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A high redundant non-holonomic humanoid mobile dual-arm manipulator system
(MDAMS) is presented in this paper where the motion planning to realize “human-
like” autonomous navigation and manipulation tasks is studied. Firstly, an improved
MaxiMin NSGA-II algorithm, which optimizes five objective functions to solve the prob-
lems of singularity, redundancy, and coupling between mobile base and manipulator

simultaneously, is proposed to design the optimal pose to manipulate the target object.
Then, in order to link the initial pose and that optimal pose, an off-line motion planning
algorithm is designed. In detail, an efficient direct-connect bidirectional RRT and gradi-
ent descent algorithm is proposed to reduce the sampled nodes largely, and a geometric
optimization method is proposed for path pruning. Besides, head forward behaviors are
realized by calculating the reasonable orientations and assigning them to the mobile
base to improve the quality of human-robot interaction. Thirdly, the extension to on-
line planning is done by introducing real-time sensing, collision-test and control cycles
to update robotic motion in dynamic environments. Fourthly, an EEs’ via-point-based
multi-objective genetic algorithm (MOGA) is proposed to design the “human-like” via-
poses by optimizing four objective functions. Finally, numerous simulations are presented
to validate the effectiveness of proposed algorithms.

Keywords: Humanoid mobile manipulator; On-line motion planning; MaxiMin NSGA-II;
Multi-objective optimization; Path optimization.

1. Introduction

Industrial manipulators have been widely used to do some repetitive tasks, but

they are usually fixed manipulators in structured environments with predefined

task policies and control inputs. Recently, more and more mobile manipulators

are utilized in fields from personal assistance to military applications1−5. However,

personal robots, normally humanoid mobile manipulators, are required to work

automatically in unstructured environments with humans. In order to improve the

quality of human-robot interaction, robots’ behaviors should be predictable and

natural. The existing personal assistant, entertainment, accompany or guidance
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robots (e.g., sweeping robots,AMI 1 and Pepper2) are usually mono-functional, non-

programmable, non-interactive or too specialized for non-expert users. Therefore,

the research of multi-functional, completely autonomous and sustainable personal

robots is still open and challenging.5,6

Many motion planning methods7−10 for multiple degrees of freedom (DoFs)

robots have been presented, but they are incapable of solving motion planning

problems under multiple constraints. Direct and inverse kinematics (IK)-based in-

direct motion planning methods for multi-DoFs manipulators11−19 have been pro-

posed. However, for direct methods, the EE’s motion is difficult to predict. For

IK-based indirect methods, though EE’s motion is guaranteed, they need to opti-

mize a predefined objective function which must be continuous17−19, and require

the inverse Jacobian calculation which leads to singularity problem and results in

unpredictable behaviors due to the high non-linearity between the task and joint

spaces. In order to overcome these shortcomings, evolutionary algorithms repre-

sented by genetic algorithms (GAs) are used20−25 since GA has no constraints on

cost functions (they can be discontinuous, not differentiable, stochastic, or highly

nonlinear), no need of calculating inverse Jacobian, and is capable of optimizing

(maximizing and minimizing simultaneously) multiple objectives, etc.26 In reality,

the multiple objectives usually conflict with each other. By defining a combined

fitness function, MOGAs can also take various objectives into account at the same

time. For instance, the multi-objectives are EE’s positioning error and joint dis-

placement for a redundant manipulator22 and for a mobile manipulator24, mobile

base and joint’s displacements for a mobile manipulator23, the navigation length,

path-obstacles intersection and accumulated change of mobile base’s orientation for

a mobile vehicle25, etc. However, most of them do not study the coordination be-

tween the position-orientation of mobile base and manipulator’s configuration, and

not mention the “human-like” motion design.

On the other hand, naturally, the presence of multiple objectives can result in a

set of optimal solutions (known as Pareto-optimal solutions). The problem is that

the combined fitness function-based MOGAs can only generate one optimal solution

and needs to specify the weighting coefficients in advance, which means that this

algorithm loses the diversity. In order to preserve the diversity, Srinivas27 proposed

a non-dominated sorting genetic algorithm (NSGA) searching for the optimal solu-

tion in multiple directions. As a result, multiple solutions are generalized to form

a Pareto-optimal set. However, NSGA needs to specify a predefined sharing pa-

rameter. To release this constraint, Deb28 proposed the NSGA-II by introducing a

fast-non-dominated-sort scheme and a crowding distance assignment. In the above

two works, Pareto-optimal solutions in each generation are not well distributed.

Hence, Pires29 introduced the MaxiMin sorting scheme into NSGA-II where only

the last selected front is sorted, but the previous fronts are not. This is why we pro-

pose an improved MaxiMin NSGA-II algorithm in which not only the last selected

front but all the selected fronts are sorted using the MaxiMin sorting scheme. In
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this way, the probability of inheriting good genes is improved as much as possible

at each generation.

Another problem is that since the off-line designed motion may fail by colliding

with obstacles in dynamic environments, on-line motion planning methods, espe-

cially RRTs-based methods, attract great interest due to their high efficiency.30−32

As many motion planning methods generate low quality paths, path pruning tech-

niques are proposed based on the medial axis.33,34 However, they require calculating

the medial axis in the collision-free configuration space Cfree which is complex. The

RRT*31 consists of reconnect and regrow processes and only guarantees local opti-

mal path. The Informed-RRT*32 is asymptotically optimal but it needs to evaluate

the whole path which is time-consuming and unnecessary. Besides, they mainly fo-

cus on motion planning for mobile or free-flying robots and do not consider the

non-holonomic constraints.31,32 Even thought there exist studies on non-holonomic

mobile vehicles35, they do not take into account the heading angle which is very

important for non-holonomic humanoid mobile manipulators studied in this paper.

Theoretically speaking, the above mentioned works can be applied to high DoFs

robots, but their effectiveness will decrease and they are incompetent to solve mul-

tiple constrained problems.30−35 Many researchers work on motion planning for

multi-DoFs manipulators36,42 in real time. Lee36 proposed a virtual roadmap-based

on-line trajectory generation method for a dual-arm robot. Berg37 planned the mo-

tion in state-time space using roadmap and A*. Singularity avoidance of a mobile

surgery assistant was studied37 via a penalty function, but the EE’s path is needed

in advance. Yang39 introduced a configuration re-planning method for a fixed ma-

nipulator in dynamic environments. However, it requires calculating inverse Jaco-

bian and the desired configuration must be known. Chen40 designed a joint velocity

correction term to the manipulator’s joint trajectory. Xin41 introduced an escape

velocity and projected it onto the null space for redundant arms. Han42 used the

distance calculation and discrete detection for robot arms. However, they do not

deal with the multiple constrains or “human-like” behaviors. In order to realize

“human-like” behaviors, a heuristic method was presented for a multi-DoFs hu-

manoid robot arm using the RRT* algorithm directly in task space.43 However,

only the EE and elbow are considered as two hierarchical control points. In fact, as

the number of control points increases, the hierarchical motion planning method will

become much more complicated. Vannoy44 generated a population of trajectories

based on the fitness evaluation for mobile manipulators in dynamic environments

with unknown moving obstacles; however, this method is time-consuming. Zhao45

proposed a motion-decision algorithm to realize “human-like” movements only for

a redundant arm. Besides, many reasoning methods, like analytic and fuzzy logic

methods, have been introduced to achieve “human-like” behaviors.46−49 However,

the specific consideration and rules for different scenarios are required which are

complicated for high DoFs systems.

To summarize, in the above-mentioned methods, the desired pose or the EE’s

path needs to be known in advance. However, they can be unknown in this paper.
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The “human-like” behavior design for the humanoid robot is still an open problem.

In this paper, only the EEs’ desired positions-orientations are known. The optimal

pose (see Definition 1) and the motions in task and joint space are to be designed.

The objective is to make the MDAMS be “human-like” and “natural” as much as

possible in both their appearance and behaviors to guarantee the quality of human-

robot interaction. The main contributions are listed as follows:

• An improved MaxiMin NSGA-II Algorithm 1 is proposed in Section 3. It is used

to design the optimal pose given only EEs’ desired positions-orientations. Five

objective functions are optimized simultaneously to achieve “natural” behaviors.

The position-orientation of mobile base and the configuration of manipulator are

planned at the same time.

• A fast off-line motion planning Algorithm 2 is given in Section 4 considering

the optimal pose has been designed by Algorithm 1.

• A direct-connect bidirectional RRT and gradient descent sampling process is pro-

posed to improve the performance of RRTs in Section 4.1.

• An efficient geometric optimization method pruning the sampled path via node

rejection and node adjustment, is proposed to always guarantee the shortest con-

sistent path for repeated tasks in Section 4.2.

• An on-line motion planning Algorithm 3 is designed in Section 5 by introducing

on-line sensing, collision-test and control cycles with the dynamic obstacles being

treated in real time. In order to take the via-poses into consideration, an EEs’ via-

point-based MOGA algorithm is presented. Four objective functions are defined

to optimize the candidate via-poses corresponding to the EEs’ via-points.

Besides, the forward kinematics for MDAMS is established using the modified

Denavit-Hartenberg (MDH) method in Section 2, and a number of motion plan-

ning simulations are presented in Section 6.

2. System Modeling of MDAMS

The structure of the designed MDAMS is illustrated in Fig. 1 (a). It has two arm-

hand subsystems sharing one common waist and one common non-holonomic mobile

base. The MDH method is used to characterize the motion of frame Σi in Σi−1 via

the transformation matrix:

T i
i−1 = Rot(x, αi−1)Trans(x, ai−1)Rot(z, θi)Trans(z, di) =

[

Ri
i−1 P i

i−1

0 1

]

(1)

through a sequence of rotations Rot() and translations Trans() with only four

parameters αi−1, ai−1, θi and di. R
i
i−1 and P i

i−1 are the rotation matrix and position

vector of Σi in Σi−1, respectively.

Apply the MDH method to the designed MDAMS, 22 frames are defined without

considering the neck, head and fingers50. Specifically, Σ0 is the world frame; Σi

(i = 1, ..., 19) is the frame with its origin locating at point Pi; Pe and Pe′ are the
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Fig. 1. Mechanical description of MDAMS. (a) System structure; (b) System simplification.

palm centers (EEs); Σe and Σe′ are EEs’ frames with a translation along axis z12
and z19, respectively. In particular, frame Σ3 is attached to the mobile base which

is described by θm = (x, y, φ) where (x, y) and φ are mobile base’s position and

orientation in Σ0, respectively. l0 is the translation of Σ3 along axis z0 of Σ0 and

lk (k = 1, ..., 10) characterizes the geometric dimension (see Table 1) of MDAMS in

which the variables are defined as follows:

• θ
∆
=

[

θT
m θT

ω θT
R θT

L

]T
∈ R

n: generalized variable,

• TR = T 3
0 T

4
3 T

5
4 T

6
5 T

e
6 (θm, θw, θR): transformation matrix of the right EE in Σ0,

• TL = T 3
0 T

4
3 T

5
4 T

13
5 T e′

13(θm, θw, θL): transformation matrix of the left EE in Σ0,

• TRb = T 4
3 T

5
4 T

6
5 T

e
6 (θw, θR): transformation matrix of the right EE in Σ3,

• TLb = T 4
3 T

5
4 T

13
5 T e′

13(θw, θL): transformation matrix of the left EE in Σ3,

• ẋR =
[

JvR 0nL

]

θ̇ = JRθ̇ ∈ R
m: linear velocity of the right EE in Σ0,

• ẋL =
[

JvLo
0nR

JvLa

]

θ̇ = JLθ̇ ∈ R
m: linear velocity of the left EE in Σ0,

• ω =
[

ωT
R ωT

L

]T
=

[

JT
ωR

JT
ωL

]T
θ̇ = Jωθ̇ ∈ R

2m: EEs’ angular velocities in Σ0,

where θw ∈ R
nw , θR ∈ R

nR and θL ∈ R
nL represent the joints in waist, right and

left arms, respectively. (θw, θR, θL) represents the configuration of manipulator.

JvR ∈ R
m×(nm+nw+nR) is the right EE’s Jacobian in Σ0; JvLo

∈ R
m×(nm+nw)

and JvLa
∈ R

m×nR are the left EE’s Jacobians in Σ0; Jωi
(i = R,L) is the EE’s

orientation Jacobian. In this paper, nm = 3, nw = 2, nR = nL = 7, n = nm + nw +

nR + nL = 19 and m = 3.

Definition 1. (Pose and Optimal pose) Throughout this paper, we note pose
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Table 1. Robot’s dimension.

l l0 l1 l2 l3/ l′3 l4 l5 l6 l7 l8 l9 l10
0.16 0.262 0.45 0.15 0.3 0.15 0.2 0.05 0.2 0.05 0.05 0.05

as the position-orientation of mobile base and the configuration of upper manipu-

lator (i.e. θ) for the designed MDAMS. θop denotes the optimal pose which reaches

EEs’ desired positions-orientations XEE under multiple constraints.

Suppose that the initial pose and XEE of MDAMS are known. In the rest of

this paper, optimal pose design, off-line and on-line motion planning problems for

MDAMS are investigated.

3. Optimal Pose Design

The GA is a popular method for solving optimization problems based on natural

genetics and selection mechanics51. A GA drives a population which is composed

of many individuals that are usually represented by a set of parameters (known as

chromosomes), to evolve under specified selection rules to a state that maximizes

the fitness function. The population of individuals (possible solutions) which is ini-

tialized randomly, is modified repeatedly through selection, crossover and mutation

operators. At each step, the GA selects good individuals to be parents from the

current population, and uses them to produce the offspring for the next generation

(crossover). Random changes are introduced to the population by means of muta-

tion operator. The population evolves towards an optimal solution over successive

generations.

3.1. Objective functions

Due to the high redundancy, there exist numerous joints combinations given EEs’

desired positions-orientationsXEE , and there is always a preference. Instead of only

taking into account EE’s positioning accuracy or joint displacement, five objective

functions are considered simultaneously as follows:

• EE’s positioning accuracy: f1(θ) = ‖xR(θ) − xRd‖ + ‖xL(θ) − xLd‖, where

xRd, xLd, xR(θ) and xL(θ) are the desired and real positions of right and left

EEs, respectively.

• EE’s orientation tracking accuracy: f2(θ) = ‖eqR(θ)‖ + ‖eqL(θ)‖, where

eqR(θ) and eqL(θ) are respectively the orientation tracking errors of right and

left EEs using the unit quaterion representation.52

• EE’s manipulability: Apart from reaching XEE , the additional criteria is re-

quired to achieve the “human-like” behaviors. The manipulability ability de-

scribes the distance away from robot’s singular configuration. The usually used

criterion is Ω =
√

det(J(θ)JT (θ)) or Ω = σmax(J(θ))
σmin(J(θ))

where J(θ) is EE’s Jaco-

bian and σ is the singular value of J(θ). Then, the following objective function
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is given:

f3(θ) = −(ΩR(θ)+ΩL(θ)), where ΩR(θ) and ΩL(θ) are the manipulability mea-

sures of right and left EEs, respectively.

• Joint displacement: In order to save energy, the least joint displacement is re-

quired. A mass-based joint displacement objective function is proposed as follows:

f4(θ) =
1
n

∑n

i=1 Wi
θi−θimin

θimax−θimin
, where n is the dimension of the generalized vari-

able θ, θi is the i-th generalized variable, and θimax and θimin are the correspond-

ing boundaries. Wi = Mi/
∑n

j=1 Mj is mass-based weight, where Mi =
∑ne

k=i mk,

mk is the mass of link k, and ne is the index of EE (left or right). f4(θ) means

that the most heavy part has the largest difficulty to move.

• EE’s displacement w.r.t. the mobile base: Since the above four functions

mainly focus on the manipulator, the coordination between mobile base and ma-

nipulator is not studied. With regard to this, EEs’ displacements in the frame Σ3

of mobile base is

f5(θ) = ‖xRb(θ) − xRbi‖ + ‖xLb(θ) − xLbi‖, where xRbi and xRb(θ) (xLbi and

xLb(θ)) are the initial and desired positions of right (left) EE in Σ3, respectively.

3.2. Improved MaxiMin NSGA-II algorithm

In this section, the improved MaxiMin NSGA-II Algorithm 1 is proposed to design

the optimal pose θop by optimizing the above five objective functions. The chro-

mosome is chosen as θ = (x, y, φ, θω, θR, θL) and its searching interval locates in

Cfree.

The whole process is illustrated in Fig. 2 and Algorithm 1. At the beginning,

a parent population P0 of size Npop is randomly created (line 1). Sort all the in-

dividuals {Gi, i = 1, ..., Npop} in P0 according to their fitness values (line 2, see

Eq. (2)). The technique BasicGA, which employs the usual binary tournament se-

lection, recombination and mutation operators, is used to create the first offspring

population Q0 of size Npop (line 3). The generation numeration is initialized ι = 0.

Then, a while loop is activated to evolve the Pareto-optimal solutions (lines 4

through 30). At the beginning of each generation ι, a combined population Rι =

Rejected

R�

F1

F2

F3

F4

P�+1

Non-dominated 

sorting

F0

P�

Q�

MaxiMin sorting

F5

F6

F7

F8

F4

Fig. 2. Flowchart of the improved MaxiMin NSGA-II algorithm.
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Algorithm 1 Improved MaxiMin NSGA-II

1: Initialization : rand(P0) {initialize the population randomly}

2: sort(P0) {sort P0 according to Eq. (2)}

3: Q0 = BasicGA(P0) {usual GA reproduction}

ι = 0 {initialize the generation numeration}

4: while ι ≤ NG do

5: Rι = Pι ∪Qι {merge population to size 2Npop}

6: F0 = φ {initialize selected set F0}

7: for i = 1 to Nobj do

8: F0 = F0∪GetMin(Rι, i) {move the individual with the minimum objective

function fi from Rι to F0}

9: end for

10: Pι+1 = F0 {initialize the parent population Pι+1 for the next generation}

11: fast-non-dominated-sort(Rι) {non-dominated sorting}

12: i = 1 {get the first non-dominated set Fi in the sorted population Rι}

13: while #Pι+1 +#Fi ≤ Npop do

14: Fi = MaxiMin-sort(Fi) {sort Fi using the MaxiMin sorting scheme}

15: Pι+1 = Pι+1 ∪ Fi {add Fi to the population Pι+1}

16: i = i+ 1 {increment of the non-dominated set counter}

17: end while

18: for j = 1 to #Fi do

19: cpj
=min∀pk∈Pι+1

{||fpj
− fpk

||} {calculate the minimum fitness distance

cpj
and assign it to each individual in Fi}

20: end for

21: while #Pι+1 < Npop do

22: p = getMaxCi(Fi) {get the individual with the largest minimum fitness

distance in Fi}

23: Pι+1 = Pι+1

⋃

p {add p to the selected population Pι+1}

24: for l = 1 to #Fi do

25: cpl
= min∀pk∈Pι+1

{||fpl
− fpk

||, cpl
} {update the minimum fitness dis-

tance of each individual in Fi}

26: end for

27: end while{Complete Pι+1 selection using the MaxiMin sorting scheme}

28: Qι+1 = make-new-pop(Pι+1) {keep the individuals’ orders in the selected

population Pι+1 and use crossover and mutation operators to produce the

next offspring population}

29: ι = ι+ 1 {increment of the generation counter}

30: end while

Pι ∪ Qι of size 2Npop is formed (line 5). In Rι, get the individuals which have the

minimum value for each objective function (lines 6 through 9) and initialize the

next parent population Pι+1 (line 10). The rest individuals in Rι are sorted using
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the fast non-dominated sorting scheme according to their non-domination24,28.

Afterwards, select the best non-dominated individuals set by set, and sort each

set using the MaxiMin sorting scheme. In particular, if the number of individuals

in the selected population Pι+1 and in the following set Fi is smaller than Npop

(#Pι+1+#Fi ≤ Npop), continue the selection (lines 13 through 17); if not (#Pι+1+

#Fi > Npop), select the individuals one by one using the MaxiMin sorting scheme

until obtaining Npop selected individuals (loops for and while, lines 18 through 20

and lines 21 through 27). Finally, the next offspring population is produced while

keeping the order of the selected population Pι+1 and go to the next generation

(ι = ι+ 1, line 29).

The MaxiMin sorting scheme is described here.29 Firstly, the distance between

each non-dominated individual pj ∈ Fi (j = 1, ...,#Fi) and the individuals already

selected pk ∈ Pι+1 (k = 1, ...,#Pι+1) is evaluated and save the minimum distance

cpj
for each individual pj ∈ Fi (loop for, lines 18 through 20). Then, move the

individual pj ∈ Fi whose minimum fitness distance cpj
in Fi is maximum to Pι+1

(lines 22 through 23). Every time an individual p in Fi enters in Pι+1, the values

{cpj
, j = 1, ...,#Fi} in Fi are reevaluated (lines 24 through 26).

The main improvement of Algorithm 1 is that the individuals in each non-

dominated set Fi are sorted using the MaxiMin sorting scheme (line 14) compared

with the MaxiMin NSGA-II algorithm in Pires 05. Therefore, good genes are inher-

ited as much as possible by increasing the crossover possibility of good individuals.

As a result, the converging speed of optimal solution is largely increased. What is

more, Algorithm 1 generates a Pareto-optimal set24 instead of one single solution

at each generation. And the following decision maker a posterior selects the optimal

solution from the set at the end of each generation.

min
pi∈Pι+1

zi =

nobj
∑

j=1

wijzij , i = 1, ..., Npop (2)

where zi is the fitness function of each individual pi ∈ Pι+1, wij is the weighting

coefficient satisfying
∑nobj

j=1 wij = 1 and zij is the normalized j−th objective function

of individual pi.

4. Off-line Motion Planning

Given EEs’ desired positions-orientations XEE , the optimal pose θop can be de-

signed using the Algorithm 1. Similarly, given EEs’ desired trajectories, the

corresponding optimal motion of MDAMS can be designed, but it will be time-

consuming. To this end, an efficient point-to-point bidirectional RRT and gradient

decent motion planning Algorithm 2 with a geometric optimization process is

proposed in this section to design the motion for MDAMS given the optimal pose.
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A

CNon-op

optimal
Forward node 

adjust. 

Backward node

adjust.-Optima

Fig. 3. An example of off-line path planning.

4.1. Overview

Throughout Algorithm 2, the path planner maintains two trees Trs and Tre
which root respectively at the initial node qinit and final node qgoal (see Fig. 3). A

while loop is activated up till tree Trs and tree Tre meet each other, i.e. DisTree ≤

DisMax or there is a direct collision-free connection between Trs and Tre.DisTree

is the minimum distance between Trs and Tre, DisMax is a predefined value.

Algorithm 2 Direct-connect BiRRT and Gradient descent Motion Planning

1: Initialization : start-node ← qinit, end-node ← qgoal

2: Trs ← start-node, Tre ← end-node

3: while DisTree > DisMax, or there is no collision-free direct connection do

4: prb ← rand()

5: if prb < prbM then

6: [Trs, T re] = BiRRT -Extend(Trs, T re)

7: else

8: [Trs, T re] = GradDecExtend(Trs, T re)

9: end if

10: end while

11: Path← PathRRTGrad(Trs, T re) {non-optimal path}

12: OptimPath← GeomOptim(Path) {geometric path optimization}

13: Motion← InterPolyBlend(OptimPath, tstart, tend) {trajectory generation}

14: end

During each while loop, the extending process BiRRT -Extend (line 6) or

GradDecExtend (line 8) is selected (lines 3 through 10) to extend Tre and Trs until

two trees meet each other, based on the comparison between a randomly generated

value prb (line 4) and a predefined value prbM (0 ≤ prbM ≤ 1) which is proportional
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to the clutter of environment. The purple dash line and nodes {qinit, qrand, qnew}

in Fig. 3 illustrate the conventional RRT extending process.8 BiRRT -Extend ex-

tends two trees at the same time following the above RRT process. GradDecExtend

extends two trees directly along the linking line between two trees. In particular, a

direct-connect method is proposed even if the two trees Trs and Tre are still very

far away from each other. It links Trs and Tre directly (segment 5-4′) if there is a

collision-free connection between two arbitrary nodes in Trs and Tre respectively.

As a result, the path searching process is greatly improved by reducing the sampled

nodes.

Process PathRRTGrad (line 11) finds the minimum path from qinit to qgoal

by linking two trees Trs and Tre as one single tree that roots at qinit and ends at

qgoal. Since the obtained path is normally non-optimal, process GeomOptim (line

12) is proposed to geometrically optimize the path (see Subsection 4.2). Finally, the

process InterPolyBlend (line 13, see Subsection 4.3) designs a time law to generate

the time-specified trajectory within a desired time interval [tstart, tend].

4.2. Geometric path optimization: GeomOptim

An example of the path planning result is shown in Fig. 3. The black line linking

nodes {1(qinit), ...,5,4
′, ...,1′(qgoal)} represents the designed path after BiRRT -

Extend and GradDecExtend, which is obviously non-optimal. Therefore, a geomet-

ric optimization method which consists of the node rejection and node adjustment

processes is proposed. Note that the path after node rejection is pre-optimal, and

the path after node adjustment is optimal. The blue, red and green dash lines in

Fig. 3 illustrate the proposed method.

4.2.1. Node rejection

The node rejection process consists of the following steps: i) initialize the pre-optimal

path with qinit; ii) test all the nodes along the black line in sequence, and reserve

the last node 5 which does not interact with obstacles into the pre-optimal path;

iii) repeat step ii) until reaching qgoal. The blue dash line which consists of nodes

{qinit, 5, 4
′, qgoal} in Fig. 3 is the node rejection result, i.e. the pre-optimal path.

4.2.2. Node adjustment

The obtained pre-optimal path after node rejection is usually non-optimal due to the

random sampling process. In order to further prune the path, a forward-backward

node adjustment process is proposed as follows: i) introduce an auxiliary path and

initialize it with qinit; ii) test in sequence the segments which link node qinit and

the points on segment 5-4′ (the point on segment 5-4′ moves from 5 to 4′ with a

fixed step), and reserve the last node A on segment 5-4′ which does not collide with

obstacles into the auxiliary path; iii) repeat step ii) until reaching qgoal, then a path

consisting of nodes {qinit, A, B, qgoal} is obtained; iv) flip the obtained path and
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repeat steps i)-iii); v) flip the obtained path again and the optimal path containing

nodes {qinit, D, C, qgoal} is obtained. In Fig. 3, the red dash line represents the

path after forward node adjustment ; the green dash line represents the path after

backward node adjustment which is also the optimal path consisting of via-points

{qinit, D, C, qgoal}.

4.3. Interpolating linear polynomials with parabolic blends

The optimal path obtained after line 12 in Algorithm 2 is a geometric path, so

a time law is needed. On the other hand, the non-holonomic MDAMS is required

to always head forward to show its movement intention to improve human-robot

interaction. Therefore, the process InterPolyBlend is used (line 13) to design the

smooth trajectory within time interval [tstart, tend] using the linear polynomials with

parabolic blends interpolation technique53. Consider the case where it is required

to interpolate np via-points {q1, ..., qnp
} at time instants {ti, i = 1, ..., np, t1 =

tstart, tnp
= tend}, respectively. The time scope between two adjacent via-points is

∆tk =
dis(qk, qk+1)

∑np−1
i=1 dis(qi, qi+1)

(tend − tstart), k = 1, ..., np−1. (3)

In particular, the trajectory generation for the non-holonomic mobile base is

described in the following. Suppose that the optimal path of mobile base consists

of np via-points qk = (xk, yk) (k = 1, 2, ... , np), (x1, y1) and (xnp
, ynp

) are re-

spectively the initial and optimal positions, φ0 and φd are the initial and optimal

orientations, and others are the intermediate ones. The orientation φk between two

adjacent via-points is calculated as follows:

φk = atan(
yk+1 − yk
xk+1 − xk

), k = 1, ..., np − 1 (4)

to always lead MDAMS head forward. As a result, the orientation list (φ0, φ1,

..., φnp−1, φd) is obtained. At each via-point qk, the mobile base firstly rotates to

the heading orientation φk, then moves to the next via-point qk+1.

5. On-line Motion Planning

In the previous section, an efficient off-line motion planning algorithm is presented

for MDAMS. However, the designed motion will fail if there are obstacle collisions.

Therefore, by extending Algorithm 2, an on-line motion planning Algorithm 3

inspired by Mcleod 16 is introduced in this section under the following assumption.

The objective is the motion design given the initial pose and optimal pose θop in

dynamic environments for MDAMS.

Assumption 1. The global information of the dynamic environment is known

in real time, i.e. the instantaneous positions and geometry characteristics of all

obstacles are known, but the obstacles’ future movements are unknown.
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Algorithm 3 On-line Motion Planning

1: Initialization : sensing cycle ∆ts, control cycle ∆tc, collision-test cycle ∆tcol,

iS ← 1, iC ← 1

2: PosObsInit = EnvInit() {initialize the envitonment}

motion ← Algorithm 2 {off-line motion planning}

3: while Goal not reached do

4: sensing:

5: if start of the sensing cycle iS then

6: PosObsNew = EnvUpdate() {update the environment information}

7: else if end of the sensing cycle iS then

8: iS ← iS+1

9: end if

planning:

10: if start of the control cycle iC then

11: V elObsNew = ObsEstim(PosObsNew) {evaluate obstacles’ movements}

12: CollisionCheck(PosObsNew, V elObsNew) {collision prediction}

13: if collision is predicted then

14: motion← On-lineP lanning(Algorithm 2) {motion re-planning}

15: if a sudden collision appears then

16: Immediate Stop

17: motion← UpdateMotion() {motion updating}

18: end if

19: end if

20: else if end of the control cycle iC then

21: iC ← iC+1

22: if collision is predicted then

23: motion← UpdateMotion() {motion updating}

24: end if

25: end if

tracking:

26: MoveOn(motion) {motion tracking}

27: end while

5.1. On-line motion planning algorithm

5.1.1. Overview

TheAlgorithm 3 conducts motion planning and execution simultaneously by intro-

ducing three cycles: on-line sensing, collision-test and control cycles. In each sensing

cycle, changes of the environment are captured and updated. The planning process

re-plans the motion according to collision-test’s output. In each control cycle, the

robot switches to the above re-planned motion if there are predicted collisions.

Algorithm 3 starts by the initialization: the environmental information in-
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cluding positions of all obstacles is captured (EnvInit). An off-line motion is

designed using Algorithm 2. The sensing, control and collision-test cycles (

∆ts ≤ ∆tc ≤ ∆tcol) and cycle numerations iS and iC are initialized. Then, MDAMS

starts to track the designed motion and the on-line motion planning process is ac-

tivated (while loop, lines 3 through 27).

At the start of each sensing cycle tiS , positions of all dynamic obstacles are

captured (line 6, EnvUpdate) while conserving the historical ones at the same

time.

At the start of each control cycle tiC , dynamic obstacles’ future positions are

predicted (line 11, ObsEstim, see Eqs. (5) and (6)), and the obstacle-collision check

is conducted for the current motion (line 12, CollisionCheck). If there are collisions

predicted in the collision-test cycle [tiC+1, tiC+1 + ∆tcol], the on-line motion re-

planning process On-lineP lanning will be called (line 14).

It is worth mentioning that the start-node of On-lineP lanning is q(tiC+1) of the

next control cycle [tiC+1, tiC+2]. The start time tstart of On-lineP lanning is tiC+1

of the next control cycle [tiC+1, tiC+2]. In particular, if a sudden collision appears

(line 15), the MDAMS will stop (line 16) immediately and update the motion (line

17). In that case, the start-node of On-lineP lanning will be the current state q(t),

and the re-planning start time tstart will be the current time t.

At the end of each control cycle tiC+1, the motion will be updated (line 23)

if collisions are predicted (line 12). As time goes on, the motion tracking is done

continuously (line 26, MoveOn).

5.1.2. Obstacle’s motion prediction

In Assumption 1, we suppose that dynamic obstacles’ positions are known in

real time. The dynamic obstacles’ motions are estimated based on their historical

positions (line 11, ObsEstim in Algorithm 3). Specifically, the velocity of dynamic

obstacle i is estimated as follows:

V oi = max{‖(Xoi(tk)−Xoi(tk−1))/∆ts‖, k = iS −mo, ..., iS} (5)

where mo is the numeration of historical positions of obstacle i, Xoi(ti) is the

position of obstacle i at time ti, ∆ts is the sensing cycle and iS is the sensing cycle

numeration. Then, the position of obstacle i at time t = tiC + δt can be estimated

(line 12, CollisionCheck) as

Xoi(tiC + δt) = Xoi(tiC) + δtV oi (6)

where iC is the control cycle numeration, δt ∈ (0,∆tcol].

Recall that in Assumption 1, the global environment information is assumed

to be known in real time, which is sometimes difficult to obtain. In that case, the

proposed on-line motion planning Algorithm 3 will lose its efficiency. With regard

to this, the following relaxed assumption is presented.
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Assumption 2. Only the local environment information within the sensing range

is known.

The Algorithm 3 is modified as follows. The environment out of sensing range

is treated as a collision-free space. Then, a sequence of via-points {qi, i = 1, ..., np}

bypassing the sensed obstacles can be found using Algorithm 2 (e.g., four via-

points {qinit, D, C, qgoal} in Fig. 3). At the beginning, the robot tries to move

along the first segment qinit-D. Then, the environment will be updated as time

goes on. This process will repeat until the robot arrives at qgoal.

5.2. EEs’ via-point-based MOGA motion planning

Though the proposed Algorithm 3 can be used to design the motion for any DoF

mechanical systems, the collision-free test for a high DoF system is time-consuming

and complex. What is worse, the direct motion planning in joint space will lead to

unforeseen behaviors in task space, and the via-poses are not considered. Regarding

to this, the objective of this subsection is to propose an EEs’ via-point-based MOGA

motion planning algorithm to optimize the via-poses given EEs’ desired positions-

orientations.

5.2.1. Algorithm

The mobile base’s trajectory θm = (x, y, φ) and the joint trajectory of manipu-

lator (θw, θR, θL) characterize the MDAMS’s motion (see Section 2). Recall that

the initial pose and EEs’ desired positions-orientations are known in Section 2. A

sequence of collision-free via-points {Xi = [XT
Ri

XT
Li
]T ∈ R

4m×1, i = 1, ..., np}

are designed using Algorithm 3, where XRi
and XLi

are EEs’ via-points, and

np is the number of EEs’ via-points. The objective is to design optimal via-poses

Θi = (xi, yi, φi, θwi
, θRi

, θLi
) corresponding to {Xi}.

MOGAs (e.g. the improved MaxiMin NSGA-II algorithm 1) are used to search

for the optimal via-poses. The chromosome is chosen as {Θ1, ... ,Θnp
}. The search-

ing interval for each via-pose is {Θij ∈ [θjmin, θjmax], j = 1, ..., n}, where θjmax

and θjmin
are respectively the upper and lower boundaries of θj (see Section 2).

Specifically, (xi, yi) is searched within the reaching region of via-point {Xi}, and

φi is searched within [−π, π]. The via-pose-based objective functions are defined in

the next subsection.

5.2.2. Via-pose-based objective functions

• EE’s positioning accuracy: The via-poses {Θi} are required to bypass all the

EE’s via-points {Xi}. Hence, the first objective function is defined as follows:

fa(Θ) =
∑np

i=1 ‖Xi −Xi(Θi)‖, where Xi(Θi) is the EEs’ via-points correspond-

ing to via-pose Θi based on the forward kinematics expressed by TR and TL in

Section 2.
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• Joint displacement: The least joint displacement is required to minimize energy

consumption. Then,

fb(Θ) =
∑np

i=1

∑n

j=1 ‖(Θij −Θ(i−1)j)/(θjmax
− θjmin

)‖.

• Collision evaluation: In order to take into account the robot-obstacle intersec-

tion, simplify the MDAMS as a skeleton in Fig. 1 (b) and introduce eight control

points (1, ..., 8) and eight links (a, ..., h), i.e. the CoMs of mobile base, waist, two

shoulders, two elbows and two wrists, and eight connection links between them.

Then, define the third objective function as follows:

fc(Θ) =
∑np

i=1

∑nc

j=1 Lcij(Θi)/L, where nc is the number of links on MDAMS,

Lcij(Θi) is the length of link which collides with obstacles along the link j, and L

is the length of eight defined links. Take the situation in Fig. 1 (b) as an example:

the left forearm intersects an obstacle, then the third objective function is given

as fc = h/(a+ b+ · · ·+ h) for one via-pose, np = 1.

• Directional manipulability: To facilitate the motion bypassing all the EEs’

via-points {Xi}, there is a directional manipulability preference between two

adjacent via-points Xi and Xi+1 in task space. Then,

fd(Θ) = −
∑np−1

i=1 (ΩBdir(dRi
) + ΩBdir(dLi

)), where ΩBdir(dRi
) and ΩBdir(dLi

)

are respectively the directional manipulabilities of right and left EEs which are

defined as follows:

ΩBdir(dκi
) =

m
∑

k=1

‖(dT
κi
· uik)σik‖ (7)

where dκi
= (xκ(Θi+1)− xκ(Θi))/‖xκ(Θi+1)− xκ(Θi)‖ is the unit vector along

each segment {Xi(Θi)−Xi+1(Θi+1), i = 1, ..., np−1}. (·) is the dot product and

xκ, κ ∈ {R,L} is defined in Section 2. Decompose Jacobian Jκ(Θi) ∈ R
m×n, κ ∈

{R,L} in Section 2 using the singular value decomposition technique Jκ(Θi) =

UiΣiVi, uik is the k-th column vector of Ui ∈ R
m×m, σik is the k-th singular

value of Σi ∈ R
m×n and Vi ∈ R

n×n.

As a result, the optimization problem is formulated as follows:

min(fa(Θ), fb(Θ), fc(Θ), fd(Θ))

s.t. Θ ∈ Cfree

. (8)

6. Simulations Results

6.1. Optimal pose design and path planning

In Fig. 4, a table is surrounded by four chairs A, B, C and D. The task is to design

the motion for MDAMS to manipulate chair A, which can be divided into two sub-

tasks: the optimal pose θop design around chair A and the collision-free approach-

ing motion design. The EEs’ desired positions are known as xRd = (2.7, 0.3, 0),

xLd = (2.7, −0.3, 0), and the initial positions are xR = (−0.2, 0.25, −0.219), xL =

(−0.2, 0.55, −0.219). Based on the robot’s dimension in Table 1, the expected posi-

tion and orientation of mobile base are calculated as (xme, yme) = (3, 0) and φde =

180◦, respectively. Set the initial pose of MDAMS as θinit = (−0.2, 0.4, 0,016).
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Table 2. The designed optimal pose θop [m,deg].

θm & θw 2.95 0.027 166.77 5.90 0.24 - -

θR 1.11 13.73 33.19 74.63 3.85 49.38 4.81

θL 2.77 22.07 8.19 64.46 67.65 67.63 23.91
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Fig. 4. Pose design of MDAMS to manipulate chair A. Up: improved MaxiMin NSGA-II algorithm.
Down: combined fitness function-based MOGA.

6.1.1. Optimal pose design

This subsection validates the Algorithm 1. Set the population size as Npop = 100,

the generation number as NG = 120 and the genetic crossover and mutation proba-

bilities as pc = 0.7 and pm = 0.3. According to the importance of each objective, the

coefficients in Eq. (2) are chosen as wi = (0.54, 0, 0.04, 0.02, 0.4), i = 1, . . . , Npop.

After NG generations, the designed optimal pose θop is shown in Table 2 and Fig.

4.

It can be seen that the designed optimal position of mobile base is (xmd, ymd) =

(2.95, 0.027) which is near the expected position (xme, yme), the positioning error

is (−0.05, 0.027); the designed optimal orientation of mobile base is φd = 166.77◦
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Fig. 5. Comparison between the improved MaxiMin NSGA-II and MaxiMin NSGA-II algorithms.

which is near the expected orientation φde, the orientation error is 0.23 rad.

The up two figures in Fig. 4 show the motion planning results using the pro-

posed improved MaxiMin NSGA-II Algorithm 1. The black skeletons represent

the designed MDAMS. Points 1 and 2 show the initial positions of right and left

EEs. The cyan plus shows the designed optimal position (xmd, ymd) of mobile base.

Points 3 and 4 show the designed positions (xR(θop), xL(θop)) of right and left EEs

which can be calculated according to the forward kinematics. It can be seen that

the designed optimal pose θop is “human-like” with good positioning accuracy to

EEs’ desired positions (xRd, xLd) in the objective function f1 of Subsection 3.1.

As a comparison, the motion planning results using the combined fitness function-

based MOGA are shown in the down two figures in Fig. 4 with the combined fitness

function being defined in Eq. (2). It can be seen that even though the EEs’ po-

sitioning accuracy is better than that of the Algorithm 1, the designed optimal

mobile base’s position-orientation and manipulator’s configuration are twisted, not

“human-like” and far away from expectations.

Furthermore, two optimal pose design simulations are realized in Fig. 5 which

shows that the optimal pose’s fitness function value evolution of Eq. (2). The

optimal solution converges more quickly and continuously with better performance

using the Algorithm 1.

6.1.2. Path planning and optimization for the mobile base

This subsection validates the path planning Algorithm 2. The mobile base has

a circle geometry. To guarantee the collision-free navigation for the mobile base

from the initial position to the designed optimal position (xmd, ymd), we enlarge

the obstacles by a security hull δsm = 0.3m including the mobile base’s dimension.

The Fig. 6 (a) shows the designed path without geometric optimization. The blue

star points, blue plus points and the blue line represent the sampling nodes of

the start exploring tree Trs, the end exploring tree Tre and the designed path,

respectively. It can be seen that two exploring trees are connected directly once

there is a collision-free connection between them even if they are still very far away
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Fig. 6. Path planning results for the mobile base: (a) without geometric optimization, (b) with
geometric optimization.

from each other. A collision-free approaching path is designed linking the mobile

base’s initial and desired positions, however, it is not the optimal path.

The Fig. 6 (b) shows the path optimization results using the proposed geometric

optimization method. The red line represents the pre-optimal path after node rejec-

tion, the green line represents the optimal path after node adjustment which is also

the designed optimal path. In the optimal path, there are in total np = 5 via-points

which can be adjusted within their neighborhoods to increase the clearance.

6.2. On-line motion planning for the mobile base

This subsection is to verify the Algorithm 3. Note that motion tracking of the mo-

bile base is not considered in this paper. The dynamic obstacles move on the ground

with bounded stochastic velocities. Set the sensing, control and collision-test cycles

as ∆ts = 0.5s, ∆tc = 1s and ∆tcol = 2s. In the following, on-line motion planning

for the mobile base is realized using Matlab in a standard PC (Intel(R) Core(TM)

i5-3317U CPU @ 1.70GHz 1.70 GHz, 4,00Go, x64). Suppose that the mobile base

locates initially at (4.5, 1) and its desired position is (1, 6). Figs. 7 and 8 show the

motion planning results. In detail, Fig. 7 (a) shows the off-line motion planning re-

sults using Algorithm 2. The blue star points and line represent the non-optimal

path. The red line represents the path after node rejection, and the green line rep-

resents the optimal path after node adjustment. The black dot line represents the

mobile base’s trajectory using the linear polynomials with parabolic blends interpo-

lation technique InterPolyBlend. We can see that the trajectory coincides with the

optimal path. As a comparison, the magenta line represents the planned trajectory

using B-spline interpolation which generates too many orientations for the mobile

base and may bring unforeseen collisions.

The star magenta points from Fig. 7 (b) to Fig. 8 (f) represent the movements

of mobile base. The black line behind the magenta points represents the mobile

base’s historical positions, and the black line ahead the magenta points represents
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Fig. 7. On-line motion planning results for mobile base (I). (a) Off-line motion planning results,
(b) Phase 1, (c) Phase 2, (d) Phase 3.
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the designed motion by Algorithm 3 in real time. It can be seen that each time

there are predicted collisions. The on-line planning process is activated to design

the new motion for mobile base. Throughout this simulation, there are in total 8

On-linePlanning calls, which are illustrated by the blue star points and lines from

phase 2 to phase 9, to update the motion to avoid the cyan cuboid dynamic obstacle

on the way to the desired position. Fig. 8 (f) shows that the motion remains the

same after bypassing the dynamic cyan cuboid (see phase 9).

6.3. Motion planning for MDAMS

Theoretically speaking,Algorithm 3 can be used to design the motion for any DoF

mechanical systems, but the computational cost will increase and the via-poses will

be difficult to predict. This subsection is to verify the EEs’ via-point-based MOGA

motion planning algorithm.

Suppose that the initial pose of MDAMS is θ0 = (7, 1, 0,016); the left EE’s initial

and desired positions are (7, 1.15, 0.612) (green circle) and (8.1, 1.3, 0.66) (see Fig. 9

(a)), respectively over a 2m× 1m× 0.6m table (cyan cuboid) at (9.5, 1, 0); the right

EE’s initial and desired positions are (7, 0.85, 0.612) (blue star) and (8.1, 0.7, 0.66)
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(red plus), respectively. The objective is to reach EEs’ desired positions among the

obstacles with reasonable via-poses. The motion planning results are shown in Fig.

9.

Firstly, the EEs’ via-points are designed using Algorithm 3. Fig. 9 (a) shows

the path planning results for two EEs, Fig. 9 (b) zooms in the results. There are

in total three pairs of via-points, i.e. 1 − 2, 5 − 6 and 7 − 8 in the optimal path.

The pair 3− 4 is rejected after node adjustment. Fig. 9 (c) shows EEs’ trajectories

bypassing 1− 2, 5− 6 and 7− 8. However, the movements of mobile base and other

joints are not decided. To this end, the EEs’ via-point-based MOGA algorithm is

used to optimize the via-poses of the whole MDAMS. Fig. 9 (d) shows the designed

optimal via-poses corresponding to 1 − 2, 5 − 6 and 7 − 8. It can be seen that the

designed via-poses avoid the table and have the cognitive shock-free “human-like”

behaviors.

7. Discussion

The main contributions of this paper are “human-like” motion planning algorithms

to improve the quality of human-robot interaction. They avoid calculating inverse

Jacobian and satisfy multiple constraints simultaneously.

The Algorithm 1 is used to design simultaneously the mobile base’s position-

orientation and the manipulator’s configuration. Other constraints found in the

literature can be also integrated into Algorithm 1, and it can be used for other

multi-objective optimization problems. Theoretically speaking, Algorithm 1 can

be used to design MDAMS’s motion given the desired trajectories of EEs, but the

shortcoming is that it is time-consuming. So it is not applicable for on-line motion

planning. To this end, an efficient pose-to-pose bidirectional RRT and gradient de-

cent motion planning algorithm with a geometric optimization method is proposed

to design the motion from the initial pose to the optimal pose.

Berenson14,55 proved the probabilistic completeness of RRT-based algorithms

under end-effector’s orientation constraints. In this paper, the volume of the mani-

fold in an embedding space is not zero, thus the probability of generating a path on

the manifold of the proposed Algorithm 2 by rejection sampling in the embedding

space will go to 1 as the number of samples goes to infinity.

Geraerts34 pointed out that many motion planning techniques generate low qual-

ity paths, and presented a number of techniques to improve the quality of paths.

However, complex geometric calculation of the medial axis is required and the effec-

tiveness for articulated robots remains to be studied. The same problem happened

in Wilmarth 89. In this paper, only the planned via-points are needed to be ad-

justed within their neighborhoods to increase the clearance without calculating the

medial axis. Compared with Bakdi 17, the proposed geometric optimization method

is simpler and more efficient without considering different cases in detail. Moreover,

different from Greiff 17 which uses a projection process to find the collision-free via-

points, the Algorithm 3 in this paper can easily find them. The simple geometric
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optimization method can be applied to other planning methods like roadmaps or

RRTs for path pruning. Different from the method in Bakdi 17 which searches for a

great number of via-poses from the initial pose to the optimal pose, the via-point-

based MOGA algorithm in this paper only needs to design a few via-poses to achieve

“human-like” collision-free behaviors.

8. Conclusion

The motion planning for a humanoid MDAMS is researched in this paper. The

improved MaxiMin NSGA-II algorithm is proposed to design the optimal pose by

optimizing five objective functions. Besides, an efficient direct-connect bidirectional

RRT and gradient descent method is proposed to speed up greatly the sampling

process. And a geometric optimization method is designed to always guarantee the

consistent and shortest collision-free path. “Natural” head forward behaviors are

realized to “tell” motion intentions by assigning reasonable mobile base’s orienta-

tions. By designing on-line sensing, collision-test and control cycles, motion plan-

ning in dynamic environments with unknown obstacles is achieved. Furthermore,

an EEs’ via-point-based MOGA motion planning algorithm is proposed to optimize

the via-poses. The proposed algorithms in this paper can be used for motion plan-

ning for various robots. In order to implement the proposed motion methods and

to improve the long-term performance of MDAMS, the future work will focus on

validation of the proposed algorithms on virtual prototype. Besides, uncertainties

come from environments, sensors and computation will be taken into account for

real applications.
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