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In underactuated systems, a transition between two periodic orbits is generally characterized by

slow convergence. This is due to the fact that the unactuated degree of freedom (DoF) hinders
the state of the system to enter the domain of attraction of the target orbit close to the ¯xed

point of the Poincar�e Map. In this paper, we introduce an optimal control algorithm to reduce

the settling time of transitions between periodic orbits of underactuated walking robots. This is

achieved by utilizing the hybrid zero dynamics (HZD) framework to express the feasibility
condition of the transition which can be imposed as an inequality constraint in the proposed

optimal control problem. In addition, the cost function penalizes deviations from the ¯xed point

of the target periodic orbit in the zero dynamics manifold while at the same time all dynamic

and kinematic assumptions are treated as constraints. Furthermore, high magnitude torques are
also penalized. The numerical results show that the proposed methodology can indeed improve

the settling time compared to the transition methodology usually found in the bibliography and

at the same time provide a feasible and smooth motion.

Keywords: Underactuated robots; hybrid zero dynamics; optimal control.

1. Introduction

Underactuated robots are systems that possess less actuators than degrees of freedom

(DoFs). In that case, the controller design becomes a challenging task, since the
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control signals to the actuated DoFs need to induce a motion that stabilizes the

whole system. Despite this challenge, there are numerous successful applications for a

wide range of systems using various techniques. In the case of academic example

systems, there is the swing-up control of the Acrobot, using partial feedback line-

arization and LQR control.1 For free-°ying mechanical systems like quadrotors,

there is a successfully applied framework for position control and trajectory tracking

based on backstepping and sliding mode control.2 In addition, recent interesting

applications emerged from the ¯eld of ship-mounted cranes where stabilizing

control is achieved through a nonlinear controller design based on the method of

Lyapunov.3,4 Last but not the least, as we will see in the sequel, there are also di®erent

approaches in the ¯eld of walking robots, which is the main focus of our work.

Periodic motions of underactuated walking robots are dictated by limit cycles.

Stable limit cycles have a domain of attraction where any deviation from the nominal

orbit can be compensated by the dynamics of the system and the feedback terms of

the control law. As a consequence, for the feasibility of a transition between two

periodic orbits, it is su±cient that the state of the system enters the domain of

attraction of the target orbit. When that happens, convergence is guaranteed and its

rate is dictated by the maximum eigenvalue of the Poincar�e Map. The time until

convergence to the target limit cycle is de¯ned as the settling time.

Even though convergence can be guaranteed, it might be desired to improve its

rate. In the case of velocity control, for example, one might want the state of the

robot to converge to the target limit cycle as soon as possible, such that the target

velocity is acquired very fast. Another reason might be that the target limit cycle is

optimized with respect to an energy criterion and fast convergence to it allows the

robotic system to consume less power. In general, a target limit cycle is usually

designed to satisfy a task objective and faster convergence to the limit cycle means

that the task is ful¯lled faster. In such cases, a possible solution is to try to minimize

the maximum eigenvalue of the Poincar�e Map associated with the target limit cycle,

as was done for a running robot model and a somersaulting simulated robot.5,6 In

these two related works, the cost function to be minimized is the maximum eigen-

value of the Poincar�eMap itself. As suggested, however, in the mentioned works, this

minimization constitutes a di±cult problem. One of the reasons is that the maximum

eigenvalue function of the nonsymmetric Jacobian matrix of the Poincar�e Map is

nondi®erentiable and possibly even nonLipschitz at points where multiple eigenva-

lues coalesce. In addition, di®erent modi¯cations of existing optimization algorithms

were required for the success of this optimization. Another issue is that this mini-

mization objective might be used against the satisfaction of other objectives such as

torque consumption and/or minimum foot clearance.

Another possible solution to improve the settling time could be given by the

concept of Virtual Model Control (VMC), where the virtual force could be used to

make the robot transition between di®erent walking cycles.7 Despite the fact that the

VMC is generally applicable and very promising, it is not accompanied by concrete

stability properties. In addition, with this methodology, we do not converge to a
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desired limit cycle per se, but instead allow the robot to walk in a fashion that

satis¯es the task objective encoded in the virtual force. Finally, this methodology

might induce high torques, such that the motion is energy ine±cient or it violates the

actuator limits. A recent methodology which can also employ virtual forces can be

found in the work of Veer et al. but as it can be seen the settling time is slow.8

An alternative to settling time reduction without the shortcomings of the VMC

and the minimization of the maximum eigenvalue is to enter the domain of attraction

of the target limit cycle very close to the ¯xed point of the Poincar�e map. Then,

convergence to the limit cycle will require less crossings of the Poincar�e section, i.e.,

less time (see Fig. 1). If such an alternative is to be undertaken, a concrete feasibility

guarantee is required which in order to be provided, knowledge of the domain of

attraction of the target periodic orbit is required. The reason for this requirement is

due to the fact that this condition characterizes a transition as feasible if and only if

the state of the robot is in the domain of attraction of the target periodic orbit after

the impact with the ground. In general, computing the domain of attraction of a limit

cycle is challenging. In the case of underactuated walking, however, we can make use

of a more speci¯c framework which is the hybrid zero dynamics (HZD).9,10 With this

tool, we can design individual periodic orbits and at the same time perform stability

analysis and compute the corresponding domain of attraction. This is due to the fact

that the focus is shifted to the zero dynamics which are a 2D manifold and thus

the Poincar�e Map becomes one dimensional. Using the HZD, we can also impose the

feasibility condition. Alternatives to the HZD for gait analysis can be found in the

works of Zutven and Dehghani et al.11,12 In addition, one can use the approach of

Djoudi et al. for designing periodic orbits for underactuated walking.13 In our work

S γ1(x)
γ2(x)

γ3(x)
γ4(x)

γ∗(x)

x∗
x1

x2

x3

x4

Fig. 1. Di®erent orbits around an arbitrary limit cycle � �ðxÞmarked with the dashed line. The ¯xed point

of the limit cycle is denoted with x � and the Poincar�e section with S which in case of walking robots is

usually chosen to be the walking surface, i.e., the state of the robot when the foot of the swing leg impacts
the ground. In addition, the domain of attraction is denoted with the curled brackets on the Poincar�e

section S . As is shown, if we are able to enter the domain of attraction closer to the ¯xed point x �, less
orbits around the limit cycle will be required until convergence.
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however, we utilize the HZD since we want to compare our approach with the

transition methodology proposed within the HZD.9

In our previous work, we solved the settling time reduction problem using

Reinforcement Learning.14 For that, we introduced a database of 81 walking periodic

motions and formulated the settling time reduction problem as a Markov Decision

Process. Then, a Q-Learning algorithm was applied on each individual possible

transition in order to ¯nd a transition strategy that enters the domain of attraction

of the target periodic orbit close to the ¯xed point and therefore converges faster to

the target periodic orbit. The outcome of this work was multi-step transitions that

performed better than the one-step transition as proposed by Yang et al.9 for

approximately 84% of all possible transitions.

In comparison to the previous work, the contribution and novelty of this paper is to

introduce a deterministic approach to reduce the settling time reduction by opti-

mizing the one-step transition instead of searching for a multi-step one. The advan-

tages of a one-step deterministic transition compared to a multi-step probabilistic one

is that we avoid the shortcomings of the curse of the dimensionality which arises when

dealing with large state-action spaces like in our previous work.14 In addition, focusing

on a one-step transitions allows to gain more insight on the behavior and decisions of

the robot during such a motion. In comparison to the proposed approaches, our

methodology introduces a more feasible dynamic optimization problem which is ac-

companied by stability and feasibility guarantees, while at the same time achieves

faster convergence after transitioning than the state of art approach.

As in the previous work, we assume that the periodic orbits are given and we focus

on the problem of transitioning between them in a way that reduces the settling time

to the target periodic orbit. In order to compute this aperiodic transition motion, we

employ optimal control to formulate and solve the settling time reduction problem.

The optimal control approach is adopted since it allows us to easily impose all the

constraints that ensure a feasible, valid and natural motion and there are already

examples of its successful utilization in walking robots.15,16 The initial state of the

robot, state and actuators limits as well as modeling assumptions are treated as

constraints. The feasibility condition is introduced as an inequality constraint im-

posed at the end of the motion taking into account the impact that occurs when the

swing leg touches the ground. The cost function penalizes deviations from the ¯xed

point of the Poincar�e Map of the target periodic orbit in the zero dynamics manifold

and avoids torques with large magnitude, while keeping the transition time low. This

is another re¯nement with respect to our previous work, where the multi-step

transitions were decided solely based on the distance to the ¯xed point of the target

periodic orbit.

The results are compared against the one-step approach proposed by Yang et al.9

and show that our methodology of optimizing a transition has great impact on the

improvement of the settling time. Even though we demonstrate the usefulness of our

approach with the example of a 5-link underactuated robot, the methodology for

settling time reduction can be applied to any underactuated walking robot with one
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unactuated DoF. Of course, our approach of settling time reduction is not only limited

to the case study of walking, but can also be extended to the case of running.17–20

This paper is structured as follows: Section 2 presents the dynamic model of a

5-link underactuated robot. Section 3 explains the HZD framework in an intuitive

way. The optimal control formulation of the settling time reduction problem

is introduced in Sec. 4. The results of the optimal control problem (OCP) are

demonstrated in Sec. 5. Section 6 concludes the paper.

2. Dynamic Modeling of Underactuated Walking

In this work, walking is modeled as a hybrid process with two phases. The ¯rst

includes the swing phase where the foot of the stance leg is pinned on the ground and

the swing leg moves forward until it touches the ground. When that happens, the

second phase takes place which consists of an impact after which the role of the swing

and stance leg is exchanged.

2.1. Swing phase

An underactuated walking robot is a mechanical system with n DoF which can be

expressed with the help of Lagrangian dynamics as

x
: ¼ q

:

q
::

� �
¼ q

:

D�1ðqÞð�Cðq; q:Þq: �GðqÞ þBuÞ

" #
;

y ¼ hðqÞ ¼ H 0q � hd ;

ð1Þ

where x ¼ ½q>q:>�> 2 R2n is the state of the system, q the joint positions and q
:
the joint

velocities. Regarding the other terms, D 2 Rn�n is the mass-inertia matrix, C 2 Rn�n

the matrix of Centrifugal and Coriolis terms,G 2 Rn the vector of gravitational terms,

B 2 Rn�ðn�1Þ the inputmatrix, u 2 Rn�1 the input vector, y 2 Rn�1 the outputs of the

system and hd 2 Rn�1 is the vector of desired trajectories for the actuated DoFs.

The system is expressed in such a way that qn is the unactuated DoF and is an

absolute coordinate, while the remaining DoFs are expressed relative to qn and

each other. That results in qn being a cyclic variable and it does not appear in themass-

inertia matrixD, i.e., @D@qn ¼ 0. This property will prove useful in the sequel. In addition,

it results in the last line of the input matrix B being populated only by zeros.

Regarding the selection matrix H 0 it is de¯ned as

H 0 ¼ I n�1 0ðn�1Þ�1

� �
; ð2Þ

where I is the identity matrix. Omitting the arguments of the matrix and vector

functions for clarity and expressing the system (1) in a±ne form we get

x
: ¼

q
:

D�1ð�Cq
: �GÞ

" #
þ

0

D�1B

" #
u

¼ f ðxÞ þ gðxÞu: ð3Þ
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2.2. Impact

The robot experiences an impact at the end of the motion, i.e., when the swing leg

establishes contact with the ground. The impact is assumed to be inelastic and

instantaneous, causes a discontinuity on the joint velocities q
:
and gives rise to an

impact force ±F. The post-impact velocities q
:þ and the impact force ±F can be

calculated by applying the principle of momentum conservation at the full dynamical

system of the robot, i.e., we include the x–y coordinates of one point of the robot ���
in our case the tip of the stance leg (see Fig. 2). In addition, the post-impact velocities

q
:þ and the impact force ±F can be expressed as a function of the pre-impact joint

velocities q
:� as

Deðq�
e Þ �E>ðq�

e Þ
Eðq�

e Þ 0

� �
q
:þ
e

±F

" #
¼ Deðq�

e ÞY
0

� �
q
:�; ð4Þ

where De 2 Rðnþ2Þ�ðnþ2Þ denotes the mass-inertia matrix of the full dynamic model,

E 2 R2�ðnþ2Þ denotes the Jacobian matrix of the tip of the swing leg and qe ¼
½q> 0 0�> since the x–y coordinates of the tip of the stance leg ðxst and ystÞ are both
zero. Finally, Y ¼ ½I n 0n�2�>.

If we solve (4) for q
:þ and ±F, we get an expression of the form

q
:þ
e

±F

" #
¼ ¢qðq�

e Þ
¢F ðq�

e Þ
� �

q
:�; ð5Þ

where the upper part of (5) can be used to reset the swing phase model (1) after the

impact, given that a proper re-labeling of the coordinates takes place which allows us

to use the same dynamic model for any leg in stance phase.

x

y

q5(=qn)

θ

q3 q2

q4q1(xs, ys)

(0, 0)

Fig. 2. Kinematic model of the biped under study. The underactuated DoF is the torso angle q5, but other

modeling options are valid as well. The Cartesian coordinates of the swing leg are denoted as ðxs; ysÞ.
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3. Zero Dynamics of Underactuated Walking

The design of stable periodic orbits and ��� our focus here ��� transitions between

them requires conditions which ensure that such orbits and transitions are dy-

namically feasible. Such conditions can be provided by the HZD framework. We

show that the zero dynamics allow for a Lagrangian formulation which facilitates

the derivation of these conditions. Furthermore, we de¯ne the Poincar�e Map and

its corresponding ¯xed point in the zero dynamics manifold. In order to do so,

however, we need to start with the computation of the output relative degree of our

system.

3.1. Output relative degree

Di®erentiating each output twice will result in

d 2y

dt 2
¼ @

@q

@h

@q
q
:

� �
@h

@q

� �
f ðxÞ þ gðxÞu½ � ¼ L2

f h þ LgLfhu; ð6Þ

showing that each output has a relative degree r of 2 and therefore the vector relative

degree of the system is ðn � 1Þr ¼ 2n � 2 6¼ 2n (Ch. 5).21 As a consequence, we need

two more equations to construct a valid coordinate transformation and proceed with

input–output feedback linearization.

3.2. Input–Output feedback linearization

The purpose of the input–output feedback linearization is to introduce a coordinate

transformation z ¼ TðxÞ and a control uðxÞ ¼ ®ðxÞ þ ¯ðxÞv such that a linear

relation between the new input v and the outputs y is established and therefore tools

of linear control theory can be applied. In addition, the linear input–output relation

is desired to be expressed in normal form, so that the control uðxÞ can be easily

extracted.

The transformation matrix has to de¯ne a di®eomorphism, such that the trans-

formation is invertible and both the transformation and its inverse are di®erentiable.

The ¯rst 2n � 2 coordinates can be chosen as

z1
z2

..

.

zn�1

zn

..

.

z2n�2

2
666666666664

3
777777777775
¼

h1
h2

..

.

hn�1

_h1

..

.

_hn�1

2
66666666666664

3
77777777777775
: ð7Þ

For the last two we have freedom of choice, but it is desired to choose them in such a

way that the input does not appear in their time derivative. This can be formally
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de¯ned as @z2n�1

@x gðxÞ ¼ @z2n
@x gðxÞ ¼ 0, since

_z2n�1 ¼
@z2n�1

@x
x
: ¼ @z2n�1

@x
f ðxÞ þ gðxÞuð Þ: ð8Þ

Equation (8) holds for _z2n as well. A valid choice for z2n�1 and z2n is

�1 :¼ z2n�1 ¼ c>q ¼: �ðqÞ;
�2 :¼ z2n ¼ �ðq; q:Þ ¼ °0ðqÞq: ¼: ��nðq; q:Þ;

ð9Þ

where °0ðqÞ is the nth line of the mass-inertia matrix D and �2 is the conjugate

angular momentum around the unactuated DoF qn. The vector c has to be chosen

such that the nth element is nonzero.

With this transformation, we can write the time derivative of z as

z
: ¼

_z1

..

.

_zn�1

� � �
_zn

..

.

_z2n�2

� � �
_z2n�1

_z2n

2
666666666666666666664

3
777777777777777777775

¼

zn

..

.

z2n�2

� � � � �

L2
f h þ LgLf hu

� � � � �
Lf �

Lf �

2
6666666666666666664

3
7777777777777777775

; ð10Þ

and the control law can be chosen as

uðxÞ ¼ ðLgLfhÞ�1ðvðxÞ � L2
f hÞ; ð11Þ

where

vðxÞ ¼ �KD

@h

@q
q
: �KPh; ð12Þ

and KD, KP are derivative and proportional gain matrices, respectively, of appro-

priate dimension. The control in (11) zeroes the outputs hðqÞ from (1).

When the outputs are zeroed, zero dynamics arise which are de¯ned as the

manifold

Z ¼ x hðqÞ ¼ 0;
@h

@q

���� q
: ¼ 0

� 	
; ð13Þ

Furthermore, the variable � in (9) can be chosen to be monotonically increasing and

replace time, which results in an autonomous closed-loop system. By using � as a
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replacement of time, the original coordinates can be reconstructed as

q ¼ H �1 hd

�

� �
and q

: ¼ H �1

@hd

@�

1

2
4

3
5�:; ð14Þ

where H ¼ H 0

c

� �
.

Once we are in the zero dynamics manifold, the zero dynamics have to be checked

for stability. This check can be facilitated by expressing the zero dynamics in a

Lagrangian form.

3.3. Form of the zero dynamics

The zero dynamics can be brought in a Lagrangian form. This allows to identify a

potential and a kinetic energy function and ¯nally impose a feasibility condition for

periodic and aperiodic walking. In detail, if we use (8) for the coordinate z2n�1 ¼ �1
we get

�
:
1 ¼ c> 0

� � q
:

D�1ð�Cq
: �GÞ

" #
¼ c>q: ¼ �

:
: ð15Þ

However, in order to be able to introduce Lagrangian dynamics in the zero dynamics

manifold, we manipulate the expression for �2 from (9) to come up with an expression

of the form �
:
1 ¼ 1

I ð�1Þ �2, where I ð�1Þ 6¼ 0. For that we write

°0q
: ¼ �2 )

°0H
�1

@hd

@�

1

2
4

3
5�: ¼ �2 )

I ð�1Þ�
:
1 ¼ �2 )

�
:
1 ¼

1

I ð�1Þ
�2:

ð16Þ

For z2n ¼ �2, we can derive an expression of the form �
:
2 ¼ �2ð�1Þ as follows:

�
:
2 ¼ Lf � ¼ @�

@q

@�

@q
:

� �
q
:

D�1ð�Cq
: �GÞ

" #

¼ q
:> @°>

0

@q
q
: þ °0D

�1ð�Cq
: �GÞ

¼ q
:> @°>

0

@q
q
: �Cnq

: �Gn: ð17Þ
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Now, Cn ¼ q
:> @° >

0

@q � 1
2 q
:> @D

@qn
and since qn is cyclic we get Cn ¼ q

:> @° >
0

@q . Finally,

�
:
2 ¼ �Gn ¼ � @V

@qn
¼ �2ð�1Þ; ð18Þ

where V is the potential energy function of (1).

3.4. Lagrangian dynamics in the zero dynamics manifold

If we di®erentiate the expression (16) for �
:
1, we get

�
::
1 ¼

�
:
2

I ð�1Þ
� �2

@I ð�1Þ
@�1

1

I 2ð�1Þ
�
:
1 )

I 2ð�1Þ �
::
1 þ

@I ð�1Þ
@�1

I ð�1Þ�
: 2
1 � �2ð�1ÞI ð�1Þ ¼ 0:

ð19Þ

In this expression of Lagrangian dynamics, we can identify a kinetic energy function

Kzeroð�1Þ ¼
1

2
I 2ð�1Þ�

: 2
1; ð20Þ

or

Kzeroð�2Þ ¼
1

2
� 22; ð21Þ

and a potential energy function

Vzeroð�1Þ ¼ �
Z �1

�þ
I ð�Þ�2ð�Þd�: ð22Þ

Now we can ¯nd conditions such that a motion is dynamically feasible and stable.

3.5. Feasibility and stability

The feasibility condition states that the post-impact kinetic energy in the zero dy-

namics manifold Kzeroð�þ2 Þ has to be greater than the maximum value V max
zero of the

potential energy function. Since Kzeroð�þ2 Þ ¼ �zeroKzeroð��2 Þ where �zero is the kinetic

energy exchange ratio at the impact in the zero dynamics manifold, the feasibility

condition can be expressed as

�zeroKzeroð��2 Þ > V max
zero ; ð23Þ

where the minus superscript in ��2 denotes the value of �2 at the end of the motion

(before the impact). At the end of each step the pre-impact kinetic energy Kzeroð��2 Þ
is given by:

Kzeroð��2 Þ ¼ Kzeroð�þ2 Þ � Vzeroð��1 Þ; ð24Þ
which can also be written as:

Kzeroð��2 Þ ¼ �zeroKzeroð��2 Þ � Vzeroð��1 Þ: ð25Þ
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Now a Poincar�e map P can be de¯ned which maps the pre-impact kinetic energy of

the current step K k
zeroð��2 Þ to the next one K kþ1

zero ð��2 Þ ¼ PðK k
zeroð��2 ÞÞ, such that

K kþ1
zero ð��2 Þ ¼ �zeroK

k
zeroð��2 Þ �Vzeroð��1 Þ: ð26Þ

The ¯xed point of the Poincar�e map P is given as

Kzeroð� �2Þ ¼
Vzeroð��1 Þ
�zero � 1

) � �2 ¼ ð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Vzeroð��1 Þ
�zero � 1

s
; ð27Þ

and the domain of attraction D of P is given by

D ¼ f��2 j�zeroKzeroð��2 Þ > V max
zero g: ð28Þ

The ð�Þ denotes that the sign is based on the angle notation used (in correspondence

to Fig. 2 it should be \-"). Finally, if j�zeroj < 1, the orbit is exponentially stable.

3.6. Transition between periodic orbits

Assume we are given two stable periodic orbits ÁiðtÞ and Áf ðtÞ and the ¯xed points of

their Poincar�e Maps correspond to x�, i.e., the state of the robot before the impact.

These orbits are solutions of the dynamics (1) with an impact at the end of the

motion ðt ¼ TÞ and ful¯ll di®erent task objectives, such as walking with a desired

average velocity. A transition Ái!f ðtÞ between these two orbits is feasible when the

post-impact state xþ of the system is inside the domain of attraction of the target

orbit. In the zero dynamics manifold and in a similar fashion to (23), this condition is

expressed as

�zero; f K
i!f
zero ð��2 Þ > V max

zero; f : ð29Þ

If (29) holds, then convergence to the target limit cycle is guaranteed, given that

j�zero; f j < 1.

4. Settling Time Reduction as an Optimal Control Problem

After having explained the HZD framework, we formulate the objective of the Set-

tling Time Reduction between two stable periodic orbits and we describe how it can

be solved with optimal control.

The objective of the Settling Time Reduction is to ¯nd a transition Ái!f ðtÞ s.t.

. (29) is ful¯lled,

. its overall duration T is relatively small and

. the distance jjq:i!f ðTÞ � q
:
f ðTÞjj is minimized.

Such a transition motion is guaranteed to bring relatively fast the state of the system

x inside the domain of attraction of Áf and expected to drive the state very close to

the ¯xed point � �2 of the HZD Poincar�e Map of Áf .
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In order to solve the Settling Time Reduction problem with optimal control, we

¯rst have to de¯ne constraints that have to be ful¯lled by the transition motion and a

cost function which when minimized attaches the desired characteristics to the

motion.

4.1. Constraints

In an OCP di®erent equality and inequality constraints are imposed involving the

system state and controls. These constraints can be either linear or nonlinear. The

ones related to the Settling Time Reduction are listed and described below:

. The OCP is always subject to the dynamics of the system that are described in (1).

. The initial state of the transition is the initial state of Áið0Þ such that

x0 ¼ Áið0Þ: ð30Þ

. The terminal state is constrained only in terms of the joint positions qT , i.e.,

qT ¼ qf ðTÞ; ð31Þ

which correspond to the terminal joint values of Áf . The joint velocities q
:
are not

included because of the underactuation that makes it di±cult to reach them ex-

actly, preventing us from forming a 2 point boundary value problem. Instead, we

leave them free and penalize their deviation from the desired ones q
:
f ðTÞ in the cost

function.

. Since we are dealing with systems with impact e®ects, we have to impose a con-

straint that ensures that the impact is valid. In order to do so, the impact force ±F

has to respect the friction cone constraint

��s�Fy � �Fx � �s�Fy; ð32Þ

and the vertical impact force component �Fy has to be positive

�Fy > 0: ð33Þ
According to (5) the matrix ¢F is a function of the terminal con¯guration of the

robot. As a consequence, since we know the desired terminal joint positions qT ¼
qf and xst ¼ 0 and yst ¼ 0, we can compute the desired elements of the matrix ¢F

at the end of the transition motion. With that, the constraints on the impact force

±F can be expressed linearly in q
:
T . In order to express the constraint (33) linearly

to q
:
T , we decompose the desired impact matrix to its lines as¢F ¼ ½¢>;1

F ¢>;2
F �>.

In such a way, the constraints on the impact force ±F can be written as

�ð�s¢
2
F �¢ 1

FÞq:T � 0; ð34Þ
�ð�s¢

2
F þ¢ 1

FÞq:T � 0; ð35Þ
¢2

Fq
:
T � 0: ð36Þ

S. Apostolopoulos, M. Leibold & M. Buss

1850027-12

In
t. 

J.
 H

um
an

. R
ob

ot
. 2

01
8.

15
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

E
C

H
N

IC
A

L
 U

N
IV

E
R

SI
T

Y
 O

F 
M

U
N

IC
H

 o
n 

11
/2

1/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



. The friction cone constraint that holds for the impact force ±F has to hold also for

the ground reaction forces F during the transition, i.e.,

��sFy � Fx � �sFy; ð37Þ
and the vertical force component Fy has to be positive:

Fy > 0: ð38Þ
. The transition must bring the state of the robot inside the domain of attraction of

the target orbit as dictated by (29). This condition can be expressed linearly in the

terminal joint velocities q
:
T in the following way: At ¯rst, the maximum value of

the potential energy at the zero dynamics manifold V max
zero;f is known. In addition,

we need to multiply the last line of the mass-inertia matrix Dn with the post-

impact joint velocities q
:þ. Using (5) and excluding the last two lines, the post-

impact joint velocities are given as q
:þ ¼ �qq

:
T . The matrix �q is a function of the

terminal con¯guration of the robot and therefore the desired elements of�q can be

computed. This is due to the fact that the desired terminal con¯guration qf ðTÞ is
known and for the tip of the stance leg xstðTÞ ¼ ystðTÞ ¼ 0. Finally, as already

mentioned, we need the last line of the mass-inertia matrix Dn which can be

evaluated using the post-impact joint positions qþ whose desired values are qf ð0Þ.
Bringing everything together yields

Dnðqf ð0ÞÞ�qðqf ðTÞÞq:T � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V max

zero;f

q
: ð39Þ

. The swing foot has to be above the ground during the transition motion:

ysðqÞ > 0: ð40Þ
The desired ¯nal and initial posture of the robot guarantees that ys ¼ 0 for t ¼ 0

and t ¼ T .

. The state x, input u and total duration of the motion T should satisfy the fol-

lowing box constraints:

xmin � x � xmax; ð41Þ

umin � u � umax; ð42Þ
Tmin � T � Tmax: ð43Þ

The constraint on the state x is imposed to ensure the satisfaction of physical and

style constraints. The input u is constrained such that we do not exceed any

imposed actuator limits. Finally, the time duration T is constrained to prevent the

solution search space from unreasonably increasing.

4.2. Cost function

As already described, the terminal joint velocities q
:
T are free and we penalize their

deviation from the pre-impact joint velocities q
:
f ðTÞ of the orbit Áf . At the same

time, we want to penalize the ¯nal time T such that we enter the domain of
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attraction of the target periodic orbit not only close to the ¯xed point, but also fast.

Finally, we want the magnitude of the torques to be low, such that \energy" criteria

are also taken into account and a smooth transition motion is produced. Therefore

the employed cost function is given by

Jðu;TÞ ¼ ðq:f � q
:
T Þ>�ðq:f � q

:
T Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

jj� �
2��2jj 2

þ�T þ
Z T

0

u>Wu; ð44Þ

where � ¼ °>
0 ðqf ðTÞÞ°0ðqf ðTÞÞ. The ¯rst term is equal to jj� �2 � �2jj2 and penalizes

deviations from the ¯xed point of the target periodic orbit, but through �2 instead of

Kzero. The use of �2 retains the information of the ¯xed point and prevents the term

from becoming unnecessarily complicated. The constant � penalizes large values of

the total time duration T and the matrix W has weighting and scaling purposes and

favors or disfavors \energy" consumption against convergence error and total time

duration. These weighting factors assist in determining how much di®erent control

inputs are penalized or how much the deviation from the desired ¯xed point is

penalized.

4.3. Optimal control formulation

The problem of ¯nding a transition motion between two periodic orbits such that the

settling time to the target limit cycle is minimized can be formulated as an OCP as

min
u;T

Jðu;TÞ
s:t: dynamics model ð1Þ

equality and inequality constraints ð30Þ � ð34Þ
For the solution of this OCP, we used the ACADO software.22 This software

implements a direct multiple shooting algorithm with an equidistant grid for control

discretization. In such a way, the dynamic optimization problem is split into a set of

smaller static Nonlinear Programs. For more details on multiple shooting algorithms,

refer to further readings.23

4.4. Discussion

A transition between two stable periodic orbits can be designed with B�ezier poly-

nomials of M th order which are employed for each actuated DoF.9 In this B�ezier

polynomial-based approach, the ¯rst two and the last two coe±cients of each ac-

tuated DoF are determined such that the initial and terminal state of the transition

are valid with respect to the pre-impact and post-impact states of Ái and Áf , re-

spectively. The remaining M � 3 coe±cients are taken by averaging the corre-

sponding coe±cients of the two periodic orbits ð4� ðM � 3Þ coe±cients in total). As

stated in the literature, they can also be found through optimization. We decided

against such an approach due to the following reason.
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As stated in the book of Agoston (Chapter 11),24 by employing B�ezier poly-

nomials, the further a control point is from a point of the curve, the smaller its e®ect

on that point. By ¯xing the ¯rst and last two coe±cients of each polynomial, we have

less freedom of shaping the desired trajectories such that they satisfy the afore-

mentioned constraints (especially (32)–(39)). As a consequence, this approach

provides limited user in°uence on the distance from the ¯xed point � �2 of Áf and by

that, on the settling time to the limit cycle of Áf .

5. Numerical Results

In this section, we provide numerical results by solving the presented problem for a

transition from a limit cycle corresponding to a velocity of 1m/s to one that enables

the robot to walk with 1.5m/s. The robot model used is a 5-link biped as depicted in

Fig. 2 and its kinematic and dynamic parameters are chosen such that they match

those of RABBIT.25 In addition, the periodic orbits that dictate periodic walking

with the aforementioned velocities have been designed using the optimization

methodology proposed in the work of Westervelt et al.26 and the vector c is chosen as

c ¼ ½0 0 � 1 � 0:5 � 1�> (refer to the de¯nition of �1 in (8)).

In Table 1, we compare the convergence error between the transition methodol-

ogy from Yang et al.9 and our OCP approach for the transition under study. For this

comparison, we use di®erent combinations of the weighting factors in the cost

function (44), where we choose a diagonalW matrix with the same diagonal value w.

The convergence error is de¯ned as

eK ¼ jjKzero �K �
zerojj; ð45Þ

and as expected, the less we penalize the magnitude of the torques, the less

the convergence error of the OCP approach gets in comparison to the one of the

approach of Yang et al. The penalization of the total time duration � has not the

same impact as w but we can observe an optimal behavior for � ¼ 10. Finally, for all

the combinations, the system using the OCP approach has entered the domain of

attraction of the target periodic orbit faster than the one-step approach.

In the sequel, we will discuss the behavior of the transition motion for the values

� ¼ 50 and w ¼ 0:05. Regarding the torques, in Fig. 3, we see that the lowest torque

requirements are for the knee of the swing leg u1, since it has to manipulate only the

relatively smaller mass of the tibia of the swing leg and the greatest e®ort is taken by

the hips, i.e., u2 and u3 where the peak values are observed at the beginning of the

Table 1. eK ;OCP=eK ;one�step � 1.

w

� 0:001 (%) 0:01 (%) 0:1 (%)

1 �22.67 �8.90 �2.78

10 �24.93 �9.25 �2.76

100 �24.38 �6.64 �2.59
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motion. This behavior shows that the robot is trying to generate enough momentum

at the beginning of the motion to reach a higher velocity fast. The torque pro¯le of

the knee of the stance leg u4 exhibits also a similar behavior. A nice feature of the

generated motion is that all torques settle close to zero at the end of the motion.

Finally, the peak torques are always inside the assumed limits of �100N �m and the

friction constraint is always respected for the assumed static friction coe±cient of

�s ¼ 0:7 as shown in Fig. 4.

We also provide a stick diagram animation of the motion (Fig. 5) where it can be

seen that the robot in order to accelerate fast to the desired velocity of 1.5m/s is

utilizing the inertia of its torso and concludes the transition with the torso leaned

forward. Finally, we show the values of the matrix ¡ (see (44))

¡ ¼

0:0011 0:0016 0:6073 0:3094 0:7512

0:0016 0:0023 0:8897 0:4532 1:1004

0:6073 0:8897 339:7983 173:1101 420:2884

0:3094 0:4532 173:1101 88:1909 214:1158

0:7512 1:1004 420:2884 214:1158 519:8447

2
6666664

3
7777775;

where it is shown that most of the nondiagonal elements have large values and, as a

consequence, there is a correlation between all the variances of the terminal joint

velocities. The stronger correlation however is the cross- and auto-correlations of the

u1 u2

u3 u4

0

0

0

0

0

0

0

0

0.10.1

0.10.1

0.20.2

0.20.2

0.30.3

0.30.3

-40 -30

-30 -20
-20

-20

-10
-10

-10

1010

10

20
20

30 40

t(s)t(s)

t(s)t(s)

Fig. 3. Joint torques for the considered transition which is the outcome of the solution of the OCP with
weights � ¼ 50 and wi ¼ 0:05.
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DoFs of the stance leg (q3 and q4) and the unactuated DoF q5. This ¯nding is

expected since q3 and q4 belong to the stance leg which manipulates the whole mass

of the robot and together with q5, they have a major impact in accelerating or

decelerating the robot during the transition motion.

Friction cone constraint

F
x
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Fig. 4. Friction constraint for the considered transition which is the outcome of the solution of the OCP
with weights � ¼ 50 and wi ¼ 0:05.
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Fig. 5. Friction constraint for the considered transition which is the outcome of the solution of the OCP

with weights � ¼ 50 and wi ¼ 0:05.
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5.1. Further discussion ��� Real robot application

Utilizing the proposed framework on a real robot introduces the additional challenges

of dealing with modeling uncertainties and disturbances. In order to cope with them,

the idea of Control Lyapunov Functions can be utilized in order to stabilize the OCR-

resulting transition motions against the uncertainties in the model and the external

disturbances. This methodology has been utilized in order to stabilize periodic

motions of underactuated walking robots.27 In addition, it was used in our previous

work in order to online correct balancing motions that reject disturbances of various

magnitudes, while respecting the actuators, friction and balancing constraints.28

An alternative to the approach of the Control Lyapunov Functions is to attach

robustness characteristics to the optimal transition motion. For that purpose, the

stabilization of the trajectories of the OCP-resulting motion can be achieved by

means of LQR control and an estimate of the region of attraction of the LQR

controller can be calculated with the use of Sums-of-Square optimization.29 With this

information, the robot will be able to know during a transition motion if a given

disturbance can be stabilized by using LQR control to track the optimal trajectories

or a di®erent motion or approach has to be utilized.

6. Conclusion

This paper proposes an optimal control algorithm for reducing the settling time of

transitions between periodic orbits of underactuated walking robots. Due to the

underactuation, the feasibility of such a transition has to be explained with the help

of the HZD framework, which we present in an intuitive way. The cost function to be

minimized in the optimal control problem takes into account the convergence error

to the ¯xed point of the target periodic orbit, the torque consumption and the total

time duration of the motion. The feasibility condition is stated as an inequality

constraint and further constraints regarding the transition and the style of the

motion are imposed. For numerical evaluation, we utilize a 5-link biped robot and

present the e®ect of di®erent weighting of the terms in the cost function for a sample

transition motion. As shown by the results, optimizing such a transition can provide

a huge advantage in terms of settling time reduction in comparison to the one-step

transition that is usually utilized.9

As future work, we are interested in pursuing the di®erent methodologies dis-

cussed in the Sec. 5.1 and hence be able to apply our optimal control approach for

transitioning between periodic orbits on a underactuated walking robot.
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