approach when fitting protein

structures to experimentally determined RDCs. RDC-Analytic is used as only one part of the

larger RDC-Panda protocol, which uses NOE data and other information to compute protein

folds, and is therefore not intended as an RDC-only method. It utilizes N-H and Cα-Hα
RDCs in one alignment medium and secondary structure assignment, with the option to

include sparse NOEs and hydrogen bonding restraints. The use of only one alignment

precludes it from being robust to experimental error46, and it is not always possible to

predict secondary structure or collect the NOEs and hydrogen bond restraints needed to

perform the final assembly. Meccano requires N-H, C-N, C-H, Cα-C, Cα-Hα and Cα-Cβ
RDCs collected in two alignment media. It can be expensive and time consuming to perform

the labeling and assignment of resonances for that many RDC vector types, and in cases

where data is missing, Meccano has to perform a local optimization over φ and ψ torsion
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angles to produce the best fitting structure. REDCRAFT is another program designed for

structure determination primarily from orientational restraints and is more relaxed in terms

of its data requirements. It searches the space for all possible combinations of φ and ψ

angles at a particular resolution (filtering for Ramachandran or secondary structure

constraints, if applicable), and prunes this search tree heuristically. As a result, noisy or

missing data can cause REDCRAFT to eliminate the branch of the tree containing the

optimal solution. Within the last decade, some of the computational modeling tools have

been modified to include RDCs12 or other experimental data47. These methods generally

utilize a very small portion of RDCs (N-H from one or two alignment media) in order to

guide the computational modeling of structures, which have produced very exciting results.

A number of other research efforts10,11,41,48–50, have demonstrated the possibility of De

Novo structure determination based on slightly more experimental data than what is required

by hybrid approaches. However these methods employ stochastic search approaches that do

not provide any upper bound in computation time or quality of the final structure. While

structure determination methods based purely on experimental data, continue to appeal to

the community of structural biologist. Therefore the topic of protein structure determination

from a minimum set of RDC data is of interest and actively pursued. Here we present a new

method, DynaFold, for protein structure calculation that is capable of using as few as three

RDC restraints per residue from two or more alignment media to guarantee a complete

search over the solution space at a particular resolution. DynaFold utilizes a Dynamic

Programming51 algorithm, which guarantees global optimality of the final solution given its

parameterization of the problem.

Methods

The presented work relies heavily on the utility of Residual Dipolar Coupling (RDC) data

that can be acquired by NMR spectroscopy. To better facilitate our introduction and

discussion of DynaFold, we first begin with a brief discussion of the theoretical aspects

related to RDCs. This is then followed by a detailed explanation of the DynaFold method.

1.1 Residual dipolar couplings

Just as all chemical elements have the fundamental properties of charge and mass, all

chemical elements have the property of magnetic spin, which leads to the emergence of a

magnetic dipole moment. Dipolar couplings arise from the interaction between two

magnetic dipoles and the external magnetic field of a Nuclear Magnetic Resonance (NMR)

spectrometer. Although atomic nuclei may possess a spin number equal to any natural

number divided by two, for the remainder of this manuscript any discussion of dipolar

couplings will be limited to atomic nuclei of spin -½.

The scalar coupling constants (J-coupling) measured for a particular dipole-dipole

interaction can be split into anisotropic and isotropic terms. In solution state, when a

molecule is tumbling unhindered, the isotropic term given in Eq. (1) averages to zero over

time. However, when anisotropic tumbling can be induced, Eq. (1) time-averages to a value

known as the Residual Dipolar Coupling (RDC) which is a function of the orientation of the

unit vector between the two interacting atomic nuclei:
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(1)

In Eq. (1), RDCij denotes the experimentally observed RDC between nuclei i and j, μ0 is the

magnetic permeability of free space, ħ is the reduced Planck's constant, γi and γj are the

gyromagnetic ratios for nuclei of type i and j, rij is the distance between nuclei i and j, and θ

is the angle between the magnetic field of the NMR instrument and the vector joining nuclei

i and j. Given the relative timescale of the molecular tumbling and the acquisition time of

the NMR instrument, only the time average of this quantity is observed18 which is signified

by the angle brackets in Eq.(1). When the effects of this time averaging are subsumed by

designated constants, the RDC equation simplifies to Eq. (2):

(2)

In Eq. (2), v is the unit vector in the direction of a particular intramolecular vector (v’

signifies the transposed vector), rij 
eff is the time-averaged length of the intramolecular

vector, and S is the Saupe Order Tensor Matrix (OTM), which contains the constants that

subsume the effects of time averaging. The elements of S are named according to Eq. (3):

(3)

Though many molecules in solution may exhibit some degree of anisotropy in orientation

when placed in a large magnetic field17, that anisotropy is generally too small to be

measured and therefore elements of S will equal zero. However, certain lipid-based

crystalline solutions exhibit a strong degree of alignment in magnetic fields45,52. Partial

alignment of many proteins can be accomplished by reconstituting a target protein in these

liquid-crystalline environments. Some common alignment media include bicelles,

filamentous bacteriophages and purple membrane fragments. Additionally, proteins can be

aligned mechanically using stressed polyacrylamide gels17,53. Frequently, a protein sample

is aligned in multiple alignment media to generate multiple channels of RDC data. These

datasets will be referred to as n-D RDC data. In particular, for each alignment, there is a

different order tensor matrix corresponding to different degrees of anisotropy in different

alignment media.

Calculating the protein structure, therefore, reduces to finding a valid protein structure that

satisfies a series of constraints in the form of Eq. (2) for each vector (on which RDCs are

collected), and for each order tensor matrix (S). Due to the presence of error, a practical

method should solve the problem in a least-squares sense or according to some other

objective function that calculates a penalty for deviations from the experimental data. Recent

work has shown that the statistical distribution of an n-D RDC data set can be used to
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estimate the values of the order tensor matrices for each alignment medium54–57. These

estimates have been shown to be of sufficiently high quality as to not distort protein

structures significantly36. Therefore, the order tensors that describe the alignment of a

protein can be assumed to have been determined. The main challenge then consists of

folding the target protein such that the corresponding vector orientations are consistent with

the RDC constraints. The remainder of this article will introduce DynaFold, a novel

algorithm for discovery of the optimal protein structure for a given set of RDC data and

order tensor estimates at a specified search resolution. Our presented method is unique in

two ways: discovery of globally optimal structure, and its linear complexity in computation

time as a function of protein size.

1.2. DynaFold

The problem of calculating a protein structure from RDCs can be presented as a search

through the space of all possible protein structures and all possible order tensors where the

goal is to find a member of that space which minimizes the discrepancy between the

experimental data and the back-computed RDCs as computed by Eq. (2). Utilizing the fact

that there are efficient (singular value decomposition-based) methods to find the best order

tensor in a least-squares sense for a given structure and set of RDC data58–60, this search

problem is often simplified to a search over all protein structures with n peptides (where n

denotes the protein size in number of amino acids) . This search space grows in size as an

exponential function of the protein size (denoted by n). Even for extremely low-resolution

discretizations of the search space, for a protein of size n=75 residues, there are more

structural conformers than there are atoms in the observable universe (i.e. significantly

greater than 1080 elements). Therefore, for even the smallest proteins, a brute-force

discretized search of the space of all proteins is computationally intractable.

There are typically two major categories of algorithms for finding a solution by selectively

sampling the solution space. The first approach is to search the solution space sub-optimally

by using heuristics to guide the search from some set of starting points through the space of

all possible protein structures. Simulated annealing and gradient descent-based optimizers

fall into this category. The pitfall with this class of algorithms is that if the solution space is

riddled with local minima, the probability of success in a reasonable amount of search time

is limited. In particular, unless the starting point of the search is near the globally optimal

solution, these methods rarely succeed using only RDC data. The only way to reduce the

number of local minima is to provide these methods with more information than is

mathematically necessary. Collecting this extra data is expensive and time consuming and,

in this sense, there is a significant real-world cost associated with the weaknesses of these

methods.

The second approach is to exploit some mathematical relationship in the solution space (as

shown by10,41,48) so that the problem can be refactored into recursive sub-problems such

that only a small number of conformations need to be sampled in the solution space to

provide sufficient information to calculate the optimal solution. In particular, for some

problems, dynamic programming algorithms61,62 can be used to produce an optimal result

from a search space that is exponentially large in the input size n, using a number of
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calculations that grows polynomial in n. Examples of dynamic programming include the

Smith-Waterman and Needleman-Wunsch sequence alignment algorithms63 and many

optimization and planning algorithms. The key to every dynamic programming algorithm is

to express the optimal solution to the problem in terms of recursive sub-problems. Each of

these recursive sub-problems must have the property that they can be computed in

polynomial time by utilizing the calculations of other sub problems and that the total number

of sub problems to solve is polynomial in the size of the input (in the case of protein folding,

the number of peptides). Obviously not every problem can be rewritten with this structure

and the main difficulty in finding dynamic programming solutions, when they exist, is to

find the right parameterization of the search space.

The most obvious way to fractionate this problem into recursive sub-problems is by defining

protein structures of length i, 1 ≤ i ≤ n. This redefinition of the problem is possible since the

sum-of-squared-error objective function can be expressed recursively in terms of error

accrued on each residue. The first obstacle encountered in this approach is that

determination of the optimal order tensor for the protein cannot be expressed recursively.

Fortunately, recent introduction of the methods of a priori order tensor estimation in54,55

can address this issue. In practice, the order tensors produced by these methods are known to

be of sufficiently high quality for protein structure determination36. The following

subsections detail DynaFold, a novel dynamic programming solution to find the optimal

protein structure for a given order tensor estimate within a discretized approximation to the

space of all geometrically valid protein structures.

1.2.1. Parameterization of the search space by DynaFold—The prevalent

parameterization of protein structures consists of describing the coordinates of the backbone

atoms in Cartesian space. However, since protein structures are required to conform to an

accepted model of peptide geometry, its structural parameterization can be described more

succinctly. Parameterization of protein structure in terms of its dihedral angles40,64,65 would

lead to a significant reduction of the search variables and therefore, improved computation

time. When limiting the scope of structure determination to the backbone atoms represented

in the rotamer-space reduces the set of parameters to the φ and ψ backbone torsion angles.

Although this is a more natural parameterization of the problem, it is still not optimal since

there is no way to calculate the fitness of a particular RDC data point without knowledge of

all of the preceding φ and ψ torsion angles. This violates the requirement that the recursive

sub-problems have inputs of fixed size.

Therefore, because of the shortcomings of the established protein structure parameterization

schemes, a new parameterization of the solution space is required to find the optimal protein

structure for a given order tensor estimate and set of RDC data, subject to the resolution of

the search space. DynaFold's parameterization of the search space is expressed in terms of

choices of orientation for the N-H and Cα-Hα vector orientations. In order to prove that a

parameterization scheme based on these two vectors can unambiguously parameterize the

search space, it needs to be shown that such a description can be translated into the (φ,ψ)

parameterization scheme. Examination of ideal peptide geometry can provide the needed

translation. The relationship between φ,ψ and the ith internuclear vector orientations vi 
NH

and vi 
CαHα can be established as shown in Eqs. (4) and (5):
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(4)

(5)

Allowing substitutions  and  for the sake of convenience,

two solutions for Eqs. (4) and (5) can be obtained (in terms of  and ) as shown in Eqs. (6)

and (7). It should be noted that the two possible solutions are related simply based on

degeneracies of trigonometric functions. Considering the sign degeneracy that is noted in

Eqs.(6) and (7), the complete parameterization scheme then consists of vNH followed by the

sign of  followed by vCαHα followed by the sign of  repeated for each peptide in the

protein: v1
NH, ±, v1

CαHα , ±, ..., vi 
NH, ±, vi 

CαHα, ±, ..., vn
NH, ±, vn 

CαHα, ±. Critically, Eqs.

(6) and (7) establish a one-to-one and onto relationship between DynaFold's

parameterization of protein structure and the traditional dihedral parameterization (φ,ψ).

(6)

(7)

In principle the values of (φ,ψ) can be reconstructed by examining the corresponding triple.

For example, given a valid triple such (vi
NH,±,vi

CαHα), the corresponding φ angle can be

reconstructed by Eq. (6). Of course, under experimental conditions, not every arbitrary

string of vector orientations and torsion angle signs corresponds to a protein with a valid

geometry. For example, Eqs. (4) and (5) may not have a solution for every combination of

orientations for vNH and vCαHα that adhere to valid peptide geometry. It is therefore prudent

to identify the optimal φ angle through a search that produces vi
NH, and vi 

CαHα, orientations

that most resembles that of the triple (vi 
NH,±,vi 

CαHα) as shown in Fig. 1. DynaFold

addresses this issue through a search over a discretized set of torsion angles that is described

in the following section.

1.2.2. Discretization of the search space—In order to solve the problem of least-

squares fitting of a protein structure to RDC data as a combinatorial optimization problem,

the set of unit vectors from which to choose the orientations of vi 
NH and vi 

CαHα needs to be

discretized. The natural choice for doing so is to describe the vectors in terms of their

spherical coordinates (θ,φ) and appropriately discretizing those variables. Here, a set of

isotropic vectors (denoted as Uk) are generated at resolution k, by partitioning θ into k equal

intervals in the range [0–π] and φ into [2·ksinθ] equal intervals in the range [0–2π] as

illustrated in Fig. 2.
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The discretization of the vector set poses some challenges in terms of defining legal strings

in the vector orientation description of the protein structure that adhere to ideal peptide

geometry. While legal (vi 
NH ,±,vi 

CαHα) and (vi 
CαHα ,±, vi+1 

NH) triples may be defined

from elements of Uk, in general, the legal successor pairs, (±,vi+1
NH) and (±,vi+1 

CαHα) may

not be defined when restricted to members of Uk. However, the method defined above for

discretizing the vector set has the property that any vector on the unit sphere is no more than

180°/(k√2) degrees away from its nearest representative in the set Uk. Therefore, by

extending the rule for successor pairs to include any vectors within 180°/(k√2) degrees of a

true successor pair, the grammar can be approximated to arbitrarily high accuracy by

increasing the value of k.

1.2.3. Graph theoretic view of the search space—Each (vi 
NH ,±,vi 

CαHα) and

(vi 
CαHα,±,vi+1 

NH) triple contains all of the state information required to determine which

vector choices can precede or succeed the current set of symbols in the protein structure

parameterization string. Therefore, traversing a valid protein structure parameter string can

be thought of as state transitions between these triples. In particular, a graph can be

constructed of the form shown in Fig. 3, so that every possible triple for every value of i

from 1 to n (n is the length of the protein) corresponds to a node in the graph. Each (vi
NH,

±,vi 
CαHα) triple defines a fragment of the form shown in Fig. 4A, and each (vi 

CαHα,

±,vi+1 
NH) triple defines a fragment of the form shown in Fig. 4B. Traversing the graph

consists of picking local fragments at each position in the protein such that overlapping

atoms from consecutive fragment choices fit (i.e. the overlapping portions can be aligned

using only translation and no rotation). Therefore, edges in the graph connect nodes with

properly overlapping atoms such that any path through the graph always describes a

coherent protein structure as shown for an example node in Fig. 5.

More precisely, directed edges in this graph will exist from nodes of the form (vi 
NH,

±,vi 
CαHα) to nodes of the form (vi 

CαHα,±,vi+1 
NH) if and only if the orientation of vi 

CαHα is

the same for both nodes and the pair (±,vi+1 
NH) is a valid successor to the first triple.

Likewise, directed edges will exist from nodes of the form (vi 
CαHα,±,vi+1 

NH) to nodes of

the form (vi+1 
NH ,±,vi+1 

CαHα) if and only if they agree in the value of vi+1 
NH and the pair

(±, vi+1
CαHα) is a valid successor to the first triple. Additionally, there will be a start node

with directed edges to every triple of the form (v1 
NH,±,v1 

CαHα) and an end node with edges

directed into it from every triple of the form (vn 
NH,±,vn 

CαHα).

1.2.4. Dynamic programming-based solution—The problem of finding a shortest

path through a directed graph has a well-known polynomial-time dynamic programming-

based solution. Therefore, the problem of finding the protein that best fits the RDC data can

be solved by encoding the fitness function in terms of the edge weights of the state transition

graph. Each edge weight (other than those to and from the start and end nodes) can be based

on information contained in the two nodes it connects. Any RDC restraint can be

incorporated into the edge weights so that the path through the graph corresponding to a

particular conformer has length equal to the square of the error function. Additionally, it is

possible to include other terms in the objective function such as penalties for φ and ψ torsion

angles that fall outside of the Ramachandran space for that amino acid type. In general, any
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translationally-invariant structural restraint that only depends on “local” information can be

included in this objective function.

In this manuscript, the implementation has focused on the inclusion of N-H, CαHα and C-N

RDCs collected in two or more alignment media and the use of Ramachandran constraints.

The objective function, F which DynaFold seeks to minimize, is shown in Eq. (8):

(8)

In this equation, m iterates over the M alignment media, t iterates through the three vector

types and i iterates over the n peptides in the protein. vt
i is the internuclear vector of type t

on the ith peptide, Sm is the order tensor estimate for alignment medium m and Em 
t,i is the

experimental RDC data in alignment m for the ith vector of type t. wm 
ti is a normalization

constant to compensate for the magnitude of RDC differences based on gyromagnetic ratios

of different nuclei. The weights wm
ti can be set to 1 for traditional least squares fitting.

However, in our work these weights have been selected such that the range of RDCs for

each vector type in each alignment spans a range of 1. In this case, the RDC portion of the

objective function is minimizing the deviation from the experimental data as a percentage of

the total possible numerical range of the values. In the case where experimental data is

missing, wm 
ti is set to zero. The entity R in Eq. (8) is a user-supplied function that calculates

penalties for torsion angle restraints for each peptide. In this work, torsion angle restraints

were limited to a general Ramachandran map for each residue except for glycine and proline

residues, for which amino acid-specific Ramachandran maps were utilized. Ramachandran

space data was taken from Lovell et al.,66 and with a cutoff threshold of 99.5 percentile.

To facilitate a better discussion, Eq. (8) has been expanded and restated as Eqs. 9-13.

(9)

(10)

(11)

(12)

(13)

MUKHOPADHYAY et al. Page 9

J Bioinform Comput Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The term Pn
CN has been omitted from Eq. (9) since vi 

CN is defined as the vector from Ci to

Ni+1 and the nucleus Nn+1 does not exist. Edges into nodes of the form (vi 
NH,±,vi 

CαHα)

were weighted byPi
CαHα. Edges into nodes of the form (vi

CαHα,±, vi+1
NH) were weighted by

Pi
R+Pi+1

NH+Pi
CαHα. Edges from the start node to nodes of the form (v1 

NH,±,v1 
CαHα) were

additionally weighted by P 1NH since that term is not accounted for by any of the other edge

weights. Each of these edge weights can be calculated from the peptide fragments that

correspond to the nodes on each side of a given edge.

The dynamic programming-based approach to finding the shortest path through this graph

starts by creating a table entry for each node in the graph and initializing the start node's

score to 0. Each node's score is calculated by summing the edge weight and the score of the

originating node for that edge from each incoming edge, taking the minimum of these values

and noting which edge produced that minimum score. In this way, the dynamic

programming algorithm can calculate the optimal structure for the first n peptides ending in

the fragment represented by a particular node in the graph. The overlapping component of

dynamic programming is satisfied in a Bottom-Up form by storing the optimal solution to a

sub problem in a table that can be used in subsequent steps. Leveraging the results of the sub

problems a constant computational time can be achieved for a given discretization of the

vector space. Put another way, DynaFold's formulation of the RDC fitness problem reduces

finding the optimal fitness of protein structure to the problem of finding the shortest path in

the graph illustrated in Figures 3 and 5, which is solvable in polynomial time with a well-

known dynamic programming solution62. Completing the entries of this table can proceed

methodically by alternating between filling in table entries for nodes of type (vi
NH,±,vi

CαHα)

and nodes of type (vi
CαHα,±, vi+1

NH) and proceeding from i=1 to i=n and concluding with

the end node. Since each node has recorded which incoming edge provided the least-cost

path to that node, finding the best protein structure consists of tracing back those edge

choices from the end node to the start node.

1.2.5. Production of the final protein structure—Since the discretized vector

orientation description of the protein structure is an approximation to the continuous case,

the translation from the parameterization to an actual protein structure requires some

additional analysis. The approach taken here proceeds in two steps. First, an estimate of the

 and  angles are made from the vector choices using Eq. (4), Eq. (5) and a protein with

those torsion angles is constructed in the principal alignment frame of the first alignment

medium. Then, since errors accrue from these approximations, a non-linear least squares

optimization is used to fine-tune the  and  angles to get the N-H and Cα-Hα vectors in the

final protein as close as possible in the angle-distance sense to the N-H and Cα-Hα vectors

chosen in the solution from Uk. After an initial solution is produced in this manner from

DynaFold's output, a final round of non-linear least-squares minimization is performed to

refine the structure where φ, ψ, ω, and the order tensor estimates are all optimized to best fit

the RDC data. All of the least square minimizations have been conducted using the fmin

function within Matlab.

1.2.6. Validation procedure—Validating the effectiveness of DynaFold proceeded in

two stages. In the first stage, DynaFold was run on synthetic data generated for protein
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1BRF67. Using the 20th model (the last model) in the PDB file, RDCs were simulated for N-

H, Cα-Hα and C-N vectors in three alignment media using the following three order tensors:

These order tensors were selected to have values that approximately match those that are

observed experimentally. To better represent experimental conditions, uniformly distributed

noise in the range of ± 1 Hz was added to the simulated data.

In the second stage of validation, DynaFold was tested using experimental data for proteins

1P7E53 and 1D3Z68 downloaded from the BMRB69. 1P7E is the third IgG-binding domain

of Protein G (GB3) and 1D3Z is a human ubiquitin protein. Although the deposited data set

for 1P7E contains four RDC vector types collected in 5 alignment media for a total of 20

sets of restraints over 56 residues, we have utilized only N-H, Cα-Hα and C-N vector types

in three alignment media for our testing of DynaFold. This reduction is an exercise in

establishing the success of DynaFold in the structure determination of more challenging

data-sparse cases.

The data set available for 1D3Z in the BMRB contains RDC data for two alignments with

seven RDC vector types in the first alignment and six RDC vector types in the second

alignment over 76 residues. In our testing of DynaFold, only N-H, Cα-Hα and C-N vector

types were used in two alignments.

In order to provide a reasonable comparison of DynaFold to current structural determination

methods, Xplor-NIH was used to attempt to determine the structures of 1P7E and 1D3Z

using the same data provided to DynaFold. An Xplor-NIH structural determination script

was created that uses RDC data, along with the Ramachandran database potential and

standard molecular geometry constraints (scripts are available as part of the downloadable

DynaFold software package from http://ifestos.cse.sc.edu). Fig. 6 illustrates the control flow

of the script for structure determination with an extended structure as the starting point.

Results and Discussion

We present here the evaluations of DynaFold, with our results and their discussion arranged

from the least challenging to most challenging case. First, we present results for synthetic

data. This is followed by analysis of experimental RDCs from three alignment media, and

finally experimental RDCs from two alignment media. This section is then concluded by

comparisons between DynaFold and other traditional approaches for analysis of RDCs, in

order to establish the success of the DynaFold method.
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1.3. Simulated data for proteins 1BRF, 110M, 3LAY, and 1F53

Synthetic data for proteins 1BRF, 110M, 3LAY and 1F53 were generated according to the

procedure described previously (refer to section 1.2.6). Next, DynaFold was run at low

resolution (k=36) using N-H, Cα-Hα and C-N RDCs in 3 alignment media. The results are

displayed in Fig. 7 for each protein. The backbone RMSD with respect to their published

structures consist of less than 1.5Å for proteins 110M, 3LAY and 1BRF, 1.9Å for the

protein 1F53. Therefore, it is reasonable to conclude that DynaFold was able to successfully

fold these proteins from the synthetically generated data.

1.4. 1P7E: three vector types, three alignment media

Because the data set used for 1P7E contained a large number of restraints, this run of

DynaFold was conducted at low resolution (k=36). However, there were several regions

where data was either missing or marked as excluded from analysis for being extremely

noisy. These data points were included for the DynaFold analysis since DynaFold does a

complete search of the solution space and even noisy data has some information content.

The overall alignment of the output structure and the published structure of 1P7E (which

was refined from the crystal structure 1IGD) had a deviation of 1.817Å backbone RMSD.

However, if 1P7E is segmented into the regions of high quality data-density the backbone

RMSD to the published structure was , 0.276Å for residues 3-9 (first β strand), 0.704Å for

residues 12-23 (second β strand), 0.241Å for residues 28-38 (α helix) and 0.454Å for

residues 42-55 (last two β sheets). The alignment for residues 11-55, shown in Fig. 8 was

1.255Å backbone RMSD. Therefore, it is reasonable to conclude that DynaFold was able to

find the right structure for the regions that had high quality data and was able to make a

decent guess for the regions with low quality data so that the different segments of the

structure were oriented and roughly translated correctly with respect to each other.

1.5. 1D3Z: three vector types, two alignment media

Because this data set contained data from only two alignment media, this run of DynaFold

was conducted at high resolution (k=72). There were regions of low data density between

residues 8-10, 19-24, 36-38 and 52-53. Only the missing data between residues 36-38

seemed to cause a major translational shift in the structure. The overall alignment between

the structure output from DynaFold and the 10 models for 1D3Z submitted to the PDB were

1.89-1.95Å backbone RMSD; alignment of model 10 of the published 1D3Z structure to

DynaFold's output is displayed in Fig. 9A. The backbone RMSD for residues 1-35 was

between 0.83-0.91Å backbone RMSD, with alignment of these residues for model 10 of the

published 1D3Z structure to DynaFold's output displayed in Fig. 9B. While the backbone

RMSD for residues 39-70 was 0.80-0.85Å, with alignment of these residues for model 10 of

the published 1D3Z structure to DynaFold's output displayed in Fig. 9C. Once again, it is

reasonable to conclude that DynaFold was able to find the right structure for the regions that

had high quality data and was able to make a decent guess for the regions with low quality

data so that the different segments of the structure were oriented and roughly translated

correctly with respect to each other.
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1.6. Comparison of DynaFold to Xplor-NIH

The results of using the Xplor-NIH protocol outlined previously in Fig. 6, on the data for

1P7E, were that total backbone RMSD of the output structure compared with the published

structure was 27.595Å. This indicates that general minimization routines (such as those used

in Xplor-NIH) are insufficient to navigate a complex energy landscape defined purely on the

basis of RDC data in order to achieve the global or near-global optimal point. The piecewise

backbone RMSD for the structure was 1.375Å for residues 3-9 (β strand), 3.455Å for

residues 12-23 (β strand), 5.658Å for residues 28-38 (α helix), 0.821 for residues 42-46 (β

strand), and 0.67 for residues 51-55 (β strand). The extended structure had a total backbone

RMSD of 54.95Å, giving the total change in RMSD as 27.355Å. It is clear from Table 1 that

the RDC term for the output structure is nearly double that of the published structures, the

standard atomic geometric model is slightly violated and the Ramachandran energy term

minimizes well. Given the energy profile along with the RDC RMSD from Table 2, it is

likely that the simulated annealing protocol found a deep local minimum, from which it was

unable to recover using only the constraints provided by standard geometry, the

Ramachandran database potential, and the provided RDC data.

Residual dipolar couplings from two alignment media for three vector types were used with

the Xplor-NIH protocol previously described to attempt to fold protein 1D3Z. Total

backbone RMSD of the output structure to the published structure was 45.291Å. Again, this

leads to the conclusion that the amount of data was insufficient for Xplor-NIH to navigate

the large search space. The piecewise backbone RMSD for the structure was 0.67Å for

residues 1-6 (β strand), 1.299Å residues 12-17 (β strand), 6.295Å for residues 23-34 (α

helix), 2.371Å residues 37-40 (α helix), 2.398 for residues 41-47 (β strand), 0.172Å for

residues 48-49 (β strand), 1.931Å for residues 57-59 (α helix), and 0.63 for residues 66-71

(β strand). The extended structure had a total backbone RMSD of 49.899Å, giving the total

change in RMSD as 4.608Å. The energy terms for the output, extended, and published

structures can be seen in Table 3. This shows that while the molecular geometry and the

RDC term remains on par with results obtained with 1P7E, RDC RMSD for media one and

two for the output structure (seen in Table 4) seem to be around three times that of the

published structures. Bearing in mind that there is less data available for 1D3Z, the small

change in overall backbone RMSD seems to strengthen the argument that the data provided

to DynaFold, along with standard geometry, and Ramachandran database potential is

insufficient for Xplor-NIH to robustly navigate such a large search space.

Conclusion

This manuscript has validated DynaFold's approach to searching the space of protein

conformations for the best match to the experimental data, and demonstrated its performance

with RDCs acquired in two or three alignment media. Overall, even with a relatively small

set of experimental RDC restraints, DynaFold is able to fold proteins with high accuracy.

Our target proteins consisted of α, β, and α/β proteins to illustrate the versatility of our

presented work. In addition, we have demonstrated the success of accurate order tensor

estimation in absence of a structure, and structure determination of purely α proteins, which

are deemed problematic for study by RDCs. In contrast to typical approaches to structure
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determination by NMR spectroscopy where larger proteins pose more challenges,

DynaFold's performance improves as a function of increasing protein size. This is due to the

fact that the accuracy of order tensor estimation will increase for larger proteins due to better

sampling of the RDC space. More accurate estimation of order tensors that is used during

the course of DynaFold's calculation will lead to more accurate structure determination.

While it is unsurprising that missing data do influence the final structure, this effect is

localized to the regions of low data density without any distortion of the rest of the structure.

The areas of high data density were folded with high accuracy in each case, and oriented

correctly with respect to each other. Since RDCs are translationally invariant, that is the best

outcome possible when RDCs are the only structural restraints. In this manuscript we have

refrained from the use of additional experimental data in order to study and demonstrate the

raw information content of RDCs alone. Although it is clear that inclusion of additional

experimental data such as NOEs or dihedral restraints can improve the quality of the final

structure, any incidental NOEs (or other types of experimental data) can be incorporated in a

subsequent refinement step using any of the existing and well established software packages

such as Xplor-NIH. Using the high-resolution structure that is produced by DynaFold as the

starting point of a refinement, only a small number of distance-based restraints such as

NOEs, PREs or hydrogen bond restraints can make the final improvements in the structure

calculation process. In addition to utilizing other types of NMR data, this refinement process

can be applied in order to create an ensemble of viable structures via low-temperature

annealing of a starting structure. Finally during such a refinement process, the approximated

order tensors that were utilized by DynaFold can be permitted to be further optimized. Using

a more relaxed final refinement process will improve the overall fitness of the structure and

order tensors to the experimental data.

Although a refinement process following DynaFold analysis can in practice utilize all

experimental data, we are still interested in providing one complete package in the future. In

principle all experimental data can be incorporated into DynaFold's objective function.

Therefore our future work will consist of extending this framework to utilize all RDC types,

J-couplings, chemical shift anisotropy, and NOE data. Furthermore, the Ramachandran

based dihedral restraints that DynaFold currently uses will be set to optionally incorporate

predictions from TALOS71 or other methods of predicting dihedral angles or secondary

structures. Once DynaFold is extended to utilize all of these data types, researchers will have

tremendous flexibility in choosing the set of restraints that are inexpensive, experimentally

feasible and reliable for the given protein target. In particular, DynaFold's mathematical

guarantee about the optimality of the result enables researchers to only collect as much data

as is absolutely necessary instead of having to compile the large sets of restraints that

traditional optimizers tend to require.
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Fig. 1.
Each N-H or Cα-Hα vector is constrained to lie on a cone determined by the preceding two

vectors.
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Fig. 2.
Isotropically generated set of vectors at the resolution of 36 (U36).
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Fig. 3.
Graph structure of state transitions in the vector-orientation-based parameterization of the

search space.
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Fig. 4.
Protein Fragment defined by A) a (vi 

NH,±,vi 
CαHα) triple and B) a (vi 

CαHα, ±, vi+1 
NH)

triple.
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Fig. 5.
Detail of graph connections. Only fragments that overlap without rotation can be connected

to form a coherent protein structure.
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Fig. 6.
Flowchart describing the structure determination protocol used with Xplor-NIH.
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Fig. 7.
Comparison of the backbone structures of proteins 110M, 3LAY, 1F53 and 1BRF (shown in

blue from left to right) and the structures produced by DynaFold (shown in red) in each

image respectively. The structural alignments to their corresponding published structure are

1.2, 1.3, 1.9 and 1.4Å backbone RMSD respectively. Rendered using Chimera70.
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Fig. 8.
Alignment of the published structure of 1P7E (shown in blue) with DynaFold's output

(shown in red). Models are aligned on residues 11-55 (1.255Å backbone RMSD). Rendered

using Chimera70.
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Fig. 9.
Alignment of the published structure of 1D3Z (model 10 shown in blue) with DynaFold's

output (shown in red) for: A) residues 1-70 (1.89Å backbone RMSD); B) residues 1-35

(0.835Å backbone RMSD); C) residues 39-70 (0.844Å backbone RMSD); all structures

rendered using Chimera70.
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Table 1

1P7E Xplor-NIH energy terms in kilojoules corresponding to three 1P7E structures.

Angle Bond Improper Vdw Rama RDC Total

Extended Structure 216.674 25.070 169.641 −29.916 −47084.664 19247.096 −27456.099

Output Structure 1734.478 214.069 507.157 −17.434 −0.19E06 2159.607 −0.16E06

Published Structure 213.171 16.742 157.771 −118.036 −0.14E06 1269.918 −0.14E06

J Bioinform Comput Biol. Author manuscript; available in PMC 2015 February 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

MUKHOPADHYAY et al. Page 30

Table 2

1P7E RDC RMSD in Hz for three 1P7E structures.

M1 M2 M3

Extended Structure 20.228 10.916 13.127

Output Structure 8.057 4.669 4.499

Published Structure 2.43 1.512 2.84
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Table 3

1D3Z Xplor-NIH energy terms in kilojoules corresponding to three 1D3Z structures.

Angle Bond Improper Vdw Rama RDC Total

Extended Structure 176.100 33.637 63.905 −48.389 −93390.055 18600.450 −74564.357

Output Structure 1568.123 167.1 576.204 −2.549 −0.25E06 1230.148 −.025E06

Published Structure 171.896 24.382 49.877 −158.065 −0.24E06 253.716 −0.24E06
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Table 4

1D3Z RDC RMSD in Hz for three 1D3Z structures.

M1 M2

Extended Structure 10.033 15.570

Output Structure 3.356 6.010

Published Structure 1.194 1.818
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