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Abstract

Most of the current computational models for splice junction prediction are
based on the identification of canonical splice junctions. However, it is ob-
served that the junctions lacking the consensus dimers GT" and AG also
undergo splicing. Identification of such splice junctions, called the non-
canonical splice junctions, is also essentially important for a comprehen-
sive understanding of the splicing phenomenon. This work focuses on the
identification of non-canonical splice junctions through the application of
a bidirectional long short-term memory (BLSTM) network. Furthermore,
we apply a back-propagation based (integrated gradient) and a perturba-
tion based (occlusion) visualization techniques to extract the non-canonical
splicing features learned by the model. The features obtained are validated
with the existing knowledge from the literature. Integrated gradient extracts
features that comprise contiguous nucleotides, whereas occlusion extracts
features that are individual nucleotides distributed across the sequence.

Keywords: Non-canonical splice junctions, Bidirectional long short-term
memory network, Integrated gradients, Occlusion, Visualization

1. Introduction

Alternative splicing (AS), a splicing mechanism, allows a pre-mRNA to
produce distinct matured mRNA. AS does so by differentially joining or skip-
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ping exons and introns of a gene [1]. AS contributes to proteome diversity.
It is estimated that about 92-94% of multi-exonic human genes undergo AS
[2]. Furthermore, exonic mutations perturb AS [3] and about 1/3 of disease-
associated alleles alter splicing [4]. Thus, comprehensive understanding of
AS is important in our endeavour of understanding complex transcription
mechanism.

Majority of the studies, especially computational studies, focus on study-
ing splicing events associated with highly conserved consensus dimers G7T
and AG at the exon-intron (donor site) and intron-exon (acceptor site)
boundaries [5]. Donor and acceptor sites are commonly referred to as splice
junctions or sites. Splice sites with the conserved dimers are referred to as
canonical splice sites. However, splice sites lacking the consensus dimers GT
and AG at the junctions have been observed. Such observations suggest
distinct regulation pathways in alternative splicing. Our knowledge on non-
canonical splice sites and regulatory signaling mechanism are limited. The
limited knowledge hampers the use of computational learning models relying
on hand-engineered features. However, the availability of abundant sequence
data and the recent advancements in representation learning capability of
deep learning models have produced promising results for several genome
sequence-based tasks [6, 7].

Several deep learning models have been applied for the identification of
splice junctions as well. However, similar to experimental studies, the ma-
jority of these models focus on the identification of canonical splice junctions
([8, 9, 10, 11]). The models which include non-canonical splice junctions
([12, 13, 14, 15]) consider only a limited splicing context at the junctions. In
this work, we focus solely on the identification of non-canonical splice junc-
tions and the analysis of extracted features. In particular, we focus on the
following research questions:

e How well can a representation learning model encode non-canonical

splicing context?

e What meaningful and biologically relevant features can be extracted
from such models?

e What can be said about the extracted features in contrast to the known
knowledge about non-canonical as well as canonical sites?

Towards answering the research questions mentioned above, this paper
introduces SpliceViNCI, a model that identifies splice junctions through the
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application of bidirectional long short-term memory (BLSTM) networks.
It differs from the previous applications [10, 15|, in the task of predicting
splice junctions, on precisely two factors. Unlike the previous applications,
SpliceVINCI particularly seeks to attain optimal performance for the iden-
tification of non-canonical splice junctions. Furthermore, this study also
analyzes the non-canonical splicing phenomenon through visualization of the
features learned by the model.
The contributions of this work can be summarized as follows:

e We present a BLSTM model named SpliceViNCI, which attains state-
of-the-art performance for the identification of both canonical and non-
canonical splice junctions.

e We design two datasets, Type-1 and Type-2, based on two different
sampling strategies to generate negative data.

e We analyze the performance of various state-of-the-art models as well
as the proposed model with both the datasets.

e We analyze the length of the flanking region required for obtaining
the optimal performance in the identification of non-canonical splice
junctions.

e We apply two effective visualization techniques to discern the non-
canonical splicing features learned by the model. The findings thereof
are validated with the existing knowledge from the literature.

2. Background

The advent of advanced sequencing technologies like RNA-seq has pro-
duced a plethora of sequenced data, which boosted both alignment-based
and machine learning-based methodologies for identifying splice junctions.
However, the existing alignment-based methods [16, 17] mostly identify only
the canonical splice junctions [12]. The traditional machine learning-based
methods rely on hand-engineered features extracted from the sequence neigh-
boring the splice junctions for splice junction identification [25, 19, 20, 21, 22].
The limited knowledge of the splicing features may lead to the inclusion of
irrelevant features that can adversely affect the model’s performance. Several
feature selection methods have been applied to obtain the optimal feature
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set [23, 24]. However, the potential of these methods is still limited by the
existing knowledge bias.

The emergence of deep learning era led to the application of models that
learn the complex splicing signals from the genome sequence de-novo. There
are implementations of deep Boltzmann machine [12], deep convolutional
neural networks (CNN) [13, 8, 9|, distributed representation learning [14],
recurrent neural networks (RNN) [10, 15], and deep residual neural network
[11] for the prediction of splice junctions. Some of these models are based on
the identification of only canonical splice junctions. The models which in-
clude non-canonical splice junctions ([12, 13, 14, 15]) consider limited splicing
context at the junctions. These methods extract upstream and downstream
sequences, at both donor and acceptor junctions, of a length ranging from 30
to 40 nucleotides (nt) since this length is considered as optimal for splicing
signals in various studies [25, 26]. Also, these models target on achieving the
overall optimal performance considering both canonical and non-canonical
splice junctions together.

A major limitation of the deep learning models is their inability to ex-
plain the logistics behind their predictive performance due to their ‘black
box’ nature. To alleviate this shortcoming, several visualization techniques
are applied to extract the features learned by the model. Most of the widely
used visualization techniques can be categorized as perturbation based and
back-propagation based techniques [27]. Back-propagation based visualiza-
tion technique called DeepLIFT [28] has been applied in the extraction of
canonical features learned by a CNN [9]. Both perturbation based and back-
propagation based techniques have been applied in the extraction of canonical
and non-canonical features learned by an RNN [15]. However, the research
effort in [15] revealed the existence of non-canonical splicing features far be-
yond the genomic context considered in the work.

3. Methods

This section elaborates on the neural network architecture employed for
the classification of true and decoy splice junctions. We subsequently describe
the visualization techniques applied to extract the relevant features learned
by the model.

3.1. Neural architecture

The overview of the network architecture is shown in Figure 1.
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Figure 1: A schematic of the network architecture.

3.1.1. Input representation

The input to the learning model is the genome sequences extracted from
the vicinity of splice junctions. These sequences comprise the four nu-
cleotides: A (Adenine), C' (Cytosine), G (Guanine), T (Thymine) and N
(denoting any one of the four nucleotides). The input sequences are passed
through an embedding layer to generate a k-dimensional dense representation
for each of the five nucleotide codes. Therefore, an input sequence of length n
will be transformed into an n x & dimensional dense vector that gets updated
while training the network. The dense vector is observed to perform better
than the traditional one-hot encoded vector due to the learning of meaningful
representation through training [10].

3.1.2. Splice junction representation using BLSTM network

The BLSTM layer comprises the heart of SpliceViNCI, which captures
relevant features from the input sequences. The BLSTM layer is formed
by two identical hidden layers composed of LSTM units. LSTM units are
like memory cells capable of learning long-term dependencies [29, 30]. There
have been several refinements in the structure of an LSTM unit [29, 31, 32].
We apply the LSTM structure proposed in Gers et al. [30] and shown in
Figure 2. This LSTM unit contains input (i;), forget (f;) and output (o)
gates that regulate the information flowing through cell state (C;) at any
time step ‘t’. The information flowing out of the cell at a time step 't for
input X; is denoted by the hidden value h;.
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Figure 2: The structure of an LSTM cell.

The two LSTM layers process the input sequence in forward and backward
directions simultaneously. The output h; of the BLSTM layer is given by the
concatenation of the output generated by the two LSTM layers. This can be
written as

ht = (h{’ hf)

where h{ and h® are the output generated in the " time step by the
forward and backward LSTM layers, respectively. The LSTM units capture
dependencies among input subsequences as it processes the input. Hence,
h,{ can be expected to capture the relationship of an input subsequence with
the subsequence to its left. Likewise, h? can capture the relationship of an
input subsequence with the subsequence to its right. Thus, the concatenated
output h; is a more comprehensive feature representation of an input splice
junction.

The n x k dimensional dense vectors generated from the embedding layer
are fed into the BLSTM layer. Each LSTM layer generates an n x n; vector
which is concatenated to form an n x 2n; vector as the output from BLSTM
layer. The output from the BLSTM layer is fed into a fully connected layer
and finally to the output layer, which classifies the input sequence as a true
or decoy splice junction. Binary cross-entropy and Adam [33] are the loss
function and the optimizer applied.

3.2. Visualization techniques

We employ two effective visualization techniques, namely integrated gra-
dients and occlusion, for the extraction of relevant splicing features learned
by the model. Both the visualization techniques assign an importance value
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to each nucleotide position in a genome sequence. We name the importance
value as deviation value. Higher deviation value for a sequence position im-
plies that position as more significant in the identification of the splice junc-
tion. The visualization techniques are further explained in the subsequent
section.

3.2.1. Integrated gradients

Integrated gradients is a back-propagation based visualization technique
proposed by Sundararajan et al. [34]. This technique involves computing the
gradient of the output stepwise along the linear path from a chosen baseline
to the given input. For sequence-based models, the baseline is usually the
zero embedding vector. The number of steps is a hyperparameter, which is
chosen as 50 for our experiments. The integrated gradient is computed by
averaging the gradients obtained from each step along the linear path. This
average gradient at each sequence position is the deviation value in this case.

The reason for the selection of integrated gradients over other back-
propagation based visualization techniques like basic gradients, DeepLIFT
28], and Layer-wise relevance propagation (LRP) [35] can be explained by
the following factors. The integrated gradient satisfies two desirable proper-
ties of attribution methods: sensitivity and implementation invariance, either
of which is not satisfied by basic gradients, DeepLIFT and LRP [34]. Also, in
models like RNN with multiplicative interactions (like LSTM and BLSTM),
DeepLIFT fails to produce meaningful results [36].

3.2.2. Occlusion

Occlusion is a perturbation based visualization technique proposed by
Zeiler et al. [37]. As the name suggests, this method obstructs or occludes
a portion of the input by masking it. We occlude an input sequence by
moving a sliding window of length one, along the sequence, replacing one
nucleotide each time with N. The modified sequence is passed through the
trained model to obtain the difference between the output with and without
occlusion. The difference between the two output values with and without
occlusion of n'* sequence position gives the deviation value of that position
in the sequence.

For one input sequence of length L, we obtain L masked inputs, each
one with a different masked position. Hence, for a batch of B sequences, we
have a B x L input matrix. For a computationally efficient implementation
of this technique, we prepare all the L x L masked sequences for a given
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input sequence beforechand. FEventually, for a batch of size B, we obtain
(B * L) x L input matrix, which is fed into the model in a single batch. We
obtain (B % L) x 1 output matrix, which is reshaped to obtain the required
B x L matrix of deviation values. We propose two variations of occlusion, as
discussed next.

Fized length occlusion. In this type of occlusion, we consider a fixed window
length of k nucleotides for masking the input. This is denoted by occlusion-k.
The deviation value of the window is obtained by summing up the deviation
values of each nucleotide position within the window. This summed up
deviation value is added to the position (k + 1)/2 lying in the center of the
window.

Variable length occlusion. In fixed length occlusion, we consider only a fixed
length genomic region for detecting the splicing features, whereas, in a real
scenario, the relevant features may be of variable length. Hence, in this
variation of occlusion, we consider different occlusion windows w; of length
l€{1,3,5,7,9,11} at each sequence position. The deviation value for each
window length is computed, and the highest deviation value is chosen for
that sequence position. The corresponding window length is saved in another
matrix called the window matriz. Therefore, the value in j* column of ¥
row of the window matriz denotes the length of the pattern, centered at
position j of the i"* sequence, that contributes maximum to the prediction
of the model.

4. Experimental Setup
4.1. Dataset

The procedure of generating the positive and negative data is described
in the following subsection.

4.1.1. Positive data

We assess the performance of SpliceViNCI on the identification of novel
splice junctions. We, therefore, generate the training and test dataset from
two different versions of GENCODE [38] annotations based on human genome
version GRCh38. Each sample in the data is an intron that comprises donor-
acceptor junction pair. The introns are extracted from protein-coding genes
only.
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290,502 junction pairs are extracted from version 20 as the training data,
whereas 293,889 splice junctions are extracted from version 26. The test
data is composed of only those introns which were not annotated in version
20. This yields 5,612 novel junction pairs in the test data. We consider
introns of length greater than 30 nt only since an existing study [39] suggests
that introns of length less than 30 nt can be attributed to sequencing errors.
Further, each intronic sequence is truncated to a fixed length by chipping
and concatenating the donor and acceptor junctions with a certain length of
flanking region (see Section 5.2).

4.1.2. Negative data

Based on the type of features captured in the data, two variants of nega-
tive data is generated. Both randomness-based and consensus-based negative
data are described in the following section.

Randommness-based negative data:. We extract a subsequence from the
center of an intron with the safe assumption that no splice junction will
be present between a pair of donor-acceptor junctions. This procedure of
negative data generation is proposed by Noordewier et al. [40]. The lengths
of positive data and the extracted subsequence are taken equal. The non-
randomness in genome sequences is captured in this type of negative data.
We obtain 290, 502 false samples for training data and 5,612 false samples
for test data using this procedure.

Consensus-based negative data:. Since we are seeking a deeper insight
into non-canonical splicing, therefore, it is necessary to mimic similar se-
quences in the positive and negative data, so the model learns to identify
the signals regulating non-canonical splicing in particular. Existing study
says that more than 98% of splice junctions are canonical, comprising the
GT and AG consensus dimers [41]. The genome sequences have frequent
occurrences of the consensus dimers, but not all of those are identified as
splice junctions by the splicing mechanism. This indicates the presence of
other splicing signals that govern the selection of splice sites. Apart from
the canonical consensus dimers, there are two other commonly known classes
of non-canonical splice junctions, namely the GC-AG and AT-AC' junction
pairs [42].

Hence, we compose this type of negative data considering randomly se-
lected GT-AG, GC-AG, and AT-AC dimer pairs in the genome sequence
such that the dimers are not actual splice junctions. The idea of training
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Table 1: Distribution of canonical and non-canonical splice junctions in the
positive and negative data.

Dataset # of training samples # of test samples

canonical Non-canonical canonical Non-canonical

Positive 255674 5777 5241 371
Randomness-based negative 1096 260355 14 5598
Consensus-based negative 258939 2512 5557 55

the splice site prediction models with a consensus-based negative dataset has
been applied in previous works [43, 12, 9]. These works have used datasets
like NN269 [43] and GW H [22, 12, 9] where the sequences in the negative
data comprise only GT and AG dimers at the donor and acceptor splice
junctions, respectively. We added two commonly known non-canonical con-
sensus pairs GC-AG and AT-AC' to let the model learn features governing
non-canonical splicing as well.

We randomly search for the donor site consensus in the genome sequence,
followed by the corresponding acceptor site consensus. We name such junc-
tions as the negative splice junctions. The randomly sampled dimers should
both lie in the same chromosome. The length of the flanking region is consid-
ered equal to that in the positive data. We randomly sample 290, 502 training
and 5, 612 test data from the human genome assembly version GRChS3§ using
this method. The frequencies of both the classes of non-canonical consensus
are considered as 0.5% based on their frequencies reported by Mount et al.
[42]. The remaining negative data comprises the canonical GT-AG dimer
pair.

The distribution of canonical and non-canonical splice junctions in the
positive and negative data of both training and test dataset is shown in
Table 1. We form two types of dataset: Type-1 and Type-2. The Type-
1 dataset comprises the positive data and randomness-based negative data,
whereas the Type-2 dataset comprises the positive data and consensus-based
negative data.

The distribution of the two most frequent non-canonical dimer pairs in
the training and test dataset is shown in Table 2. In the positive training
data, we see that the two most frequent non-canonical dimer pairs conform
to the non-canonical dimers reported in [42]. The frequency depicts the
count and percentage of non-canonical sequences comprising a particular

10
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dimer-pair. As expected, the randomness-based negative data has a smoother
frequency distribution of dimer-pairs since it is not governed by any biases
and, therefore, only represents the randomness of a genome sequence.

Table 2: Distribution of the top 2 most frequent non-canonical dimer pairs
in the positive and negative data.

Dataset Training data Test data

Top 2 Frequency Top 2 Frequency

Positive GC-AG 3848 (66.61%) GC-AG 165 (44.47%)

AT-AC 232 (4.02%)  GA-AG 16 (4.31%)
TT-TT 2461 (0.94%) TT-TT 54 (0.96%)
AA-TT 2013 (0.77%) TG-TT 47 (0.84%)
GC-AG 1259 (50.12%) GC-AG 28 (50.90%)
AT-AC 1253 (49.88%) AT-AC 27 (49.10%)

Randomness-based negative

Consensus-based negative

4.2. Training and hyperparameter tuning

The training data is partitioned into 90% train and 10% validation data
for tuning the hyperparameters of SpliceViNCI. Each nucleotide in the input
sequence of length N is converted to a 100-dimensional vector by the em-
bedding layer to form an N x 100 dense vector. This dense vector is passed
through the BLSTM, fully connected, and softmax output layer with 100,
1024, and 2 units, respectively. The values for dropout and recurrent dropout
are tuned to 0.5 and 0.2, respectively. We train the model for 10 epochs with
a batch size of 128.

4.3. Baselines

The following models are implemented as baselines, and the hyperparam-
eters are tuned using the procedure mentioned in Section 4.2. The baselines
are trained and tested on the dataset explained in Section 4.1. The tuned
hyperparameters and the baseline architectures are as follows:

1. Vanilla LSTM: We replace the BLSTM units in the proposed architec-
ture with LSTM units. All hyperparameters are the same as that of
the proposed architecture.
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2. SpliceRover: This model is a deep CNN which identifies acceptor (donor)
splice junctions in an acceptor (donor) classification model [9]. The
authors propose the use of a different number of convolutional layers
for different sequence lengths. We consider two convolutional layers,
followed by a max pooling layer based on the optimal performance ob-
tained on our dataset. Tuned values of batch size, learning rate, decay
rate, number of steps, and Nesterov momentum are 64, 0.05, 0.5, 5,
and 0.9, respectively.

3. SpliceVec-MLP: This model generates distributed representations of
true and decoy splice junctions using a shallow neural network, which
is then classified by a multilayer perceptron [14]. The batch size and
learning rate of Adam optimizer are considered as 128 and 0.001.

4. DeepSplice: This is a deep CNN model that identifies a true donor-
acceptor junction pair from a decoy junction pair sequence [13]. The
values for batch size, epochs, and Adam optimizer learning rate are
tuned to 160, 30, and 0.001, respectively.

5. Results

5.1. Splice ViNCI learns better representations of non-canonical splice junc-
tions

The quality of the embeddings obtained from the fully connected layer of
SpliceVINCI is evaluated by projecting the 1024 dimensional dense vectors
into 2 dimensional space using t-SNE [44]. We plot the positive and neg-
ative non-canonical test sequences from Type-1 and Type-2 dataset in Fig-
ures 3(a) and 3(b), respectively. The points in blue are positive non-canonical
sequences, whereas the points in red are negative non-canonical sequences.
Similarly, we also plot the embeddings obtained from fully connected layer
of SpliceRover for both Type-1 and Type-2 dataset in Figures 3(c) and 3(d).

Relatively more distinct clusters are observed for both the positive and
negative datasets in the case of SpliceViNCI compared to SpliceRover. Since
no user-defined features are fed into the model and both the models learn the
relevant features de-novo from the genome sequences, we can infer that the
proposed architecture extracts the splicing features better than SpliceRover
in the case of both positive and negative non-canonical splice junctions.
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Figure 3: t-SNE plots of non-canonical splice junctions obtained
from SpliceViNCI for (a) Type-1 dataset, (b) Type-2 dataset and
from SpliceRover for (c) Type-1 dataset, (d) Type-2 dataset. The
points in blue are positive splice junctions whereas points in red are negative
splice junctions.

5.2. Non-canonical splicing features are relatively further from the splice
Junctions

Since the length of the flanking region containing important splicing sig-
nals is not known, we vary this length in the input sequences to find the
optimal flanking region that produces the best performance in splice junc-
tion prediction. We vary the flanking region from 20 to 180 nt with a step
size of 20 nt. An input sequence comprises upstream and downstream re-
gions of donor and acceptor junctions concatenated in order. Each junction
comprises a canonical or non-canonical dimer. Therefore a flanking region of
length N results in an input sequence of length 4 x N + 4.

Table 3 shows the performance of SpliceViNCI in terms of F1-score with a
varying flanking region on Type-1 and Type-2 dataset. We obtain the perfor-
mance of SpliceViINCI on canonical (can) and non-canonical (non-can) splice
junctions separately. This is because the splicing signals may be differently
distributed for canonical and non-canonical splicing resulting in different op-
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timal flanking regions in both the cases.

Table 3: Fl-score (in percentage) obtained by SpliceViNCI in identification
of canonical (can) and non-canonical (non-can) splice junctions with varying
flanking region on Type-1 and Type-2 dataset.

Flanking region Type-1 dataset  Type-2 dataset

can non-can can non-can
180 99.50 69.71 99.13 97.38
160 99.39 65.47 99.06 97.24
140 99.65 72.09 99.05  97.66
120 99.65 74.04 99.05 97.67
100 99.67  73.56 99.04  96.82
80 99.70 70.31 99.02 96.81
60 99.65 71.06 99.07 96.40
40 99.60  69.32 98.30  95.65
20 98.60  60.01 95.82  93.65

We see that the performance of SpliceVINCI in the prediction of non-
canonical splice junctions improves by about 14% for Type-1 dataset and 4%
for Type-2 dataset with an increase in the context. We also observe that
SpliceViNCI obtains comparable performance for both the dataset in case
of canonical splice junctions. However, in the case of non-canonical splice
junctions, the performance improves significantly in the Type-2 dataset.
SpliceViNCI obtains the maximum F1-score of 97.67% (74.04%) in the Type-
2 (Type-1) dataset for the prediction of non-canonical splice junctions.

We obtain the optimal performance for the prediction of canonical splice
junctions at 60 to 80 nt context. An optimal length of 30 to 40 nt is suggested
in the literature [25, 26] and validated in various studies [12, 13, 8, 14, 15]
for canonical splice junction prediction. These studies obtained negligible
improvement in the model’s performance on further increase of the flanking
context.

We obtain the optimal performance for the prediction of non-canonical
splice junctions at a flanking region of 120 nt. To examine the statistical sig-
nificance of the context length, we performed the students ¢-test. We formed
two groups, each comprising F1l-scores obtained from five different execu-
tions, with a flanking region of 120 nt and 80 nt, respectively. The P-values
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obtained for Type-1 and Type-2 dataset are 0.002 and 0.003, respectively.
We consider a P-value > 0.05 as statistically significant.

The statistical significance of variation in the flanking region indicates
the presence of non-canonical splicing signals further away from the splice
junction. This inference can be validated by the study, which suggests that
non-canonical splice junctions may lack some known consensus, or the splic-
ing signals may be distally located from the splice junctions [45].

5.3. Splice ViNCI outperforms state-of-the-art splice junction prediction mod-
els

We compute the prediction performance of various state-of-the-art models
on Type-1 and Type-2 dataset, considering the optimal flanking region of
120 nt obtained in Section 5.2. F1l-score is considered as the performance
metric. We see that SpliceViNCI outperforms all state-of-the-art models in
the prediction of non-canonical splice junctions in both Type-1 and Type-2
dataset (Figure 4).

B SpliceViNClI mmm SpliceRover s SpliceVec-MLP
EEN LSTM-base DeepSplice

100 1

80

60

Fl-score

40 4

20 A

0-
Type-lcan  Type-lnon-can  Type-2 can  Type-2 non-can

Figure 4: Performance of various state-of-the-art models. The per-
formance is measured in terms of Fl-score for canonical (can) and non-
canonical (non —can) splice junctions from both Type-1 and Type-2 dataset.
F1l-score is computed in percentage.

In the prediction of canonical splice junctions, LSTM-base performs com-

parably to SpliceViINCI for both the dataset. In the prediction of non-
canonical splice junctions from the Type-1 dataset, SpliceViNCI shows a
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Table 4: Performance of various state-of-the-art models on Type-2 dataset
considering donor, acceptor and donor-acceptor junction pair as input. F1-
score (in percentage) is computed as the performance metric.

Model Junction pair Donor Acceptor

can non-cain can non-can can non-can

Splice VINCI 99.05 97.67 93.90 91.19 91.29 7791
LSTM-base 99.16 95.00 94.01 89.32 90.18 74.68
DeepSplice 91.66 90.81 90.79 86.89 84.27 88.97
SpliceRover 90.68 82.63 86.37 83.30 84.66 71.24
SpliceVec-MLP  93.23 94.23 79.97 67.98 73.54  59.24

minimum improvement of 2% over LSTM-base and a maximum improvement
of 28% over SpliceVec-MLP. In the case of the Type-2 dataset, SpliceVINCI
shows a maximum and minimum improvement of 2% and 15% over LSTM-
base and SpliceRover, respectively. Furthermore, all the models obtain better
performance in the identification of non-canonical splice junctions from the
Type-2 dataset compared to the Type-1 dataset. This suggests that the
negative data in the Type-2 dataset enables the models to learn better rep-
resentations of the splicing features.

5.4. Donor and acceptor splicing signals identify the splice junctions cooper-
atively

We consider donor-acceptor junction pairs as the input sequences instead
of only the donor or acceptor junctions. This results in the performance
improvement of the predictive model, as shown in Table 4 for the Type-2
dataset. We see that all the models except DeepSplice perform better on
the prediction of donor junctions compared to acceptor junctions. However,
the performance improves significantly when donor-acceptor junction pairs
are considered as input suggesting the cooperative mechanism of donor and
acceptor splicing signals in splice junction recognition. This is also inferred
in various studies which state that the donor and acceptor junctions are
not recognized through individual splicing signals but through junction pairs
across exons or introns [46, 11, 47].
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5.5. Identification of novel non-canonical splice junctions by Splice ViNCI

We intend to assess the performance of SpliceViNCI on the identification
of novel non-canonical splice junctions, as described in Section 4.1. With
this objective, we identify two sets of dimer pairs: seen and unseen. The
set of seen dimer pairs comprise those positive splice junction pairs that are
present in both training and test data. Whereas, the set of unseen dimer
pairs comprise those positive splice junctions that are present in test data
but not in training data.

Figure 5(a) shows the total number of dimer pairs present in both seen
and unseen categories. The figure also shows the number of dimer pairs
correctly identified by SpliceViNCI as splice junctions from seen and unseen
sets in case of both Type-1 and Type-2 dataset. Since the positive data is the
same in both Type-1 and Type-2 dataset, hence the number of dimer pairs
belonging to seen and unseen sets are the same for both the dataset. We
observe that SpliceViINCI performs better in the identification of seen data
in the case of the Type-2 dataset compared to the Type-1 dataset. It is also
noteworthy that in case of unseen data, SpliceViNCI does not identify any
dimer pair from Type-1 dataset, whereas it identifies all except one dimer
pairs in case of Type-2 dataset.

We were also curious to observe the performance of SpliceRover in the
identification of unseen data. Figure 5(b) shows the number of dimer pairs
identified by SpliceViNCI and SpliceRover from both seen and unseen sets in
case of Type-2 dataset. We observe that SpliceViNCI outperforms SpliceRover
in the identification of both seen and unseen dimer pairs.

(a) (b)

Figure 5: Performance of SpliceViNCI on seen and unseen data.
(a) The number of seen and unseen dimer pairs identified by SpliceViNCI
from Type-1 and Type-2 dataset. (b) The number of seen and unseen dimer
pairs identified by SpliceViNCI and SpliceRover from Type-2 dataset.
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5.6. Visualization of splicing features captured by Splice ViNCI

The presence of splicing features in the vicinity of splice junctions facili-
tate the identification of splice junctions by the prediction model. Interpre-
tation of the features captured by the prediction model is necessary to justify
the superior performance of the model. The splicing features analyzed using
the visualization techniques are summarized in the subsequent subsections.
The visualizations are carried out on the non-canonical sequences from the
Type-2 dataset.

5.6.1. Significance of sequence positions

We plot the average deviation values obtained for donor and acceptor
junction pairs from integrated gradients (Figures 6(a) and 6(c), respectively)
and occlusion-1 (Figures 6(b) and 6(d), respectively). A flanking upstream
and downstream region of 120 nt is also considered. We observe that both
the visualization techniques identify the acceptor and donor splice junctions
as the most significant. The importance decreases as the distance of the
nucleotide position increases from the splice junction. It is also noteworthy
that the importance of the intronic region is higher than the exonic region
at both donor and acceptor junctions.

Additionally, integrated gradients show higher deviation values upstream
of the acceptor junction, which is due to the presence of weakly conserved
polypyrimidine tract (PY-tract) in non-canonical splice junctions [45]. On
the other hand, occlusion-1 shows higher importance for sequence positions
deeper into the intronic region at the acceptor junction. This suggests the
presence of splicing features upstream of the PY tract.

The higher importance upstream of the PY-tract is captured by occlusion-
1 but not integrated gradients. This can be explained by a study [36], which
states that occlusion is capable of capturing individual features in isolation,
whereas integrated gradients perform better when multiple features are con-
sidered together. Dutta et al. [15] reported a similar observation where
isolated nucleotides were captured as splicing features by occlusion, and con-
secutive nucleotides were captured as features by integrated gradients. If
we consider each sequence position as a feature, then higher deviation value
assigned by occlusion-1 upstream of the PY-tract suggests the presence of
dispersed nucleotides in this region that possibly act as splicing features.
This is also stated in [45].
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Figure 6: The importance of sequence position. The average devi-
ation value per position is shown for non-canonical donor junctions by (a)
integrated gradients (b) occlusion-1 and non-canonical acceptor junctions by
(c) integrated gradients (d) occlusion-1.

5.0.2. Optimal feature length per position

As the significance of sequence positions observed from Section 5.6.1 sug-
gests the presence of dispersed and isolated splicing features along the in-
tronic region at acceptor junction, we intend to assess the optimal feature
length at each sequence position. To this end, we plot the relative frequency
of each window length across all sequences when it produced the highest
deviation value at a particular sequence position. We observe that at both
donor (Figure 7(a)) and acceptor (Figure 7(b)) splice junctions, the plot
consistently displays highest frequency for the window length of 1 nt along
the entire sequence. This again validates that the features governing non-
canonical splicing are mostly dispersed along the sequence and are not placed
at consecutive nucleotide positions.

5.6.3. Importance of each nucleotide per position
To access the importance of each nucleotide at each sequence position,
we plot the average deviation value per position per nucleotide. Integrated
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Figure 7: The optimal motif length per position. The frequency of
different window lengths, varying from 1 to 11, is shown for occlusion of
non-canonical (a) donor and (b) acceptor splice junctions.

gradients show higher deviation value for C' and T" along the entire intronic
region at both donor (Figure 8(a)) and acceptor junctions (Figure 8(c)). The
deviation values for all the nucleotides diminish along the exonic region.

Occlusion extracts G as the most important nucleotide along the intronic
region for both donor and acceptor junctions. The deviation value for GG
is particularly high in the region from -30 nt to -100 nt upstream of the
acceptor junction, as shown in Figure 8(d). This suggests the presence of a
G-rich splicing feature in this region.

The above two observations corroborate the study in [45], which sug-
gests the presence of G-rich motifs upstream of PY-tract in the case of non-
canonical introns having weak PY-tract. The integrated gradient captures
the weak PY-tract, whereas occlusion captures the G-rich motifs. However,
the higher deviation values for C' and T at the donor junction does not relate
to any relevant knowledge from the literature.

5.6.4. Most important motifs in a specific region

Murray et al. explored the region -30 nt to -80 nt upstream of the acceptor
junction to identify the enriched motifs that regulate splicing in the case of
non-canonical splicing. They characterized the relative enrichment of all 4-7
nucleotide k-mers in the specified region and obtained several G-rich motifs
[45]. A similar region is also highlighted in Figure 8(d) and described in
Section 5.6.3.

We conducted a similar analysis by computing the relative frequency of
the most important 4-7 nucleotide k-mers in the region -30 nt to -80 nt
relative to the acceptor junction. The most important k-mer in a particular
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Figure 8: The average deviation value per position per nucleotide.
The average deviation value per position per nucleotide is shown for non-
canonical donor junctions by (a) integrated gradients (b) occlusion-1 and
non-canonical acceptor junctions by (c) integrated gradients (d) occlusion-1.

position is the k-mer, which obtains the highest average deviation value, at
that position, across all sequences. The motifs obtained for the four different
lengths are shown in Figure 9. We observe that the specific region is rich in
[AG] nucleotides suggesting the importance of purines in the regulation of
non-canonical splicing.

To sum up, we can conclude that both the visualization techniques play a
vital role in the extraction of non-canonical splicing features. Since the non-
canonical splicing features comprise both single and contiguous nucleotides,
we can apply both the visualization techniques for the comprehensive under-
standing of non-canonical splicing.

6. Conclusion

We propose a BLSTM based prediction model named SpliceViNCI that
achieves state-of-the-art performance in the identification of canonical and
non-canonical splice junctions. SpliceViNCI outperforms state-of-the-art mod-
els in the identification of both annotated and novel splice junctions. Our
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Figure 9: The frequency of various k-mers, given by occlusion, in the region
-30 nt to -80 nt upstream of the non-canonical acceptor junction.

study finds that a flanking region of 120 nt produces optimal performance in
the prediction of non-canonical splice junctions.

We employ two effective visualization techniques for the extraction of rel-
evant splicing features learned by the model. The visualization techniques
are redesigned to be capable of comprehending genome sequences as input.
We employ both back-propagation based and perturbation based visualiza-
tion techniques to leverage the benefit of both the techniques. The features
obtained are validated with the existing knowledge from the literature.
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