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Robot performance measures are important tools for quantifying the ability to carry out
manipulation tasks. Generally, these measures examine the system’s kinematic transfor-

mations from configuration to task space. This means that environmental constraints

are neglected in spite of the significant effects they may have on the robot’s admissible
motions. In this paper, we propose a new measure called the constrained manipulability

polytope (CMP) that considers the system’s kinematic structure, including closed chains

or composite sub-mechanisms, joint limits and the presence of obstacles. For an illustra-
tive planar case, we demonstrate how the CMP can evaluate a robot’s performance in a

cluttered scene and how this evaluation can be extrapolated to obtain a workspace vi-

sualization. Additionally we show the advantages and limitations of the CMP compared
to the state of the art. Furthermore, the method is demonstrated both in simulation and

experimentally for NASA’s Valkyrie robot. We show how the CMP provides a measure
for single-arm and dual-arm manipulation tasks, analyze the workspace and be used to

optimize the robot’s posture.

Keywords: Manipulability Polytopes; Constrained Workspace Analysis; Humanoid
Robots; Posture Analysis.

1. Introduction

A robot performance index is a metric that can be used for synthesis, base placement

and task planning applications1,2,3. These measures can be classified as local, for

instance manipulability4 or global such as workspace analysis5. Local indexes are

workspace independent and can be used to select a configuration based on a robot’s

inherent capability. In contrast, if the workspace is well known a robot’s overall

performance can be analyzed, for example by discretization reachability can be

verified for each voxel5. Thus global indexes can be used to compare manipulator

suitability and/or posture for a particular task. While clearly connected,6 has shown

that a good local index does not necessarily imply a good global performance.

It is desirable to use local indexes since they provide a more generic solution

1
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and hence may be exploited in control frameworks without prior workspace knowl-

edge. Additionally, many global measures are based on the evaluation/integration

of a local index across a workspace. For these reasons, much research has focused

on extending local measures such as the manipulability ellipsoid4 to include var-

ious constraints. Joint position limits can severely limit a robot’s manipulation

capabilities7 and thus should be considered in developing evaluation metrics. In8,

the author proposes to modify the manipulability index by using a penalty function

based on proximity to positional joint limits. Likewise, joint limits are taken into

account in3 in this case by using an augmented Jacobian matrix. Since the classical

manipulability measure considers a unit hyper-sphere of joint velocities, individual

velocity limits have been taken into account in9 by scaling the Jacobian matrix.

Other notable extensions have included the robot’s dynamic constraints10,11. For

humanoid robots, improvements on local measures can be obtained by including

the effects of contact while evaluating the dynamic manipulability of a humanoid’s

center of mass12,13. Moreover in13, a scaling matrix is proposed to enforce either

joint torque and/or acceleration limits.

The work most related to our approach is presented in5,14,15, where the ma-

nipulability ellipsoid is extended to include additional environmental constraints.

The authors’ method considers joint position limits and the detrimental effects of

nearby obstacles. To include these constraints in the manipulability ellipsoid, the

Jacobian is first altered by a scaling matrix. Secondly, a set of augmented Jacobian

matrices is computed that considers workspace movements in all possible Cartesian

directions. The authors propose a range of different applications, such as fast inverse

kinematic solutions and grasp evaluations, for this index by demonstrating how it

can be extended across a workspace to generate a manipulability map. Instead of

the hyperoctants approach, manipulability polytopes provide a more natural and

intuitive way of representing velocity limits in the Cartesian space, as first proposed

in16. Indeed, polytopes give an exact representation of the robot’s velocity bounds

instead of the ellipsoids’ approximation 17,18. Moreover, for the redundant case,

polytopes are less susceptible to errors. For instance,19 proves that an ellipsoid does

not represent the isotropic capabilities of a planar 2-DOF robot. In fact20 shows

that using the ellipsoid to analyze Cartesian-space positioning errors based on cor-

responding joint errors, leads to unrealistic results. Additionally, polytopes have the

advantage of being standard geometric objects and thus are much easier to trans-

form and combine as demonstrated in Section 2.3. In fact, there are several examples

where diverse constraints, defined by a set of inequality or equality equations, have

been incorporated into polytopes. For instance, mobile robot toppling constraints

have been integrated into the available wrench set for a cable-driven parallel robot

in21,22. Alternatively friction constraints can be added after linearization23. Poly-

topes have been neglected as a performance index typically due to the perceived

computational cost14, which nowadays presents less of a limitation.

In this paper, we extend our approach24 to measure a humanoid robot’s perfor-

mance based on manipulability polytopes. First, a comparison is carried out with a
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state-of-the-art algorithm that evaluates reduced manipulability. We establish how

our measure can be used to analyze a humanoid robot’s workspace and evaluate

single-arm and dual-arm manipulation operations. In contrast to previous tech-

niques, both task- and joint-space constraints on each link are considered. While

the manipulability for a humanoid robot typically treats the arms as separate serial

manipulators25, we demonstrate how polytopes can be combined to consider the

resulting manipulability of serial and parallel chains. Finally, we show how the re-

sulting metric can be incorporated into a constrained optimization in order to find

optimal postures. This paper is organized as follows. In Section 2, the manipulabil-

ity concept is recalled and the proposed method to fuse manipulability polytopes

is shown. In Section 3, our approach for embedding the task constraints into the

polytope is detailed and compared with the state of the art. Section 4 presents

the case study of a humanoid robot operating in a highly-constrained environment.

Finally, in Section 5, the conclusions are drawn and future work is outlined.

2. Manipulability

2.1. Manipulability Ellipsoid

Consider an n degree-of-freedom (DOF) manipulator operating in m dimensional

space. Let νn denote the twist at the end effector, comprising 3 translational and

3 angular velocities defined respectively as v and ω. νn is obtained as

νn =

[
v

ω

]
= Jnq̇, (1)

where Jn ∈ R6×n is the Jacobian matrix and q̇ = [q̇1, q̇2 . . . q̇n]
T

is the joint velocity

vector. In this paper, all quantities unless otherwise stated are represented in the

fixed world frame. The manipulability ellipsoid4, denoted as E , measures the robot’s

capacity to transmit velocities and forces from joint space to task space and can be

obtained by considering the joint velocities in the unit hypersphere i.e.,

q̇T q̇ ≤ 1. (2)

By substituting Eq. (1) into Eq. (2), the task-space ellipsoid is described by

E = {νTn
(
JnJTn

)−1
νn ≤ 1}. (3)

The eigenvectors of JnJTn define the principal axes of E while their magnitude is

defined by the corresponding singular values of Jn. By studying the volume of E ,

a measure of the manipulator’s performance is obtained, albeit with several known

limitations such as dimensional dependency26.
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2.2. Manipulability Polytope

A polytope, P can be represented as the convex hull of its vertex set (V-

representation), i.e.,

PV = {x : x =

n∑
i=1

αiyi

∣∣∣∣∣αi ≥ 0,

n∑
i=1

αi = 1}, (4)

where yi denotes the ith element of the vertex set and x is any point inside P.

Equivalently, P can be defined as the volume bounded by a finite number of half-

spaces (H-representation)

PH = Ax ≤ b, (5)

where A contains the half-spaces’ normals and b is the shifted distance from the

origin along the normal. Converting from V and H representations can be carried

out in several ways, for example using the double descriptiona method28.

The polytope representing joint velocities for an n-DOF robot, denoted by Q,

is written in H-representation as

QH =

[
In
−In

]
q̇ ≤

[
q̇max
−q̇min

]
, (6)

where In is the n× n identity matrix and q̇max and q̇min denote the robot’s max-

imum and minimum joint velocities respectively. The equivalent polytope defined

by its vertices is written as

QV = { q̇v1, q̇v2, . . . , q̇
v
2n }, (7)

where q̇vi denotes the ith vertex of Q. The vertices can be arranged in matrix form

as

Q =


q̇v1
q̇v2
...

q̇v2n

 =


q̇min1 q̇min2 . . . q̇minn−1 q̇

min
n

q̇min1 q̇min2 . . . q̇minn−1 q̇
max
n

...
...

...

q̇max1 q̇max2 . . . q̇maxn−1 q̇
max
n

 . (8)

The convexity of a polytope is preserved under affine transformation, i.e., a linear

transformation applied to Q is a convex combination of the same linear transforma-

tion applied to the vertices. Thus, a manipulability polytope (MP), denoted as P,

representing the Cartesian-space velocities can be obtained by combining Eq. (1)

and Eq. (8). P’s vertex set representation is given as

PV = {νv1 . . .νv2n } = {Jnq̇v1 . . . Jnq̇v2n } (9)

and its volume, denoted as wp, can be used as an indicator of robot performance.

aIn this work, for humanoid robot analysis, we use the C++ wrapper for Fukuda’s cdd library
available at https://github.com/vsamy/eigen-cdd, while the MATLAB c© computations (planar

comparison case) used the Multi-Parametric Toolbox 3.0.27
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2.3. Manipulability of Complex Mechanisms

In the following, we show how the MP of several mechanisms can be combined to

evaluate the performance of a composite mechanism. In brief:

· P = P1⊕P2 . . .⊕Pn, namely, the polytope of a mechanism composed of n sub-

mechanisms in series is the Minkowski sum, denoted by ⊕, of each sub-mechanism’s

polytope.

· P = P1

⋂
P2 . . .

⋂
Pn, namely, the polytope of a mechanism composed of n

sub-mechanisms in parallel is the intersection of each sub-mechanism’s polytope.

This relation is first proposed in16 for cooperative robots manipulating a common

object.

2.3.1. Manipulability Compositions for Serial Mechanisms

Without loss of generality, suppose the n-DOF mechanism, described by Eq. (1), is

composed a serial arm mounted on a mobile base. The joint positions q ∈ Rn×1 and

can be separated into k variables belonging to the serial arm and n−k components

belonging to the mobile base, denoted respectively as qarm and qmb. The corre-

sponding velocity variables are given as q̇, q̇arm and q̇mb. Thus, Eq. (1) becomes

ν = Jq̇ =
[
Jarm Jmb

] [ q̇arm

q̇mb

]
. (10)

Jarm ∈ Rm×k and Jmb ∈ Rm×(n−k) are the Jacobian matrices of the sub-

mechanisms. From Eq. (6) and Eq. (8), the joint-space polytope’s vertex sets are

given as

Qarm =
[
q̇arm1 q̇arm2 . . . q̇arm2k

]T
Qmb =

[
q̇mb1 q̇mb2 . . . q̇mb2n−k

]T
, (11)

where q̇armi and q̇mbj denote the ith and jth vertices in Qarm and Qmb respectively.

From Eq. (9), the corresponding task space vertex sets are given as

Varm =
[
Jarm q̇arm1 . . . Jarm q̇arm2k

]T
Vmb =

[
Jmb q̇mb1 . . . Jmb q̇mb2n−k

]T
. (12)

Varm ∈ R2k×m and Vmb ∈ R2n−k×m define the convex MPs, Parm and Pmb of the

serial arm and the mobile base respectively, i.e.,

PVarm = {Jarm q̇arm1 , Jarm q̇arm2 , . . .Jarm q̇arm2k }, (13)

PVmb = {Jmb q̇mb1 , Jmb q̇mb2 , . . .Jmb q̇mb2n−k }. (14)

The Minkowski sum of P1 and P2 is formed by adding each vector in P1 to each

vector in P2, i.e., P1 ⊕ P2 = {a + b|a ∈ P1,b ∈ P2}. Since MP’s are by definition

convex the Minkowski sum can be computed by taking the pairwise summation of
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the vertices. The resulting set is of dimension (2k · 2n−k ×m), i.e., 2n ×m

PVarm ⊕ PVmb = {Jarm q̇arm1 + Jmb q̇mb1 ,Jarm q̇arm1 + Jmb q̇mb2 , . . .

Jarm q̇arm1 + Jmb q̇mb2n−k ,

...

Jarm q̇arm2k + Jmb q̇mb1 ,Jarm q̇arm2k + Jmb q̇mb2 , . . .

Jarm q̇arm2k + Jmb q̇mb2n−k} (15)

As seen in Eq. (8) a vertex of the n-dimensional polytope Q is a vector formed by

the vertices of its sub-mechanisms, and supposing judicious labeling of vertices, the

following expression can always be obtained

qvi =
[
qarmi qmbi

]
∀i = 1 . . . n (16)

Substituting Eq. (16) and Eq. (10) into Eq. (15), it can be shown that

PVarm ⊕ PVmb =
{

J q̇v1, J q̇v2, . . . , J q̇vn
}

= PV . (17)

demonstrating that the MP of a serial mechanism can be constructed by the

Minkowski sum of its composite sub-mechanisms provided that polytopes are de-

fined at a common terminal point, for instance a common object. As MPs are

convex the complexity of the Minkowski sum grows linearly with the number of

vertices. Finally, it is important to note that the Minkowski sum is commutative

P1 + P2 = P2 + P1 and associative P1 + (P2 + P3) = (P1 + P2) + P3 allowing a

certain amount of freedom in mechanism decomposition.

2.3.2. Closed Chains

The analysis of closed chains can be carried out via a numerical analysis of the

system’s Jacobian matrix29, screw theory30, by obtaining the intersection of the

velocity polytopes16 or by defining virtual kinematic chains31. To demonstrate the

latter case, consider the example of two cooperating serial arms handling a rigid

object. Their Cartesian-space polytopes, described by Eq. (9) when transformed to

H−representation become

PHarm1 , Aarm1 νarm1 ≤ barm1 PHarm2 , Aarm2 νarm2 ≤ barm2. (18)

By simply obtaining the union of inequalities, as first shown by16, the closed-chain

manipulability becomes

PH =

[
Aarm1

Aarm2

]
ν ≤

[
barm1

barm2

]
. (19)

By definition ν respects the velocity constraints imposed by both mechanisms, i.e.,

the intersection of the two MPs. The intersection is convex and is denoted for two

MPs Pi, Pj as Pi⋂ j .
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3. Constrained Manipulability by Polytope Reduction

In the following, the constrained manipulability polytope (CMP), which alters the

manipulability polytope in response to workspace obstacles and joint position limits,

is proposed.

3.1. Obstacle constraints

The proposed velocity reduction due to environmental constraints is guided by two

principles. First, that the Cartesian velocity towards objects should be reduced in

order to prevent damaging collisions. Secondly, that the velocity capacities should

decrease as a link approaches an object. The kineostatic danger field32 can be used to

classify how dangerous a discretized cell location in the workspace is, with respect to

the robot’s state. The target application is security monitoring during human robot

collaboration tasks. However, in this paper, rather than creating a danger field for

safety purposes, we use it as an input which limits the maximum attainable velocity

toward the object. Thus, the robot’s velocity is reduced until the danger-field value

at the object location is below a predefined threshold.

The kineostatic danger field divides the robot’s links into l control points (CPs)

and the workspace into c cells. The danger field for the jth (j = 1, . . . , c) cell is

calculated as

φj = max
i=1...l

(
1

‖ri − rj‖
+
‖vi‖cos(∠(ri − rj ,vi))

‖ri − rj‖2

)
, (20)

where rj and ri denote the position vector of the jth cell and the robot’s ith CP

respectively. The translational velocity of point i is denoted by vi. All CPs on the

robot’s body can contribute to the danger value at cell j rather than simply the

closest point to the object. In order to create a system of inequality constraints,

Eq. (20) is re-defined as

∀i ∈ CP, φj ≤
1

‖rij‖
+
‖vi‖cos(∠(rij ,vi))

‖rij‖2
, (21)

where rij = ri − rj . Substituting the dot product relation

cos(∠(rij ,vi)) =
vTi rij
‖vi‖‖rij‖

, (22)

(21) becomes

φj ≤
1

‖rij‖
+

vTi rij

‖rij‖3
, (23)

Finally, by introducing r̂ij the normalized unit vector of rij , Eq. (23) becomes

vTi r̂ij ≤ φj‖rij‖2 − ‖rij‖, (24)

In this paper, rather than creating a danger field for safety purposes, the objective

is to study the reduction in performance. Hence, the robot’s velocity is reduced until
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the danger field value at the obstacle location, denoted as o is below a threshold,

i.e., a desired danger value. Eq. (24) is re-written as

vTi r̂io ≤ φd‖rio‖2 − ‖rio‖, (25)

ro is the obstacle’s position vector with respect to the robot’s fixed frame and φd

denotes desired danger value. By introducing Eq. (1), the following expression is

obtained in configuration space

r̂Tio Jiq̇ ≤ φd‖rio‖2 − ‖rio‖, (26)

where Ji ∈ R3×n is the Jacobian matrix at point i. If a robot’s joint does not con-

tribute to the velocity at the ith CP, the corresponding column of Ji contains zeros.

Hence, Eq. (26) constrains the maximum velocity for the ith CP in the direction

toward the obstacle. Considering the l CPs leads to the following set of inequalities
r̂T1o J1

r̂T2o J2

...

r̂Tlo Jl

 q̇ ≤


φd‖r1o‖2 − ‖r1o‖
φd‖r2o‖2 − ‖r2o‖

...

φd‖rlo‖2 − ‖rlo‖

 , (27)

rewritten as

Jokq̇ ≤ bo (28)

for the kth obstacle.

3.2. Positional Joint Limit Constraints

In8, the resulting manipulability value is scaled using a penalty term based on

the distance to joint limits in configuration space. Alternatively, these limits can

be embedded using an augmented Jacobian matrix3 or a matrix of weights5. In

this paper, we introduce the effects of joint limit proximity in the polytope before

transformation to the Cartesian space, thus avoiding improper penalization due to

redundancy. For the ith joint, the penalization term is defined as

ψmaxi = 1−
(

max(q̄i, qi)− q̄i
qmaxi − q̄i

)k
, ψmini = 1−

(
min(q̄i, qi)− q̄i
qmini − q̄i

)k
, (29)

where q̄i is given as q̄i = 1
2 (qmaxi + qmini ), k is a positive integer, ψmaxi varies from

1 to 0 as the ith joint approaches its limit. Eq. (6) is modified to consider the joint

limits [
In
−In

]
q̇ ≤

[
Ψmax q̇max
−Ψmin q̇min

]
, (30)

where Ψmax = diag (ψmax1 . . . ψmaxn ) and Ψmin = diag
(
ψmin1 . . . ψminn

)
.
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3.3. Constrained Manipulability Polytope

By extending Eq. (28) to m obstacles or danger zones in the robot’s workspace and

including the constraints defined by Eq. (30), the following H-representation of the

joint-space polytope, denoted as QH∗, is obtained

Jo1
Jo2

...

Jom
In
−In


q̇ ≤



bo1
bo2

...

bom
Ψmax q̇max
−Ψmin q̇min


. (31)

QH∗ can be converted to V-representation and transformed to the task space using

Eq. (1). In doing so the CMP, denoted as P∗ that characterizes the constrained

task-space performance while also considering joint position limits is obtained. This

process results in a dependency between joint velocities as the matrix of half spaces

is no longer diagonal. A performance index that considers the robot’s joint limits,

velocity and positional, and the constraints imposed by the environment can be

obtained from measuring the volume w∗
p enclosed in P∗.

If it is desirable to obtain the loss of manipulability due only to the environment,

Q∗ must be examined. Q∗ comprises k n-simplexes each defined by n joint velocity

vertices. The volume of Q∗ is given as the sum of volumes of all simplexes, i.e.,

wq =

k∑
s=1

∣∣∣∣∣ 1

n!
det
(
[ q̇vs1, q̇vs2, . . . , q̇vsn ]

) ∣∣∣∣∣, (32)

where q̇vsi is the ith vertex of the sth simplex. The loss ratio is defined as

η =
w∗
q

wq
, (33)

where w∗
q is the volume of the deformed joint polytope. 0 < η < 1 is dimensionless

and defines the reduction in robot performance due to obstacles and proximity

to joint limits. However, Eq. (33) is invalid if constraints immobilize a joint as

the polytopes exist in different dimensions. Furthermore, care must be taken and

appropriate scaling methods should be employed, if the mechanism has different

joint types as Eq. (33) may no longer be dimensionless.

3.4. Illustrative 2-DOF planar robot case

In this section, the method is demonstrated for a planar 2-DOF manipulator, link

lengths are given as l1 = 0.8, l2 = 0.55 b. Additionally we compare our proposed

CMP method with the extended manipulability measure5,14. Polytope manipulation

bThe code used to generate this example and associated figures is available here:

https://github.com/philip-long/constrained manipulation

https://github.com/philip-long/constrained_manipulation
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is performed using the Multi-Parametric Toolbox27. Figures 1a and 1b show the

manipulator in two different joint configurations. The obstacles denoted O1 and O2

are located at ro1 = [0.1 , 0.28] and ro2 = [0.8 , 0.45]. Columns 1-4 of Fig. 1a, and

Fig. 1b respectively show the robot configuration followed by the MPs due to, only

positional joint limits, positional joint limits with O1 and positional joint limits with

O1−2 . The reduction in velocity capabilities is quite small due to the joint position

limits as seen in the second column for C1, while for C2 it is significantly higher.

Indeed the combination of joint positional limits and O2 essentially immobilizes

the end effector. The obstacles close to the link greatly diminishes the possible

resulting velocities for the end effector. The addition of O2 has different effects on

both configurations due to its relative location.

3.4.1. Comparison with Extended Manipulability Measure

The extended manipulability measure (EMM), first proposed in 14 and later de-

veloped in 5, is generated by obtaining the gradient function of constraints with

respect to end-effector motions. The m dimensional task space is divided into 2m

hyperoctants that represent positive and negative motions in each direction. For

each motion a Jacobian matrix is constructed by penalizing the robot’s unmodified

Jacobian matrix. An element in a given hyperoctant’s Jacobian matrix is penal-

ized if it moves the manipulator toward a joint limit and/or obstacle. Finally the

manipulability (i.e., extended inverted condition number) is obtained by computing

the ratio between the minimum and maximum singular values of all augmented

Jacobians. Figures 1c and 1d show the EMM for C1 and C2 in the 4 translational

hyperoctants, Γ =
[
±vx, ±vy

]
. The EMM accurately represents the restriction on

motion due to joints limits in C2 in the third quadrant Γ =
[
−1, −1

]
and the

presence of the O2 in C1 in both second and third quadrant Γ =
[
−1, 1

]
and

Γ =
[
−1, −1

]
.

Nevertheless, this example shows the advantages of the CMP. First, rather than

dividing the space in hyperoctants, the constraint gradient is inherently considered

by the MP’s hyperplanes. Secondly, a single visualization of the extended manipu-

lability ellipsoid requires the stitching together of each hyperoctant’s ellipsoids, but

this becomes problematic as the ellipsoid’s major/minor axes no longer necessarily

align. While it is true that the visualization does not affect the computation it can

aid information transfer in a human-in-the-loop type controller33. Hence, a single

visualization that encodes the directional information is an advantage of the pro-

posed polytope method. Furthermore, since the EMM is generated by penalizing

the Jacobian matrix at a single point of application, objects closer to other points

on the kinematic chain have a disproportionately weak effect. This is because, in

contrast to our proposed method, their effect varies with the distance to the chosen

point and not the distance to the robot’s body (the discretized CPs defined along

the links). For instance in C1, O1 should greatly reduce possible motion in the

positive y direction, whereas Fig. 1c shows that this is not the case. Likewise, for
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(a) CMP, C1 : q = [0.8 − 0.9]T

(b) CMP, C2 : q = [0.8 − 1.53]T .

(c) EMM C1 : q = [0.8 − 0.9]T (d) EMM, C2 : q = [0.8 − 1.53]T .

Fig. 1: The joint limits are given as qmax = [π2 , π2 ], qmin = [−π2 , −π2 ], q̇min = [−1.0,

−1.0] and q̇max = [1.0 1.0]. Red shading denotes original polytope/ellipse, green the

reduction due to obstacles and blue the reduction due to obstacles and joint limits.

Fig. 1a and Fig. 1b, column 1 shows the robot configuration, while columns 2-4

show the effects with 0, 1, 2 obstacles, respectively. Fig. 1c and Fig 1d show the

equivalent EMM in each quadrant considering both obstacles (black squares).

C2, given the proximity to joint limits and the presence of objects, the manipulator

is immobilized, accurately reflected in Fig. 1b, whereas Fig. 1d indicates that the

motion in Γ =
[

1, −1
]

is not impeded. On the other hand, a benefit of EMM is

the existence of a closed-form solution, something which is not possible for CMP.

Finally, it should be noted that the respective reduction of manipulator abilities

can be altered in both methods by changing the parameter (weighting) values.
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(a) Workspace Analysis q2 ≤ 0 wp
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(b) Workspace Analysis q2 ≥ 0 wp
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(c) Reachability Analysis

Fig. 2: Workspace analysis comparing CMP with the EMM. Red areas signify high

manipulability while blue indicate the inverse. The joint position limits are qmax =

[π2 , 3π
2 ] qmin = [−pi2 , − 3π

2 ]. Rows 1-3 respectively show performance indexes for the

elbow up configuration, elbow down configuration and the reachability.

3.4.2. Workspace Analysis

In Fig 2, the CMP is used to analyze the workspace of a robot in a cluttered

environment. An inverse kinematic (IK) model obtains the possible configurations,

often referred to as elbow up or elbow down at mm2 cells across the workspace.

The combination of all configurations gives the system’s reachability as shown in

Fig. 2c. From the robot’s joint configuration, obstacle location and joint limits,

η, wp, w
∗
p and cext are calculated. Fig 2 shows how η gives a pure representation

of manipulability loss due to the obstacles, whereas w∗
p also includes the effects

of the manipulator’s kinematic transform. It is interesting to note the dark blue

curves which mark workspace boundaries, i.e, regions the manipulator cannot cross

without passing through a singularity or in the reachability case cannot cross at all.

Finally, it can be seen that cext increases as the end effector moves far away from

obstacles, since it does not consider the effect of obstacles on the whole kinematic

chain. In contrast, the variation of w∗
p is more complex due to the inclusion of the

constraining effects on the links.
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Fig. 3: NASA’s Valkyrie robot. (Left) Robot model and frame location. The blue, red

and yellow dotted lines denote the right-arm, left-arm and torso chains, respectively.

(Right) Experimental setup, an object model (middle) is used with a ray-casting

technique to obtain the minimum distance from the objects to the robot.

4. Humanoid Robot Analysis

In this section, the performance of a humanoid robot is evaluated in a constrained

environment. In addition to the advantages detailed in Section 3.4, since the convex

polytopes are geometric objects, they can be combined to represent the capacities

of composite chains formed by the humanoid as outlined in Section 2.3.

Figure 3 shows the studied platform: NASA’s Valkyrie robot; each arm consists

of seven revolute joints whose positions are denoted by the vectors qr and ql, while

the torso comprises three revolute joints, denoted by qt. To analyze the system’s

manipulability, four serial chains are defined. For the two arms these chains begin at

the torso frame and terminate at the index finger denoted for the right and left arms

by the superscripts r and l respectively. To analyze the effects of the torso motion,

chains begin at the pelvis frame and continue along the arms and terminate at the

index fingers using the superscripts tr and tl. The respective MPs are denoted as

Pr, Pl, Ptr and Ptl, while a CMP is denoted with an asterisk, e.g., P∗
r . The value

of rio from Eq. (26) is obtained by casting rays in all direction at each CP and

checking for intersections with the environment, using a known object model.

4.1. Right-arm insert

In the first experiment Valkyrie must insert its right arm into a glovebox. During

the action, the robot’s feet are fixed and the system’s MP from the torso up is

measured. The glovebox is considered as an obstacle that reduces the manipula-

tor’s performance. An optimization-based motion planner34 is used to generate a

collision-free trajectory for the insertion task.

Figure 4 gives the result of the right arm insertion task, showing how the CMP

evolves with time. Four instants are studied corresponding to the configurations

shown in Fig 4a. Rows 1-3 show Pr, Ptr and Pr⊕tr, the polytopes corresponding

to the right arm, the torso and the Minkowski sum respectively, used to obtain
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(a) Valkyrie inserting right arm into a glovebox

(b) Rows 1-3 respectively show the Right arm polytopes, Pr and P∗
r ; the torso polytopes

Pt and P∗
t ; the Minkowksi sum Pr⊕tr and P∗

r⊕tr. The columns show the evaluation at the
snapshots of Fig. 4a.

Fig. 4: Single arm insertion task. MPs and CMPs are shown in red and blue re-

spectively evaluated at the tip of the right arm. A video of the task is available

https://www.youtube.com/watch?v=FzlhsLH5IPU

the composite MP/CMP of the torso chain and the right-arm serial chain. The red

shows the initial MP while the blue plot shows its CMP counterpart. The initial

reduction in velocity capacity is due mainly to the proximity to joint limits. As the

arm passes through the port the system experiences a reduction of manipulability

due to the confined space. A partial recovery is then seen as the right hand is fully

inserted. P∗
tr undergoes the same behavior as it is also reduced due to the proximity

of the glovebox to the right arm. Pr⊕tr is the resulting CMP of the entire system.

https://www.youtube.com/watch?v=FzlhsLH5IPU
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(a) Valkyrie inserting both arms into a glovebox shown at four timesteps.

(b) Dual-arm polytopes, Pr⋂ l and P∗
r
⋂
l evaluated at the right end effector. The columns

1-4 show the evaluation at the timesteps shown in Fig. 5a.

Fig. 5: Dual-arm insertion task. MP and CMP are shown in red and blue

respectively and are evaluated at the right arm’s tip. A video is available

https://youtu.be/1Nouc4f rIY

P∗
r⊕tr gives the system’s velocity capacities from the pelvis up, that considers joint

position limits and the effects of nearby obstacles, while ensuring independence of

the composite systems.

4.2. Dual-arm insert

In this experimental, with the same setup, Valkyrie inserts both arms into the

glovebox. The goal is to demonstrate how the CMP of the arms can be combined

to obtain the CMP of a closed chain system. We use the idea of a virtual object,

i.e., a rigid straight link extending from the left to the right hand30. This virtual

object forms part of the left arm and is discretized into CP.

Figure 5 shows the result of the dual-arm insertion task. Four time instants

are studied corresponding to the configurations shown in Fig. 5a. The first row

of Fig. 5b shows the CMP for the closed-chain system evaluated at the right-arm

end effector. This is obtained by first calculating Pr and Pl, then obtaining the

intersection Pr⋂ l, while P∗
r
⋂
l is calculated in the same manner. In the third instant

P∗
r
⋂
l = ∅, as clearly it is impossible for the arms to enter through individual ports

while holding a common object. In contrast, in the fourth instant, P∗
r
⋂
l is no longer

empty demonstrating the ability to co-manipulate an object within the glovebox.

https://youtu.be/1Nouc4f_rIY
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(a) The space is discretized into 3D voxels. At each voxel, the IK solution is obtained for the
left arm (left images) and the right arm (right images). The corresponding volume of the
CMP is calculated for each voxel, giving a good understanding of the robot’s workspace.

0.6

0.8

1

-0.4

1.2

z
 [
m

]

1.4

-0.2

y [m]

0

x [m]

0.30.350.40.450.50.550.60.650.70.750.8

20

40

60

80

100

(b) The MP’s volume wp, i.e, for the left (left image) and the right (right image) end
effectors. The black square shows the location of the glovebox front edge.
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(c) The CMP’s volume w∗
p for the left (left image) and the right (right image) end effectors.

High manipulability is possible far from the glovebox, the manipulability is extremely
limited once either arm enters the glovebox.

Fig. 6: Workspace analysis using CMP, https://youtu.be/jc7X4WakdoE

4.3. Reachability Study

A reachability study is presented in Fig, 6 for the robot executing a glovebox task.

The surrounding 3D space is discretized into voxels. For each voxel, an optimization

procedure obtains a feasible IK solution while attempting to maximize the robot’s

distance to obstacles. The CMP is calculated in this configuration. The workspace

discretization is shown in Fig. 6a. The voxel’s color is defined by the volume of

w∗
p . Figure 6b shows the volume of Pr and Pl along the x − axis, i.e., along the

centerline of the glovebox ports, while Fig. 6c shows the reduced volume for P∗
r and

P∗
l . The increase in manipulator capacities is clearly seen as the arm aligns with

the glovebox ports.

https://youtu.be/jc7X4WakdoE
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(a) For a successful run: (Left) The initial relative pose between the object (table) and
the robot. The yellow ball denotes the desired position, the transparent blue region
is the zone used for posture validation, the solid colored blocks and collision objects.
(Middle) Posture obtained using Eq. (34). (Right) Posture obtained using MP and
minimum distance as costs.
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(b) A comparison of all successful runs. (c) Example Local IK vertex solution.

Fig. 7: Posture Optimization

4.4. Posture Selection with Constrained Manipulability

4.4.1. Posture optimization

Posture optimization is the selection of the humanoid’s optimal stance for task

execution. Modifying the posture mid-task is time consuming as feasible stable

foot motion must be planned. This interrupts manipulation tasks, and hence it is

preferable to choose a single posture from which the robot can not only execute the

given tasks but adjust to task variation.

For a desired left-hand pose, xd, a whole-body IK solution, including the robot’s

location in the world frame, is obtained. The decision variable xs represents the

planar pose of the left foot with respect to the object frame. The robot must remain

in a double support posture, but the feet may translate and rotate in the ground
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plane. The optimization problem is defined as follows:

minimize
q,xs

w1e
−b1w̄p + w2e

−b2cZMP + w3e
−b3dmin + w4‖q− qinit‖

such that ‖xd − xe(q,xs)‖ = 0,

qmin ≤ q ≤ qmax, (34)

where wi for i = 1, . . . , 4 are the weights for the four cost terms defined as w1 = 100,

w2 = w4 = 1 and w3 = 20, and bi for i = 1, 2, 3 are constants that determine the cost

terms’ curvatures defined as b1 = b3 = 40 and b2 = 400. The cost terms are designed

to: (1) maximize the volume of w∗
p, where w̄p = w∗

p/w
max
p is a normalization of the

CMP’s volume; (2) prevent unstable postures, where cZMP is the capacity margin,

i.e., the signed distance from the zero-moment point35 (ZMP ) to support polygon

facet; (3) prevent collisions for links that are not considered in the CMP (legs,

right arm etc.) by increasing the minimum distance between the robot and the

environment; (4) keep the solution close to the initial configuration. The process is

repeated (52 times) for different environments and random initial guesses for xs.

As a comparison the experiment is repeated, but rather than trying to maximize

w∗
p, we maximize wp, denoting this as MP method. Additionally, since maximizing

w∗
p implicitly prevents collisions, for the MP method the left arm’s link frames are

also included in the collision avoidance cost term.

Figure 7a shows a setup where both CMP and MP succeed. While this represents

one snapshot of an array of tests, a general trend in the solutions is the parallel

pose of the forearm to the table when using the CMP. We believe, this is because

the MP method, penalizes the minimum distance to objects whereas the CMP

simultaneously embeds the distance from all control points to the object. We believe

this is also the principal reason why the MP method does not require as many

random initializations (initial guess for xs) to find a feasible solution, typically

succeeding ∼ 4/5 times compared to 1/2 for CMP. However, this disadvantage is

mitigated without additional computational cost by using a multi-start method

with parallel processing. The same weights are used for both methods, yet it is

difficult to find the equivalent effects of obstacles between the classical exponential

penalization term for the MP and the implicit penalization in the CMP. Thus, it

is possible that both performances may be further improved by attentive tuning.

Finally, the average time for the optimization using CMP is 437s, σ = 41s compared

to MP its 418sσ27s , information about the computation cost of the CMP can be

found 24.

4.4.2. Posture validation

The objective of this experiment is to demonstrate that w∗
p encodes the environ-

ment’s constraining effects and is resilient to small task position errors, i.e., should

be able to find feasible poses in the neighborhood of xd. If a run is successful for

CMP and MP, the posture validation procedure is executed. First, the locations of
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both feet are fixed at the final location found by the posture optimization problem.

The optimizer then attempts, in series, to minimize the distance from xe to each

of the 8 vertices of the transparent cube shown in Fig. 7a, using the resulting q

from Eq. (34) as the initial solution. The solution is constrained to collision-free

and statically-stable configurations. On average as shown in Fig. 7b, the resulting

posture from the CMP can find more solutions than using the MP method. Further-

more, the final solutions have a higher manipulability. Though, this is offset by the

difficulty in finding the initial posture. An example IK solution is shown in Fig. 7c.

5. Discussion & Conclusion

In this paper, we have extended the performance index proposed in24, by including

a detailed analysis and showing applications for a humanoid robot. The constraints

are considered by introducing linear inequalities constraints in the joint velocity

polytope definition. These constraints account for joint position/velocity limits and

the motion restrictions due to nearby obstacles. We have shown how the CMP

evolves as the humanoid robot’s arm moves through a complex environment. By

integrating this spatially, a workspace analysis can be obtained. Finally, we have

shown how the CMP may be used as a cost in a constrained optimization problem,

and how this cost can enable the optimizer to find collision-free feasible configura-

tions.

Our approach has been demonstrated using an illustrative planar example and

compared with the leading state-of-the-art method. The proposed CMP has the

advantage of considering the constraints applied to the entire system and not just

a single control point. Additionally, the CMP provides a natural way of visualizing

the whole-body constraints in the Cartesian space for an intuitive understanding

of end-effector abilities. The CMP gives exact bounds rather than the ellipsoids’

estimation of capacities, this is particularly important in redundant systems, such as

humanoid robots, where the manipulability ellipsoid is known to be error prone. The

CMP method results in a convex geometric object which has desirable properties.

For instance, we have used these properties to combine CMP’s of sub-mechanisms.

Thus, sub-mechanisms can be analyzed individually, while permitting a global view

of the robot’s capacities and ensuring constraints are satisfied. This method can be

used for synthesis of composite mechanisms and reasoning considering articulated

tools (by obtaining their MP). In contrast it is not trivial to combine manipulability

ellipsoids and the most popular approach is to modify the Jacobian such that any

additional constraints/chains are considered pre-manipulability calculation.

For Valkyrie, we limit our analysis to the upper body, however the same method

can be exploited to obtain the MP that considers the whole body. For instance,

given a MP of the right and left legs, denoted as Pfl and Pfr, the MP at the

right finger would be calculated as (Pfl
⋂
Pfr) ⊕ Pr ⊕ Ptr. While MP were disre-

garded due to computational requirements, this no longer poses such a problem.

Indeed, the method’s main disadvantage is the absence of a closed-form solution.
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Finally, it should be noted that translational and angular velocity polytopes should

be separated as they have different units. Our examples have have focused on the

translational velocities in Cartesian-space, by selecting the top three rows of Jaco-

bian when transforming QV . However, it can easily be extended to task directions

by using the appropriate selection matrix.

Future work will focus on using CMPs to encode free space for opera-

tor assisted manipulation. In particular, we aim to generate the CMP in a

receding horizon fashion to allow safe human-in-the-loop control. Finally, the

MATLAB code used to generate posture optimization and planar examples

is available here https://github.com/philip-long/constrained manipulation, while

the C++ plus used for real time evaluation will be released in the future on

https://github.com/RIVeR-Lab/.
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