
December 6, 2004 0:50 WSPC/191-IJHR 00030

International Journal of Humanoid Robotics
Vol. 1, No. 4 (2004) 585–611
c© World Scientific Publishing Company

LEARNING TO ACT FROM OBSERVATION AND PRACTICE

DARRIN C. BENTIVEGNA

ATR Computational Neuroscience Laboratories
Department of Humanoid Robotics and Computational Neuroscience

Kyoto, 619-0288, Japan

Computational Brain Project, ICORP
Japan Science and Technology Agency, Kyoto, Japan

CHRISTOPHER G. ATKESON

ATR Computational Neuroscience Laboratories
Department of Humanoid Robotics and Computational Neuroscience

Kyoto, 619-0288, Japan

Carnegie Mellon University, Robotics Institute, Pittsburgh, PA, USA

ALEŠ UDE

ATR Computational Neuroscience Laboratories
Department of Humanoid Robotics and Computational Neuroscience

Kyoto, 619-0288, Japan

Jožef Stefan Institute, Department of Automatics
Biocybernetics and Robotics, Ljubljana, Slovenia

GORDON CHENG

ATR Computational Neuroscience Laboratories
Department of Humanoid Robotics and Computational Neuroscience

Kyoto, 619-0288, Japan

Computational Brain Project, ICORP
Japan Science and Technology Agency, Kyoto, Japan

Received 25 May 2004
Revised 11 June 2004
Accepted 15 June 2004

We present a method for humanoid robots to quickly learn new dynamic tasks from
observing others and from practice. Ways in which the robot can adapt to initial and
also changing conditions are described. Agents are given domain knowledge in the form
of task primitives. A key element of our approach is to break learning problems up into
as many simple learning problems as possible. We present a case study of a humanoid
robot learning to play air hockey.

Keywords: Learning from observation; movement primitives; imitation; locally weighted
learning; humanoid robot; air hockey.

585



December 6, 2004 0:50 WSPC/191-IJHR 00030

586 D. C. Bentivegna et al.

1. Introduction

We are exploring learning from observation and learning from practice using primi-
tives. This paper presents a case study of humanoid learning: we describe a system
in which a robot learns to play air hockey from observing a human player and
from practice. It also shows how learning at the action generation level is used to
improve performance and quickly adapt to changing conditions. This research pro-
vides insight into how learning problems can be structured for quick learning from
observation and practice. It is our hope that our approach will also lead to ideas and
methods that can be used to automatically define primitives from observing a task.

In this research we found that quickly adapting to small changes in the task was
very important for acceptable performance by the humanoid robot. More generally,
for humanoid robots to be accepted as partners with humans they will be expected
to learn quickly and adapt to changes in ways similar to humans. Within a single
task there may be many things that can change as humans interact with the robot.
The placement of items within the workspace, the physics of the task, and the
reaction of the human to the robot’s movements are some examples of the things
which can vary during the interaction.

1.1. Why primitives?

We are exploring learning using primitives in both air hockey and a marble maze
task.4 The agents can perform surprisingly well using only observed information,
but are capable of even better performance if they are allowed to learn from prac-
ticing the task and adapt to any changes in task conditions. Using primitives in
learning is helpful in several ways: (i) it speeds up learning; (ii) primitives can
improve generalization to other tasks; (iii) we think humans use primitives, and we
are attempting to match our primitives to task-level primitives that we think the
humans are using. This helps our humanoid robot behave in a human-like fashion.

We have developed a three level approach (Fig. 1).4 The first level, Primitive
Selection, allows the robot to learn which type of primitive to use in any given situa-
tion. The second level, Subgoal Generation, allows the robot to learn which subgoals
a human tries to achieve. The third level, Action Generation, allows the robot to
learn how to achieve the desired subgoals. Having these three levels separates and
simplifies different learning problems: what kind of shot to take (behavior selec-
tion)? Where to aim the shot (parameter generation)? How to make that particular
shot (execution)? This paper discusses learning from observation at all three levels,
and learning from practice at the action generation level.

1.2. Why air hockey?

Air hockey is a game played by two players. They use round paddles to hit a flat
round puck across a table. Air is forced up through many tiny holes in the table’s
surface, which creates a cushion of air for the puck to slide on with relatively little



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 587

Action
Generation

Primitive
Selection

Subgoal
Generation

Primitive
Recognition

Training

Learning
from

Execution

Fig. 1. Our framework.

Fig. 2. Simulated air hockey (left) and playing air hockey with a humanoid robot (right). In the
simulated game the disc shaped object near the centerline is a puck that slides on the table and
bounces off the sides, and the other two disc shaped objects are the paddles. The virtual player
controls the far paddle, and a human player controls the near paddle by moving the mouse. The
object of the game is to score points by making the puck hit the opposite goal (the marked area at
the ends of the board). In the physical game the paddles are held by the human and the humanoid
robot, and the puck is about to be hit by the robot.

friction. The table has an edge around it that prevents the puck from going off the
table, and the puck bounces off this edge with little loss of velocity. At each end of
the table there is a goal area. The objective of the game is to hit the puck so that
it goes into the opponent’s goal area while also preventing it from going into your
own goal area.

A simulated and a hardware version of air hockey have been created as testbeds
for this research (Fig. 2).3 There are many reasons why air hockey is an inter-
esting task for this case study. It is a dynamic task where the puck is almost
always moving. It is fast, requiring rapid perception, thinking, and movements. It is



December 6, 2004 0:50 WSPC/191-IJHR 00030

588 D. C. Bentivegna et al.

demanding, requiring considerable movement accuracy. It is complex, when per-
ceptual and movement time delays, board placement and leveling, varying board
surface conditions and friction, air flow, temperature effects, and actuator dynamics
are taken into account. There are disturbances, modeling errors, and an adversary,
so there is much to learn. The task is small and simple enough to be implemented
on a computer in simulation and in a normal size laboratory. Since the playing area
is two-dimensional, sensing and moving is simplified. Air hockey is closely related
to racquet sports such as ping-pong and tennis, as well as other interactive games
such as playing catch. We believe that our approach to air hockey can generalize to
a wide range of intermittent dynamic tasks.

The air hockey task is also being explored by Spong and colleagues.6,11,12 Bishop
et al. discuss difficulties, such as table position errors and specifying a puck move-
ment model, that our learning and adaptation models try to overcome.6 Whereas the
research of Spong et al. provides insight into the physical interactions of air hockey,
our research seeks methods for humanoid robots to quickly learn task strategies and
models through observation and practice.

1.3. Why adaptive action generation?

In our approach much of the ability to rapidly adapt to changes in task conditions
is at the action generation level. We believe adaptive action generation is necessary
for successfully behaving in human environments, and it is an ability expected of
humanoid robots. We cannot rely on structuring the environment, as is done in
much factory automation.

2. The Air Hockey Task

The hardware air hockey task has been created using a humanoid robot (Fig. 2).1

The humanoid robot has 30 degrees of freedom and is 190 cm tall and weighs 85 kg.
It is hydraulically actuated and attached to a stable pedestal at the hips. The
robot is placed at one end of the table and plays the game using one arm. It views
the position of the objects using cameras that are on pan-tilt mechanisms on the
humanoid’s head.

The manually defined primitives that we are exploring for this task are:

• Straight Shot: A player hits the puck and it goes toward the opponent’s goal
without hitting a wall.

• Bank Shot: A player hits the puck and the puck hits a wall and then goes toward
the opponent’s goal.

• Defend Goal: A player moves to a position to prevent the puck from entering
their goal area.

• Slow Puck: A player hits a slow moving puck that is within their reach.
• Idle: A player rests their paddle while the puck is on the opponent’s side.



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 589

This paper will focus on the selection and execution of the shot primitives
(Straight Shot and Bank Shot). The details of action generation will be pre-
sented to show how learning and adaptation are used. During the shot primitives
the puck and the robot are moving very quickly. Because movement errors and errors
in the prediction of the future puck state can have a large effect on the outcome,
the shot primitives provide a good opportunity for learning.

2.1. Perceiving the position of the objects

In order to play air hockey, the robot must be able to sense object locations in
real-time. The task is made more difficult because the robot uses its own eyes
(cameras) to see the game. Combined real world and camera motions lead to fast
image motions.

2.1.1. Calibration

Since air hockey is played on a flat surface, we can model the image plane to hockey
board mapping as a perspective mapping between two planes. It is well known that
such a mapping can be modeled by a 3×3 homography, which is defined up to a scale
factor and thus has eight degrees of freedom.18 Since this mapping is invertible, the
information from one eye (camera) suffices to uniquely determine the position of
the puck on the board. However, we must be able to update this mapping at every
measurement time because the robot’s head moves during the game. In theory, we
could do this by calibrating the camera at a preferred configuration and use forward
kinematics to calculate the current image-to-board mapping, but this is impractical
because the humanoid robot motion involves many degrees of freedom and is highly
nonlinear. It is therefore better to recalibrate the system at every time step. Since
every homography has eight degrees of freedom, we must know the position of at
least four points on the table and in the image to recalibrate the camera at every
measurement. This increases the number of objects that we need to track to at
least seven; four fixed points on the board for calibration, puck, and both paddles.
To make the recalibration more accurate and the tracking process more robust we
have created an implementation that uses six points to recalibrate the system.

A homography describing the perspective mapping between the image plane and
the hockey board is given by

sxi(t) = H(t)ui(t), i = 1, . . . , N, N ≥ 4, (1)

where xi(t) = [xi(t), yi(t), 1]T are the known positions of the markers on the hockey
board (measured by hand) and ui(t) = [ui(t), vi(t), 1]T are the positions of the
detected markers in the image. Note that we calculate the homography from the
image plane to the hockey board. Let h1(t), h2(t) and h3(t) be the columns of



December 6, 2004 0:50 WSPC/191-IJHR 00030

590 D. C. Bentivegna et al.

H(t). Writing z(t) = [h1(t)T , h2(t)T , h3(t)T ]T , Eq. (1) can be rewritten as[
ui(t)T 0 −xi(t)ui(t)T

0 ui(t)T −yi(t)ui(t)T

]
z(t) = 0. (2)

Writing Eq. (2) in a matrix form results in a matrix equation A(t)z(t) = 0, where
A(t) is a 2N ×9 matrix. As H(t) is defined only up to a scaling factor, the solution
is well known to be the eigenvector associated with the smallest eigenvalue of the
9× 9 matrix AT (t)A(t).18 Alternatively, one could solve Eq. (2) directly by setting
one of the parameters, typically h3,3(t), to 1. See Ref. 14 for details about the color
tracking system used to observe objects.

2.1.2. Strategy for error recovery

Typically, a game of air hockey goes on for several minutes and the vision system
is expected to provide locations of the objects of interest during this period. It is
extremely annoying if the data collection or the actual hockey game must be stopped
due to the failure of the vision system. Since it may not be possible to completely
avoid tracking failures, we designed a specialized error recovery scheme that ensures
the successful operation of the vision system over longer periods of time.

There are a few situations when the robot has difficulty observing the position of
the objects. The most common problem is that the robot arm sometimes completely
occludes the puck and it is therefore not possible to locate it, see Fig. 3. When this
happens, the tracker keeps looking for the puck for half a second at the latest
detected location. After half a second it is considered unlikely that the puck would
still be near this position and the tracker starts two new search processes: one in
front of the opponent’s paddle where we can assume that there will be contact with
the puck in the future and the other one in the region near the robot where the puck
might still be situated in the case of an occlusion. The second process randomly
generates initial puck positions within the search region and thus ensuring that the

Fig. 3. The view from the robot’s eyes with the tracked objects marked. The puck is totally
occluded in the right image. The right image is also blurred due to the movement of the robot
head.



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 591

puck will eventually be found regardless of its current position within this region.
It is important to note that we do not embark on an exhaustive search covering the
whole board as that could not be carried out at 60Hz. The success of one of the
search processes terminates them both.

Occasionally one of the side blobs that is used for recalibration is lost by the
tracker. This is most often caused by very fast motion of the robot’s head when
the robot performs a shot, which results in low-quality images and huge image
motions. If the robot cannot see at least four side blobs, the recalibration cannot be
carried out and the robot cannot play the game. Fortunately, this problem is not too
serious because the robot calculates the motion trajectory before it starts executing
the shot. After executing the shot, the robot returns to a preferred configuration and
since the position of the board remains nearly constant, we can store the positions
of all of the side blobs at the preferred configuration and restart the tracking using
the stored positions as initial values. The side blobs are detected again when the
robot returns to its preferred configuration after the shot execution.

Although problems with the paddle tracking are rare, we have nevertheless
implemented an error recovery scheme. It is based on the fact that the motion
of both paddles is confined to a region along the opposite ends of the hockey board.
Thus if one of the paddles is lost, we can start a search process in a region along
the appropriate end of the board.

Figure 4 shows the results of the visual tracking system using four fixed mark-
ers during approximately 4.2 seconds of game play. During this interval the fixed
markers are always being tracked, but on several occasions the puck was lost and

100 150 200 250 300 350 400 450 500 550
100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 4. The left graph shows the raw vision cordinates (pixels) of four objects placed at known
locations and the moving puck. On the right is the computed position (meters) of the puck based
on the information shown on the left. The circled segments are where the vision system lost track
of the puck for several samples.



December 6, 2004 0:50 WSPC/191-IJHR 00030

592 D. C. Bentivegna et al.

then reacquired. The puck was lost just after the robot hit it. This is not a critical
time since the robot’s hit motions are fully planned and begin more than 100msec
before the puck is hit.

2.2. Robot positioning

An interpolation scheme is used to solve the redundant inverse kinematics problem
to position the paddle on the playing surface. Figure 5 shows six manually generated
body configurations that place the paddle in different locations. To position the
paddle at any location within these configurations, the closest four configurations
are combined using a bilinear interpolation method. While this approach is simple
and allows us to solve the redundant inverse kinematics problem, we have found that
the accuracy of positioning the paddle is affected by many things such as the initial
position of the board, the paddle’s movement speed, and the friction between the
paddle and the board. More information on the vision system and paddle positioning
method can be found in Bentivegna et al.5

3. Retrieving Information from Observed Data

To learn from observation, the robot must first have the ability to retrieve appro-
priate information from the observed data. This section describes what, and how,
information is obtained from the observed data. As the robot observes a task it
looks for critical events. Critical events are large changes or discontinuities in what

Fig. 5. Six manually defined configurations are used to compute all enclosed configurations.



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 593

0
0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0.4

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

+x

+y

+x

+y

+x

+y

+x

+y

+x

+y

0.1

0.2

0.3

1

0.8

0.85

0.9

0.95

0

0.4

0.1

0.2

0.3

0.2

1

0.4

0.6

0.8

0.50.1 0.2 0.3 0.4

Shots made
by human

Human paddle
movement

Puck
movement

+x

+y

P
ad

dl
e 

Y
P

ad
dl

e 
X

P
uc

k 
X

P
uc

k 
Y

Fig. 6. Raw data collected while observing a human making shots in air hockey. The left figure
shows the data plotted in two dimensions (meters). The right figure shows the object positions
plotted against time and collisions with the puck can be easily seen in this figure.

is happening that can easily be seen. A puck hitting a wall or a paddle is an exam-
ple of a critical event. Figure 6 shows data collected from observing hardware air
hockey. From this figure it can be seen that collisions cause an obvious change in
the puck’s movement trajectory.

To learn a shot behavior from observing the task the robot follows these steps:

(i) Look for when the puck is close enough to a paddle that it could be in contact
with it. If the puck undergoes a discontinuous change in velocity, a hit is
assumed at this location. If the puck has a large velocity toward the opponent’s
side, the position and velocity of the puck and paddle are recorded as the hit
state.

(ii) Observe the puck’s movements until it gets near the opponent’s goal area while
looking for collisions with the side walls. If a collision with a wall is observed,
which side, left or right, is recorded. We are currently only considering shots
with a single wall bounce.

(iii) Look for a collision of the puck with the opponent’s wall or goal. If the puck
reaches the opponent’s wall, the location is recorded as the target position.



December 6, 2004 0:50 WSPC/191-IJHR 00030

594 D. C. Bentivegna et al.

(iv) Look for a collision with the opponent’s paddle. If the puck is hit by the
opponent before it reaches the opponent’s wall, the location that the puck
would go to if it was not blocked is predicted using a simple learned model and
recorded as the target position.

From these observations the following information can be collected each time a shot
is observed:

• the position and velocity of the puck shortly before it crosses the center-line
heading toward the player;

• the position and velocity of the puck when it is hit;
• the relative location of the paddle when the puck is hit;
• the velocity of the paddle when it hits the puck;
• the puck’s velocity just after it is hit;
• the position on the back wall that the puck will go to if it is not blocked by the

opponent.

Databases are created from the observed data that are used by the primitive
selection, subgoal generation, and action generation modules. This section describes
how the observed information is formatted to be used to select a shot type and
subgoals when the puck is traveling toward the player. Section 5 describes how the
observed information is formatted and used by the action generation module.

A database is created to encode the actions taken by an observed player when the
puck crosses a pre-specified line heading towards the player. The actions contained
in the database are the Straight Shot, Bank Shot, and Defend Goal primitives.
The pre-specified line, called the decision line, is on the opponent’s side and is just
out of reach of the opponent, Fig. 7. This means that the puck can no longer be
influenced by the opponent’s actions and future puck positions can be predicted.
If, after the puck crosses the decision line, a collision with the player’s paddle is
observed and the puck goes toward the opposite side, it is classified as a shot
primitive. In all other situations where the puck does not enter the player’s goal, it
is classified as a Defend Goal primitive.

If the Defend Goal primitive is observed, the position and velocity of the puck
when it crosses the decision line and the location the paddle is moved to defend the
goal are recorded. If one of the shot primitives is observed, the following information
is recorded (Fig. 7):

• (xdl, ydl, ẋdl, ẏdl) — the position and velocity of the puck when it crosses the
decision line;

• yhit — the line where the puck was hit;
• PrimType — the type of shot that was taken;
• PuckSpeed — the speed of the puck after it is hit;
• xtarget — the target location on the back wall that the puck moved to after

being hit.



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 595

Hit
LocationTarget

Location Path of the 
incoming puck

Absolute
Post-hit
Velocity

Target
Line

Decision Line

Hit Line

+x

+y

Fig. 7. Information recorded in the database when a shot is observed.

4. Choosing a Primitive to Use and Generating Subgoals

When the robot is playing air hockey and observes the puck travel toward it from
the opposite side it will use the database to first select a primitive type to use.
The primitive selection module accomplishes this by finding the data points in the
primitive database that are closest to the observed state. This is done by comparing
the distance of each data point from the observed state, or query point. The distance
is given by d(x,q) =

√∑
j wj · (xj − qj)2, where x and q are the locations of

the data point and the query point, and w allows each dimension to be weighted
differently. For air hockey the query is the state of the puck when it crosses the
decision line (xdl, ydl, ẋdl, ẏdl).

The primitive type (a discrete choice) can be chosen by selecting the primi-
tive indicated by the closest data point returned from a nearest neighbor lookup.
An alternate approach is to use several nearby points, and implement some sort of
voting scheme such as selecting the primitive type that occurs most often within
the closest data points. We have found that using the single closest point to
determine the primitive type is the easiest and most efficient method, and works
sufficiently well.

Once the primitive type has been chosen the subgoal can be computed. It is
important to first choose the primitive type because the subgoals of different prim-
itive types may not be compatible. For example, it would not make sense to use
the subgoal of the Defend Goal primitive with the Straight Shot primitive. The
Straight Shot primitive will be expecting a target position on the back wall as
a subgoal location and the Defend Goal primitive will be specifying a subgoal
location to which to move the paddle to defend the player’s goal.



December 6, 2004 0:50 WSPC/191-IJHR 00030

596 D. C. Bentivegna et al.

The closest data point’s information can be used as the source of the subgoal
as well. A more robust approach is to use the N closest points with the selected
primitive type to compute the subgoal. The outcomes of the returned points are
used to compute the subgoal using a locally weighted learning (LWL) model2:

ŷ(q) =
∑N

i=1 yi · K(d(xi,q))∑N
i=1 K(d(xi,q))

,

where K(d) is the kernel function and is typically e−d2/α. The estimate for ŷ depends
on the location of the query point, q. If N is chosen as 1, it will have the effect
of performing the action indicated by the data point closest to the query point.
Atkeson et al.2 discusses the effect of other kernel functions on the weighting of the
data points.

After a shot primitive is chosen by the primitive selection module, the subgoal
generation module, using the previously observed information, will specify a line
at which the hit should take place (yhit), the target location to shoot the puck at
(xtarget), and the desired post-hit puck speed (PuckSpeed) as shown in Fig. 7. The
line at which the hit should take place tells the action generation module where the
action should occur. Because the puck is moving it also provides an indication of
when the action should occur. The target location tells what the desired outcome
of performing this action is. The target location is not fixed at the center of the
opponent’s goal but can vary along a line across the back wall as shown in Fig. 7.
Shooting the puck to a target location can be done at a variety of speeds. How
fast (post-hit puck speed) a player makes shots will have a large effect on their
performance. Therefore, the desired post-hit puck speed is supplied by the subgoal
generation module and gives an indication of how the action should be performed.

5. Shot Action Generation

Once the shot type has been selected and the desired outcome has been specified the
action generation modules must generate appropriate actions. This section and the
next describe the details of these modules and how they learn to control the robot
and learn about interactions from observation and practice. Section 3 showed how
training information for the action generation modules is obtained from observing
the task. The robot first has the opportunity to observe shots taken by the human
player and can then observe its own shots. Successful shots only occur at the rate
of 10 to 15 per minute. Because of this, unless the game is watched or practiced for
a long period of time, there is little information to learn from. Therefore, we have
structured our learning system to take advantage of the observed information as
efficiently as possible.

5.1. Making the most of observed information

To increase the usefulness of the observed information, the hockey shot data used for
the Bank Shot and Straight Shot primitives are represented in a local coordinate



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 597

frame. Using a local representation allows a single Bank Shot model to be created
from observing both left and right bank shots. The local coordinate frame for the
Bank Shot action generation module uses the wall that the puck will hit as the x

reference. The reference point (0, 0), shown in Fig. 8, is where the puck hit location
lines up with the side wall. The x-coordinate is positive in the direction from the wall
toward the puck and the y-coordinate is positive in the direction of the opponent’s
goal. When a left or right bank shot is observed, puck and paddle parameters are
transformed into the local coordinate frame before being provided to the action
generation model.

In the action generation module for the Straight Shot primitive the observed
information is transformed to a local coordinate system that is centered on the
position at which the puck is hit, also shown in Fig. 8. Positive y is toward the
opponent’s goal and positive x is to the right. This will generalize shots that have
approximately the same incoming velocity vector and a similar target displacement
and post-hit puck velocities.

5.2. Creating models of the task

A robot trajectory leads to the paddle hitting the puck, and subsequent puck
motion. An action generation module must invert this process, and find a robot
trajectory that causes the puck to hit the target location (Fig. 9). In this paper we
present methods to learn the Puck Motion, Impact and Robot models. This section
describes how the Straight Shot and Bank Shot primitive action generation
modules specify the paddle parameters needed to perform the primitive as specified
by the subgoal generation module. Section 6 describes how the robot learns to move
the paddle.

(0,0)

+x

+y

Hit
Locations

Target
Locations

Paths of the
outgoing pucks

Bank Shot
Reference 
Point

(0,0)

+x

+y

Straight Shot
Reference Point

Fig. 8. Bank shot and straight shot coordinate frames.



December 6, 2004 0:50 WSPC/191-IJHR 00030

598 D. C. Bentivegna et al.

Puck
Motion

Impact Robot

Target
Location

Outgoing
Puck Velocity

Incoming
Paddle Velocity

Robot
Trajectory

Fig. 9. The models involved in action generation.

We use a locally weighted learning technique, Locally Weighted Projection
Regression (LWPR),16 to represent these learned models. The LWPR approach
was chosen because new data can be added easily and the new information is avail-
able for use immediately without having to go off line to train the model on the new
information. The problem with most locally weighted learning methods is that each
data point added to the model increases the time needed to compute a solution.2

LWPR maintains a reasonably stable lookup time so data may continuously be
added. It is a nonparametric local learning system that uses locally linear models,
using a small number of univariate regressions in selected directions in the input
space. LWPR is proving its usefulness in such tasks as inverse dynamics learning13

and inverse kinematics learning.15 The Puck Motion, Impact and Robot models
are implemented as LWPR models that are trained from the observed information
These models are used during action generation in the Straight Shot and Bank
Shot primitives.

5.3. Learning the puck motion model

The puck motion model predicts the direction to hit the puck, given a target, where
to hit the puck, and the speed of the puck after the hit. To obtain this information
we used the data obtained from observation to train one LWPR model for the
Straight Shot primitive and another for the Bank Shot primitive. The inputs to
these models are as follows:

• Straight Shot Puck Motion model:

— the target position (x, y);
— the desired post hit speed of the puck.

• Bank Shot Puck Motion model:

— the target position (x, y);
— the puck position x at the time it is hit;
— the desired post hit speed of the puck.

The specified locations are in the local coordinate frames of the primitives as
discussed in Sec. 5.1. Therefore, the puck for the straight shot always starts at the



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 599

origin and the target is the desired x and y displacement. For the bank shot the
puck always starts at the line y = 0 and the y value in the target is the desired
y displacement of the puck. The output of both models is the direction in which
the puck should travel to reach the given target point from the location the puck
will be hit. This information, along with the desired post-hit speed provided by the
subgoal generation module, is then used by the impact model to generate the paddle
parameters needed to hit the puck to cause it to have the correct post hit velocity
(magnitude and direction).

5.4. Learning the impact model

The impact model must specify where the paddle should be relative to the puck,
and the paddle’s velocity at the time of the hit. One way to compute the needed
paddle state at hit time is to use a pre-specified model of the interaction such as
the one presented by Partridge and Spong.12 If the model parameters cannot be
precisely defined and determined, the model will not be accurate. Partridge and
Spong assume that the mass of the paddle is much higher than that of the puck
and therefore the paddle’s velocity is unchanged by the collision. This does not
seem to be the case in hardware air hockey where small changes in the paddle’s
trajectory can sometimes be observed at the point where it hits the puck. Therefore,
in our implementation, the effective mass, damping, and stiffness of the robot are
additional items that have an effect on the outgoing puck’s velocity. It would be
difficult to define a parametric model for our humanoid robot that would include
all the items that have an effect on the puck’s outgoing velocity. It is also difficult
to evaluate the significance of each item to determine which items can be ignored.
For these reasons we would like to have the robot learn the impact model in the
same way it learns the puck motion model.

The input and outputs of the impact LWPR model are as follows:

• Input:

— the velocity (ẋ, ẏ) of the puck when it is hit;
— the desired puck speed after it is hit;
— the desired movement direction of the puck.

• Output:

— the angle between the puck and the paddle at the hit time;
— the movement direction of the paddle when it hits the puck;
— the speed of the paddle when it hits the puck.

5.5. Model learning in the simulator

While watching a human play simulated air hockey for approximately ten minutes,
the agent observed 44 straight shots and 108 bank shots. This information was



December 6, 2004 0:50 WSPC/191-IJHR 00030

600 D. C. Bentivegna et al.

used to create impact and puck motion models that are used by the action genera-
tion modules of the Bank Shot and Straight Shot simulated air hockey playing
agent.

The solid line in Fig. 10 shows the result of the agent making 500 straight shots
in the simulator. For the first 200 shots the agent is using models created from
observing the human’s shots. Figure 10 plots the average absolute error in hitting
the target location, the distance between the target location and the location where
the puck actually hit the back wall. The values plotted are the running average of
five shots. The dotted line at the bottom of the graph shows the results of the agent
performing the action using an exact model of the simulator. The error in the exact
model is due to the noise introduced into the simulator and this is effectively the
best the agent can perform.

The width of the goal is 20 cm and from Fig. 10, it can be seen that if the agent
was targeting the center of the goal it would be in range to enter the goal most
of the time. But by comparing this agent to the perfect agent, it appears it can
perform better than this. One way to increase its performance is to have it observe
the human making more shots. But this can be time consuming as it took over ten
minutes to see only 152 shots. A better way is to have the agent observe its own
behavior and add that information to the models.

After making 200 straight shots using the models learned from observing the
human, the agent then observed 100 of its own shots while practicing (shots 201
to 300 in Fig. 10). Whenever the agent observes its own shot it calculates the
parameters in the same way as if it were observing a human. This information is
then immediately given to the models. Figure 10 shows the result of using these
newly trained models for the shots from 301 to 500.

0 100 200 300 400 500

0.2

0.15

0.1

0.05

0

Number of Shots Taken

T
ar

g
et

 E
rr

o
r 

(m
)

LWPR Model
Exact ModelPractice

100 Shots

Fig. 10. This graph shows the magnitude of the error in reaching the target location during 500
straight shots made by the agent in simulated air hockey. The solid line shows the result of the
agent making 200 shots using the LWPR model trained from observing 44 straight shots performed
by the human. It then observes 100 of its own shots while practicing and adds that information to
the LWPR model. The dashed line is the result of an agent making straight shots using an exact
model of the task. The graph shows the running average of five shots.



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 601

6. Action Learning in Physical Air Hockey

Learning on hardware provides a set of challenges that are not present in the simula-
tor. The simulator can start in, or be set to, any given configuration. The movement
of the items in the simulator can be accurately controlled and sensed. This section
presents a method that is being used by the robot in the hardware setup to adapt
to paddle movement and table placement errors. This method also allows the robot
to learn the timing of the paddle movements.

The humanoid robot positions the paddle on the table using the interpolation
method described in Sec. 2. This is a simple and useful method for positioning the
paddle, but if the table is not accurately placed, or moved during the task, there
will be an error in positioning the paddle on the table. We have found that paddle
placement accuracy is also affected by the desired movement velocity. The accu-
racy is much higher during slow shot maneuvers than during fast shot maneuvers.
A reason for this is due to the design of the robot and the fact that some of the
degrees of freedom (DOFs) are reaching their maximum velocity or torque limits.
One way to reduce the effect of this problem is to ensure that we keep the desired
movement velocity lower than the slowest DOF. But this would severely limit the
robot’s ability to perform this task. The robot has shown that it is capable of mov-
ing the paddle at velocities close to those of a human player. The problem is that
the paddle does not always correctly follow the specified trajectory at these high
velocities.

For the task of making shots in air hockey, there is only one important instant,
and that is when the puck and paddle collide. It is at this instant that the paddle
affects the movement of the puck. Therefore, it is not the entire trajectory that is
important, but the state of the paddle at the instant it hits the puck. If the robot
can repeatedly control the paddle to be in the correct state at the correct time, it
can make accurate shots in air hockey irrespective of the path the paddle takes to
arrive at that hit point.

6.1. Learning the robot model

The robot model must generate a trajectory which has the paddle arrive at the hit
location at the correct time with the correct velocity. The robot command consists
of a desired location and a time in which to reach that location. The movement
follows a fifth order polynomial with zero start and end velocities and accelerations.
It therefore should have its highest velocity in the middle of the movement and
this is where the puck-paddle collision should occur. But if the board is not in the
correct position, or the robot is trying to move with too high a velocity, the paddle
will not be at the correct hit point, with the correct velocity, at the correct time.
The left graph in Fig. 11 shows the path, the lines with the boxes on them, of three
hit maneuvers. The lines with the circles on them are the desired trajectories. The
robot’s initial position for the three maneuvers is approximately (0.235, 0.05). The
robot is commanded to move to the position (0.31, 0.16) in 14.3ms. The graph



December 6, 2004 0:50 WSPC/191-IJHR 00030

602 D. C. Bentivegna et al.

0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25
Desired hit locations –
Locations of highest 
paddle velocity -

+xi(m)

+yi(m)

0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

Desired 
trajectory

Observed path 
of the paddle.

Starting location

Fig. 11. The lines with the boxes on them in these graphs show the path of the paddle during
shot maneuvers. The lines with the circles on them are the desired trajectories. The graph on the
left shows three similar shot attempts overlaid. The errors are due to board placement errors and
the robot’s variance in making shots at different velocities. The three right graphs show the same
shot maneuver being made using a trained robot model.

shows where the paddle-puck collision is expected to occur and where in the actual
trajectory of the paddle the highest velocity is observed. From this graph it can be
seen that there is a repeatable error for this given command and there should exist
some set of commands that would place the puck at the desired hit location with
the desired velocity vector. It is the function of the robot model to learn the robot
commands that will correctly place the paddle at the time of the hit.

The robot learns this model when the board is placed and play is about to begin.
At this time the robot makes a set sequence of 30 paddle movements that would
be typical for making hockey shots. When a movement is commanded, the starting
location of the paddle as seen by the robot, the desired movement command, and the
time the command is sent to the robot are recorded. The movement of the paddle is
then observed and the paddle velocity is computed whenever new vision data arrives
(60Hz). The paddle’s position and velocities, and the time of the observation, are
recorded. When the paddle velocity returns to zero, a data point is created with
the following information:

• Input:

— starting position of the paddle;
— the state of the paddle, position and velocity, at the highest velocity location.

• Output:

— the position and time command given to the robot;
— the time from when the command is given to the time the paddle is observed

at the highest velocity location.

These data points are used to train an LWPR model that is used as the robot model.



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 603

6.2. Using the robot model

The paddle’s position and velocity needed at the time it hits the puck are computed
using the puck’s hit position and the information returned by the impact model.
This information, along with the paddle’s current location are used as inputs to the
robot model. The model then provides the command that will place the paddle as
desired.

The three graphs on the right in Fig. 11 show the results of using this trained
robot model to make the same maneuver as the one shown in the graph on the left.
Each graph shows one hit maneuver and the robot starts in approximately the same
initial state. The initial paddle position and desired paddle hit state are input to
the robot model and the values returned from the model are used as the movement
command. The graphs show that the model has learned to more accurately place
the paddle at the desired hit location with the velocity vector pointing in the correct
direction and the location at which the highest paddle velocity is seen is now much
closer to the desired hit position.

6.3. Using the timing information

The robot model also learns the time that it will take for the vision system to observe
the paddle at the desired hit location. In the hardware setup there are delays in
observing events and in commanding the robot. Because of the high velocities of
the puck, a delay in sensing and computing the puck position means that the puck’s
position as reported by the vision system is not the real-time position of the puck.
If the real-time position is required, a model of the task must be used to predict
the position of the puck into the future a time equal to the sensing delay.

The timing information provided by the robot model removes the need to
know the vision and command delays. This timing information tells the time, from
when the command is given, that the paddle will be observed at the desired hit loca-
tion. This means that the robot can now work entirely in the vision system’s frame
of reference when computing the time that the movement command should be given.

When the puck’s position and velocity are observed shortly after being hit by the
opponent, the action generation module, using the hit line supplied by the subgoal
generation module, predicts the time it will take, in the time frame of the vision
system, for the puck to reach the hit line. In other words, this is the time the puck
should be observed crossing the hit line. This predicted time, along with the timing
information returned from the robot model, can now be used for determining the
time the hit should be commanded. If the predicted time for the puck to cross the
hit line is computed as 300 ms and the time for the paddle to be observed at the hit
position, returned from the robot model, is 250ms, the robot’s movement should be
initiated in 50ms. 250ms after the movement command is given, the vision system
should observe the puck and paddle in the proper hit positions.

Figure 12 shows the path of the puck and the paddles during three 2-second
intervals of game play. The humanoid robot is on the left and the human player is on



December 6, 2004 0:50 WSPC/191-IJHR 00030

604 D. C. Bentivegna et al.

Fig. 12. The paths of the puck and paddles during three 2-second intervals of game play with a
humanoid robot (left) and a human (right). The “©” symbol denotes the start of the path and
the “�” denotes the end of the path.

the right. Figure 13 shows the position of the puck and paddles plotted against time
for 10 seconds of game play. The top graph plots the objects y positions on the same
graph and most puck-paddle collisions can easily be seen on this graph. The bottom
three graphs in Fig. 13 show the x position of the paddles and puck during the same



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 605

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

R
ob

ot
 X

(m
)

0

0.1

0.2

0.3

0.4

P
uc

k 
X

(m
)

0

0.1

0.2

0.3

0.4

H
um

an
 X

(m
)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Y
 a

xi
s 

(m
)

Human’s Paddle

Robot’s Paddle

Puck

Time (s)

Time (s)

Fig. 13. The position of objects in air hockey plotted against time. The top graph shows the y
position of all objects on the same graph. The bottom three graphs show the x position of the
objects during the same time.

time period. The level of performance in Figs. 12 and 13 is based on 20 minutes
of observed human play and 10 minutes of practice. The regression parameters
for selecting primitives and computing subgoals are as follows: the number of data
points used in the regression (N) = 5, each of the dimensions are scaled to ±1.0 and
the weight of each dimension is 1.0, and the kernel function is e−d2/α, where α = 1.0.



December 6, 2004 0:50 WSPC/191-IJHR 00030

606 D. C. Bentivegna et al.

7. Discussion and Future Research

7.1. How to structure learning

One purpose of this paper is to explore the utility of having a lot of structure in
learning. Section 1 explains our motivation in using primitives in robot learning.
This motivation leads us to seek out a structure for robot learning that supports fast
learning from observing and practice and has the ability to quickly adapt to changes.
This paper uses the air hockey task as a case study in which we show how action
generation has been structured to make efficient use of the observed information.
The action generation module contains models that allow the robot to learn specific
skills that may generalize to other tasks. This paper presents the results of training
these models from information obtained whenever a shot is observed. By structuring
the problem in the manner that we have, the robot has the opportunity to learn
and improve the performance of the models within the action generation module
at times other than only observing a full shot sequence. The impact model, for
example, can learn about the impact interaction whenever a paddle-puck collision
is observed. The ultimate outcome of the shot is irrelevant to this model. The same
is true for the puck motion and robot models. These models can be trained whenever
the puck is seen moving from the hit area to the goal area or the robot attempts to
make a shot. We are currently adding this ability, learning from smaller temporal
interactions, to our humanoid robot.

We are also exploring ways in which we can further break large models into
combinations of smaller ones. There are two puck motion models that provide the
desired velocity vector; one for straight shots and one bank shots. The bank shot
has at least three clear segments: (i) the puck moves from the hit point to the wall,
(ii) undergoes a change in velocity during the wall-puck collision, and (iii) travels
to the target position. Segments 1 and 3 are the same as the straight shot model.
Therefore, it may be possible to have the system learn faster and be more accurate
by structuring the problem to have a no-collision puck motion model and a wall-puck
collision model that coordinate to provide the needed information for a bank shot.

Our structure is also organized so that the models are not specifically tied to
a single task. It is useful for humanoid robots to have the ability to collect and
organize learned information in a way in which it can be reused. The impact model,
for example, provides the robot with a lot of basic information on the effect a large
moving object has on a smaller one. This model can be used as a starting point in
which to learn similar interactions such as learning the effect that a swinging bat
has on a ball that is being hit.

7.2. When and what to generalize?

As discussed in the previous section, combining the left and right bank shots into
one learning module provides the robot with more training data to improve the
performance of this module. But should this be done? Can a left bank shot and a



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 607

right bank shot be transformed to a standard shot? If the board is symmetric, it
appears that this can be done as shown by the results presented in Sec. 5.5. But
what if the board is not symmetric or is tilted to the side? It would be helpful if
the agent had methods to detect when information can be combined and when it
cannot.

One method would be for it to observe its performance and evaluate the effec-
tiveness of using the information in all situations. In air hockey, for example, it can
compare the results of using the combined information while making left and right
bank shots.

7.3. When to forget

In our work so far, humans decide when information is added to models and when
data is forgotten and replaced with new data. A future step would be for the robot
to have control over its own learning and decide for itself when models need fur-
ther training or replacing. If the robot has the ability to continually evaluate its
movements and the outcome of its actions, it can use this information to decide if
previously learned models are no longer accurate and should be updated or replaced.
In air hockey, for example, if the board is suddenly moved during the game, the
robot should immediately notice an error in its paddle movements. It can then
attempt to add new data to the robot model in an effort to have the model adapt to
the new board position. When data is added to the current robot model, the data
can also be use to train an entirely new, off-line, robot model. If the current model
is not adapting to the changed situation, it can be replaced by the new model.

7.4. Perceptual learning

With dynamic tasks, such as air hockey, the robot must initiate movements before
the objects are at the intended interaction location. This is due to the fact that
movements cannot be made at arbitrarily fast speeds and there are delays in sensing.
It is also important to note that the object will only be within a range of interaction
for a brief period of time. If the robot’s movements are not initiated quickly enough,
the chance to interact will be lost. Therefore, it is important for the robot to have
the ability to predict the interaction location as soon and as accurately as possible,
based on its perception of the object’s current motion.

In our relatively small version of air hockey, the robot observes the puck when
it crosses a line that is just beyond the center-line from the robot and about 0.35m
from where the puck will be hit. At this point the puck should be out of reach of the
opponent and can no longer be influenced by the opponent’s movements. The delay
in the vision system can be up to approximately 35ms and a puck traveling toward
the robot at 2.5m/s can be up to 0.0875m closer to the robot than where it is last
seen. Since the robot needs to accurately predict the future location of the puck, it
also filters the puck locations to more accurately compute the puck’s velocity. This
filtering process adds more delay to the puck’s estimated state.



December 6, 2004 0:50 WSPC/191-IJHR 00030

608 D. C. Bentivegna et al.

We currently use a parametric model with learned parameters to predict the
future state of the puck. The accuracy of the future predicted puck state is deter-
mined by the accuracy at which the vision delays and task parameters are known.
Section 6 shows how we are taking into account the vision delays when initiating
movements in air hockey. But if our model parameters are not correct, the puck
will not be at the predicted hit position when the paddle arrives there. The model
parameters that are currently being used are global and remain constant. It is likely
that the friction is not constant across the playing surface and changes over time
due to factors such as the fan motor wearing out. For these reasons the robot should
have the ability to learn and update a model of the puck’s movements from observ-
ing the task. The next paragraph describes an implementation that we are currently
exploring.

As mentioned in Sec. 6, the most important instant is when the paddle and
puck collide. This collision occurs within a small range near the robot. Our con-
tinuing research is exploring a method in which the robot observes the position of
the puck just beyond the center line for two or three vision cycles. The state of the
puck when it crosses the desired hit line is then observed. It is our hope that this
information can be used to train an LWPR model that will provide the robot with
the ability to accurately predict the puck’s state at the hit time. The research of
Park et al.11 shows that a neural net can be trained to provide this prediction on
a larger air hockey table given the puck’s position and velocity as input. But to
accurately compute the puck’s velocity, more than two observations will be needed.
The increased size of the table used by Park et al. provides them with more oppor-
tunities to observe the puck in locations that are out of reach of the players. Their
model is also trained with 3,000 observations. We would like the humanoid robot
player to learn from much less data and have the ability to update the model while
it is operating.

7.5. Automatically discovering primitives and structure

In many research fields there is a large interest in methods agents can use to auto-
matically define a library of primitives or actions from observing the performance
of a task.7,8,10 Even though in our research we have manually defined the library of
primitives, we also have a strong interest in automating this process. Our research
in creating a method in which robots learn to operate in dynamic tasks using
a library of primitives and observing others gives insight into the type of infor-
mation that an automated agent would need to know about and search for. Our
method of breaking the learning problem into small independent models can assist
in automatically discovering primitives in many ways. Wolpert and Kawato’s17

research on approaches that have the ability to learn forward and inverse mod-
els of task components provides insight into how the models can be configured to
predict events. Figure 9 shows how a primitive can be composed of a sequence of
model activations. The state can be observed and recorded at the beginning and



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 609

end of this sequence to provide all the information needed for an agent using our
framework.

One way the models can be used is to describe which events are occurring as
they are fed the observed data. The sequence of model activations can be recorded
as the task is observed. The research of Kaminka et al.9 on learning the sequential
behavior of teams from observation gives some ideas into how the sequential list
can be represented and used to discover primitives. For example, a sequence of
model activations that are seen reoccurring many times is a good indication of a
primitive. By structuring our models to be general they can also become activated
while observing similar events in other tasks. This has the effect that as the agent
learns more models, it has an increased ability to discover primitives.

8. Conclusions

This paper described research that allows humanoid robots to quickly learn new
tasks from observing others. We have structured the problem to support fast learn-
ing from observation and practice and to quickly adapt to changes. The humanoid
has compensated for movements of the playing area, errors in timing, and errors in
controlling the paddle to be in the proper state at the time of the hit. This capa-
bility has increased the ability of the robot to play a challenging dynamic game.
Learning from practice gives the robot an opportunity to discover details that may
have been missed during the observation. This research gives us insight into how
we can also make other robots more closely approximate human adaptability. One
design principle is to break learning problems into as ‘simple’ parts as possible. This
subdivision of the control or learning task is limited by the measurements available
to the robot, in that the robot needs to perceive the input and output of any learned
relationship.

Acknowledgments

Support for all authors was provided by ATR Computational Neuroscience Labo-
ratories, Department of Humanoid Robotics and Computational Neuroscience, and
the National Institute of Information and Communications Technology (NiCT). It
was also supported in part by National Science Foundation Award ECS-0325383,
and the Japan Science and Technology Agency, ICORP, Computational Brain
Project.

References

1. C. G. Atkeson, J. G. Hale, F. Pollick, M. Riley, S. Kotosaka, S. Schaal, T. Shibata,
G. Tevatia, A. Ude, S. Vijaykumar and M. Kawato, Using humanoid robots to study
human behavior, IEEE Intell. Syst. 15(4), 46–55 (2000).

2. C. G. Atkeson, A. W. Moore and S. Schaal, Locally weighted learning, Artif. Intell.
Rev. 11, 11–73 (1997).



December 6, 2004 0:50 WSPC/191-IJHR 00030

610 D. C. Bentivegna et al.

3. D. C. Bentivegna and C. G. Atkeson, Learning from observation using primitives, in
Proc. IEEE Int. Conf. Robotics and Automation, Seoul, Korea, 2001.

4. D. C. Bentivegna and C. G. Atkeson, A framework for learning from observation using
primitives, in Proc. RoboCup 2002 Int. Symp. Fukuoka, Japan, 2002.

5. D. C. Bentivegna, A. Ude, C. G. Atkeson, and G. Cheng, Humanoid robot learning and
game playing using PC-based vision, in Proc. 2002 IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, Switzerland, 2002.

6. B. Bishop, P. Shirkey and M. Spong, An experimental testbed for intelligent control,
American Control Conf., Seattle, 1995.

7. A. Fod, M. Mataric and O. Jenkins, Automated derivation of primitives for movement
classification, in 1st IEEE-RAS Int. Conf. Humanoid Robotics (Humanoids-2000)
(MIT, Cambridge, MA, 2000).

8. W. Iba, Learning to classify observed motor behavior, in Proc. Int. Joint Conf.
Artificial Intelligence, 1991, pp. 732–738.

9. G. Kaminka, M. Fidanboylu, A. Chang and M. Veloso, Learning the sequential coor-
dinated behavior of teams from observation, in Proc. 2002 Int. RoboCup Symp., 2002.

10. A. McGovern and A. G. Barto, Automatic discovery of subgoals in reinforcement
learning using diverse density, in Proc. 18th Int. Conf. Machine Learning, 2001.

11. J. Park, C. B. Partridge and M. W. Spong, Neural network based state prediction for
strategy planning of an air hockey robot, J. Robot. Syst. 18(4), 187–196 (2001).

12. C. B. Partridge and M. W. Spong, Control of planar rigid body sliding with impacts
and friction, in Int. J. Robot. Res. 19(4), 336–348 (2000).

13. S. Schaal, C. Atkeson and S. Vijayakumar, Scalable locally weighted statistical tech-
niques for real time robot learning, Appl. Intell. (Special issue on Scalable Robotic
Applications of Neural Networks) 17(1), 49–60 (2002).

14. A. Ude and C. G. Atkeson, Real-time visual system for interaction with a humanoid
robot, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Maui, Hawaii,
October/November 2001, pp. 746–751.

15. S. Vijayakumar, A. D’Souza, T. Shibata, J. Conradt and S. Schaal, Statistical learning
for humanoid robots, Auton. Robot. 12(1), 55–69 (2002).

16. S. Vijayakumar and S. Schaal, Locally weighted projection regression: An O(n) algo-
rithm for incremental real time learning in high dimensional spaces, in Proc. 17th Int.
Conf. Machine Learning (ICML 2000), Stanford, CA, 2000.

17. D. M. Wolpert and M. Kawato, Multiple paired forward and inverse models for motor
control, Neural Networks 11(7–8), 1317–1329 (1998).

18. Z. Zhang, A flexible new technique for camera calibration, Technical Report MSR-TR-
98–71, Microsoft Research, Microsoft Corporation, Redmond, Washington, December
1998.

Darrin C. Bentivegna received his M.S. degree in Space Sys-
tems from the Florida Institute of Technology in 1995 and his
Ph.D. degree in Computer Science from the Georgia Institute
of Technology in 2004. From 1980 to 1995, he served in the US
Navy in the Fleet Ballistic Missile Submarine community. He
is now a Visiting Researcher in the Department of Humanoid
Robotics and Computational Neuroscience at the ATR Compu-
tational Neuroscience Laboratories, Kyoto, Japan. His primary

research interest is in understanding methods that can give robots human-like intel-
ligence and abilities.



December 6, 2004 0:50 WSPC/191-IJHR 00030

Learning to Act from Observation and Practice 611

Christopher G. Atkeson is an Associate Professor in the
Robotics Institute and Human-Computer Interaction Institute
at CMU. He received his M.S. degree in Applied Mathemat-
ics (Computer Science) from Harvard University and his Ph.D.
degree in Brain and Cognitive Science from MIT. Chris joined
the MIT faculty in 1986, moved to the Georgia Institute of Tech-
nology College of Computing in 1994, and moved to CMU in
2000.

Aleš Ude studied applied mathematics at the University of
Ljubljana, Slovenia, and computer science at the University of
Karlsruhe, Germany, where he received a doctoral degree in 1996.
From 1998 to 2000, he was an STA fellow in the Kawato Dynamic
Brain Project, ERATO, JST. Currently he holds a research posi-
tion at the Jožef Stefan Institute, Ljubljana, Slovenia, and is also
associated with the ATR Computational Neuroscience Labora-
tories, Kyoto, Japan. His research focuses on humanoid robot
vision and visual perception of human activity.

Gordon Cheng is the head of the Department of Humanoid
Robotics and Computational Neuroscience, ATR Computational
Neuroscience Laboratories, Kyoto, Japan. He is also the Group
Leader for the newly initiated JST International Cooperative
Research Project (ICORP), Computational Brain. Before taking
up these positions, he held fellowships from the Center of Excel-
lence (COE), Science, and Technology Agency (STA) of Japan.
Both of these fellowships were taken at the Humanoid Interac-

tion Laboratory, Intelligent Systems Division at the ElectroTechnical Laboratory
(ETL), Japan. At ETL he played a major role in developing a completely
integrated humanoid robotics system. He received a Ph.D. in Systems Engi-
neering from the Department of Systems Engineering, The Australian National
University, and Bachelor and Master degrees in Computer Science from the
University of Wollongong, Australia. His research interests include humanoid
robotics, biomimetic of human vision, computational neuroscience of vision, action
understanding, human–robot interaction, active vision, mobile robot navigation and
object-oriented software construction.




