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Abstract. We give a short proof that the coherent information is an achievable rate
for the transmission of quantum information through a noisy quantum channel. Our
method is to produce random codes by performing a unitarily covariant projective
measurement on a typical subspace of a tensor power state. We show that, provided
the rank of each measurement operator is sufficiently small, the transmitted data
will with high probability be decoupled from the channel’s environment. We also
show that our construction leads to random codes whose average input is close to
a product state and outline a modification yielding unitarily invariant ensembles of
maximally entangled codes.

1. Background and notation

There are many seemingly inequivalent operational tasks to perform
with many instances of a noisy quantum channel. These range from sim-
ulating a noiseless channel on arbitrary inputs to establishing maximal
entanglement between the sender and receiver. For a surprising range
of such tasks, the optimal achievable rates are the same and are called
collectively the quantum capacity of the quantum channel [1, 2, 3].
For this paper, we will focus on the latter case, proving the existence
of entanglement generation codes [4] which can create entanglement
at any rate less than the coherent information. The result was first
conjectured by Schumacher [1] and demonstrated with increasing stan-
dards of rigor by Lloyd [5], Shor [6] and Devetak [4]. The proof we give
here differs from the previous demonstrations in two ways. First, we
construct random codes consisting of states produced by a unitarily
covariant measurement on a product state, enabling us to calculate
their properties using elementary representation theory, mirroring the
approach of [7] for a related problem. Second, we avoid the need to
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explicitly construct a decoder for the receiver by reducing the problem
of entanglement transmission to decoupling from the channel’s envi-
ronment (see also a recent proof by Klesse [8] based on decoupling).
Combined, these properties lead to a significantly simplified proof.

To this end, we begin by summarizing our notation and giving
enough background to state the coding theorem, assuming a basic
background in quantum information theory at the level of [9]. We then
show that it is sufficient to design codes which remain decoupled from
the environment. In Section 2, we prove a one-shot version of the coding
theorem which, when combined with the results from Section 3 on the
quantum method of types, gives a proof of the coding theorem for
tensor power channels. In Section 4 we show how our construction leads
to random codes whose average input is close to a product state, and
also how a small modification of our method leads to codes which are
maximally entangled with a uniformly random subspace of a subspace
of the input. We also comment there on pseudorandom constructions
and reflect on the additivity problem for the quantum capacity.

If A and B are finite dimensional Hilbert spaces, we write their
tensor product as AB ≡ A ⊗ B. The Hilbert spaces on which lin-
ear operators act will be denoted by a superscript. For instance, we
write ϕAB for a density operator on AB. Partial traces will be ab-
breviated by omitting superscripts, such as ϕA ≡ TrB ϕ

AB . We use a
similar notation for pure states, e.g. |ψ〉AB ∈ AB, while abbreviating
ψAB ≡ |ψ〉〈ψ|AB . The maximally mixed state on A will be written πA.
A generic quantum channel from the density matrices on A to those on
B is denoted NA→B . Note that a linear map NA→B between spaces
of operators is a quantum channel if and only if it has a Stinespring

extension, consisting of a Hilbert space E and an isometry VA→BE
N

for which TrE VA→BE
N = NA→B, and that for a given channel such an

extension is unique up to isometries on E. Throughout, we will make
implicit the action by conjugation of isometries on density matrices,
i.e. V(ϕ) ≡ VϕV†. For a bipartite density matrix ϕAB , we write

H(A)ϕ ≡ H(ϕA) ≡ −TrϕA logϕA

for the von Neumann entropy of ρA and take log ≡ log2 throughout.
Given a channel NA′→B and any input density matrix ϕA′

, let VA′→BE
N

be any Stinespring extension of NA′→B . The coherent information is
defined as

Ic(ϕ
A′

,N ) = H(B)V(ϕ) −H(E)V(ϕ)

and is independent of the particular Stinespring extension chosen. A
(Q,n, ǫ) entanglement generation code for N is a procedure by which

simple.tex; 17/11/2016; 1:19; p.2



A decoupling approach to the quantum capacity 3

a sender and receiver attempt to produce a maximally entangled state

|Φ〉RR̂ =
1√
2nQ

2nQ∑

i=1

|i〉R|i〉R̂

on two isomorphic Hilbert 2nQ-dimensional Hilbert spaces R and R̂ in
their respective possessions, by using the channel n times. The code
consists of an encoding preparation |Ψ〉RA′n

and a decoding channel

DBn→R̂ satisfying

F
(
|Φ〉RR̂, (11R ⊗D ◦N⊗n)(ΨRA′n

)
)
≥ 1 − ǫ (1)

where the fidelity [10] between a pure and a mixed state is defined as
F
(
|ϕ〉, ρ

)
= 〈ϕ|ρ|ϕ〉. A rate Q is achievable for N if there is a sequence

of (Q,n, ǫn) entanglement generation codes for N with ǫn → 0. The
quantum capacity Q(N ) of N is the supremum of the achievable rates.
We will prove the following theorem which gives a lower bound to
Q(N ):

THEOREM I (Quantum channel coding theorem). Let NA′→B and ϕA′

be given. Every 0 ≤ Q < Ic(ϕ,N ) is an achievable rate for entangle-

ment generation over NA′→B.

A simpler criterion for good codes can be obtained through the fol-
lowing lemma [11], allowing us to bypass consideration of the decoding
process altogether.

LEMMA 1.1 (Sufficiency of decoupling from environment).
Let VA′→BE

N be a Stinespring extension of some channel NA′→B. Let

|Ψ〉RA′n
be any encoding with |R| = 2nQ, set |Ψ〉RBnEn

= V⊗n
N |Ψ〉RA′n

and let ϕEn
be arbitrary. Then there exists a decoding map DBn→R̂

which, together with the encoding |Ψ〉RA′n
, comprises a (Q,n, ǫ) entan-

glement generation code for NA′→B, provided that
∣∣∣∣ΨREn − πR ⊗ ϕEn∣∣∣∣

1
≤ ǫ. (2)

Proof: See Appendix.

Here, the trace norm ||X||1 of an operator X is the sum of its singular
values.
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2. One-shot version

This section is devoted to proving a theorem that is at the heart of
the proof of the coding theorem for memoryless channels. Consider a
pure state |ϕ〉AA′

and a channel NA′→B with a Stinespring extension
VA′→BE
N and suppose that ϕA has rank |A|. Let P be a projection onto

some subspace R ⊂ A and let U be a random unitary on A distributed
according to Haar measure. Defining D = |A| and d = |R|, the random

matrix V =
√

D
d PU gives rise to the random unnormalized pure state

|ψ〉RA′

= (V ⊗ 11A
′

)|ϕ〉AA′

.

If Alice were to send the A′ part of the normalized version of this state
over the channel, the global state would be the normalized version
of |ψ〉RBE = VN |ψ〉RA′

. The following theorem shows that with high
probability, the systems R and E are essentially decoupled. While it is
proved in [7], we give a proof here for convenience.

THEOREM II (One-shot decoupling theorem). Let a density matrix

ϕAE and a random non-normalized state |ψ〉RBE be given as above.

Then

E

∥∥∥ψRE − πR ⊗ ϕE
∥∥∥
1
≤

√
|R||E|Tr[(ϕAE)2]. (3)

In light of the following lemma, this implies a similar bound for the
normalized version of |ψ〉RBE .

LEMMA 2.1. For any two density matrices ρ, σ and any c ∈ R,

||ρ− σ||1 ≤ 2||cρ− σ||1.

Proof: See Appendix.

Proof of Theorem II: Our main technique will be to bound the
variance of ψRE , by which we mean the trace of its covariance matrix
when treated as a random vector. Indeed, since EψRE = πR ⊗ ϕE , we
have

Var
[
ψRE

]
≡ E

∣∣∣∣ψRE − EψRE
∣∣∣∣2
2

= E
∣∣∣∣ψRE − πR ⊗ ϕE

∣∣∣∣2
2

= ETr
[(
ψRE

)2]− 1
dETr

[(
ϕE

)2]
(4)
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so that by the Cauchy-Schwartz inequality and the concavity of the
square-root function,

E
∣∣∣∣ψRE − πR ⊗ ϕE

∣∣∣∣
1
≤ E

√
|R||E|

∣∣∣∣ψRE − πR ⊗ ϕE
∣∣∣∣2
2

≤
√

|R||E|Var
[
ψRE

]
.

Now we write

ETr
[(
ψRE

)2]
= D2

d2 ETr
[(

(PU ⊗ 11E)ϕAE(U †P ⊗ 11E)
)2]

Let FA be the flip operator acting on two copies of A, similarly define
FE and abbreviate FAE = FA ⊗ FE and FR = (P ⊗ P )FA(P ⊗ P ).
Because

Tr
[
FAE(ρAE ⊗ ρAE)

]
= Tr

[
(ρAE)2

]

for any ρAE , cyclicity of the trace and linearity of expectation imply
that

ETr
[(
ψRE

)2]
= D2

d2 Tr
[
(ϕAE ⊗ ϕAE)

(
G⊗ 11EE

)]
. (5)

where
G = E

[
(U † ⊗ U †)FR(U ⊗ U)

]
.

We shall now use the following lemma:

LEMMA 2.2.

G = 1
2

(
d+
D+

+ d−
D−

)
FA + 1

2

(
d+
D+

− d−
D−

)
11AA

where d± = d2±d
2 , D± = D2±D

2 .

Proof: See Appendix.

We therefore find that (5) equals

1
2
D2

d2

(
d+
D+

+ d−
D−

)
Tr

[
(ϕAE)2

]
+ 1

2
D2

d2

(
d+
D+

− d−
D−

)
Tr

[
(ϕE)2

]
.

A straightforward calculation gives the bounds

1
2
D2

d2

(
d+
D+

+ d−
D−

)
≤ 1, 1

2
D2

d2

(
d+
D+

− d−
D−

)
≤ 1

d

so that we obtain

ETr
[
(ψRE)2

]
≤ Tr

[
(ϕAE)2

]
+ 1

d Tr
[
(ϕE)2

]
.
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6 P. Hayden, M. Horodecki, A. Winter, J. Yard

Because ϕAE and ϕB have the same spectra, we may combine this
bound with (4) to find that Var

[
ψRE

]
≤ Tr

[
(ϕB)2

]
as required. ✷

3. Application to memoryless channels

In this section, we complete the proof of the coding theorem by applying
the one-shot result (Theorem II) of the previous section to channels of
the form N⊗n obtaining, for any ϕA′

, codes achieving rates arbitrarily
close to Ic(ϕ

A′

,N ). The rough idea is that it will be possible to replace
the quantities appearing on the r.h.s. of (3) by entropic quantities
because of the memoryless structure of the channel. As a first step
to making this idea precise, we begin by recalling some needed ideas
from the method of types. Consider a density matrix with spectral de-
composition ϕA′

=
∑

x px|x〉〈x|A. Its n’th tensor power can be written
as

(ϕA′

)⊗n =
∑

xn

pxn |xn〉〈xn|An

where pxn = px1
· · · pxn and |xn〉An

= |x1〉A · · · |xn〉A. The δ-(entropy)
typical subspace Aδ ⊆ An is defined as

Aδ = span

{
|xn〉An

:

∣∣∣∣−
1

n
log pxn −H(ϕA′

)

∣∣∣∣ ≤ δ

}

and the δ-typical projection ΠA
δ is defined to project An onto Aδ. We

shall need the following lemma:

LEMMA 3.1 (Typicality). Let a tripartite pure state |ϕ〉ABC be given.

For every δ > 0 and all sufficiently large n there are δ-typical pro-

jections Π
{A,B,E}
δ onto δ-typical subspaces Aδ ⊆ An, Bδ ⊆ Bn and

Eδ ⊆ En such that the states

|ϕ〉AnBnEn

= (|ϕ〉ABE)⊗n (6)

|ϕδ〉A
nBnEn

= (ΠA
δ ⊗ ΠB

δ ⊗ ΠE
δ )|ϕ〉AnBnEn

(7)

satisfy

|Eδ | ≤ 2nH(E)ϕ+nδ (8)

Tr
[(
ϕ
Bδ

δ

)2] ≤ 2−nH(B)ϕ+nδ (9)
∣∣∣∣ϕAnBnEn − ϕAnBnEn

δ

∣∣∣∣
1
≤ ǫ (10)

where ǫ = 2−ncδ2 for some constant c > 0 independent of δ and n.
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Proof: See [7].

We are now ready to prove the quantum channel coding theorem (The-
orem I). As compared to the one-shot theorem (Theorem II), which
effectively performs a unitarily covariant measurement on the entire
purifying space of the input, our codes for N⊗n will utilize a mea-
surement on a δ-typical subspace Aδ of the entire purifying space An.
Throughout, we shall appeal to the following monotonicity property of
trace distance under the action of a quantum channel (see e.g. [9]):

||ϕ− σ||1 ≥
∣∣∣∣N (ϕ) −N (σ)

∣∣∣∣
1

(11)

Proof of Theorem I: Given a channel NA′→B and a density matrix
ϕA′

, fix a Stinespring extension VA′→BE
N and a purification |ϕ〉AA′

,
where A ≃ A′. Feeding part of the purification through the Stinespring
extension gives the state |ϕ〉ABE = VN |ϕ〉AA′

. Letting δ > 0 be arbi-
trarily small, we may invoke Lemma 3.1 to obtain states |ϕ〉AnBnEn

,

|ϕδ〉A
nBnEn

and δ-typical projections Π
{A,B,E}
δ onto δ-typical subspaces

Aδ,Bδ and Eδ which satisfy (6)–(10). Let P be a projection onto some
subspace R ⊆ Aδ ⊆ An of dimension |R| = 2nQ, let U be a Haar

random unitary on Aδ and define the random matrix V =
√

|Aδ|
|R| PU .

We will show that on average, the normalized version

|Ψ〉RBnEn

= 〈ψ|ψ〉−1/2|ψ〉RBnEn

of the random unnormalized state

|ψ〉RBnEn

= V |ϕ〉AnBnEn

satisfies
E
∣∣∣∣ΨREn − πR ⊗ ϕEn∣∣∣∣

1
≤ 6ǫ (12)

allowing us to conclude the existence of a deterministic encoding for a
(Q,n, 6ǫ) code. We begin by defining the random unnormalized state

|ψδ〉RBnEn

= V |ϕδ〉A
nBnEn

.

Then by Lemma 2.1 and the triangle inequality,
∣∣∣∣ΨREn − πR ⊗ ϕEn∣∣∣∣

1
≤ 2

∣∣∣∣ψREn − πR ⊗ ϕEn∣∣∣∣
1

≤ 2
∣∣∣∣ψREn − ψREn

δ

∣∣∣∣ + (13)

2
∣∣∣∣ψREn

δ − πR ⊗ ϕEn

δ

∣∣∣∣
1

+ (14)

2
∣∣∣∣πR ⊗ ϕEn

δ − πR ⊗ ϕEn∣∣∣∣
1

(15)

We bound the expectation of (13) using the following lemma:
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8 P. Hayden, M. Horodecki, A. Winter, J. Yard

LEMMA 3.2. Let V be a random linear operator on a finite dimen-

sional space for which EV †V ≤ 11. Then every Hermitian X satisfies

E||V XV †||1 ≤ ||X||1.

Proof: See Appendix.

Because EV †V = ΠA
δ , Lemma 3.2 and (10) imply

E
∣∣∣∣ψREn − ψREn

δ

∣∣∣∣
1

= E

∣∣∣
∣∣∣V (ϕAnEn − ϕAnEn

δ )V †
∣∣∣
∣∣∣
1

≤
∣∣∣∣ϕAnEn − ϕAnEn

δ

∣∣∣∣ ≤ ǫ. (16)

The third term can be immediately bounded using monotonicity (11)
and the estimate (10):

∣∣∣∣πR ⊗ ϕEn

δ − πR ⊗ ϕEn∣∣∣∣
1

=
∣∣∣∣ϕEn

δ − ϕEn∣∣∣∣
1

≤
∣∣∣∣ϕAnBnEn

δ − ϕAnBnEn∣∣∣∣
1
≤ ǫ. (17)

Now if 0 ≤ Q < H(B)−H(E) − 3δ = Ic(ϕ
A′

,N )− 3δ, the expectation
of the second term (14) can be bounded by combining Theorem II, (8)
and (9):

E
∣∣∣∣ψREn

δ − πR ⊗ ϕEn

δ

∣∣∣∣
1
≤

√
|R||Eδ|Tr

[(
ϕBn

δ

)2]
(18)

≤
√

2n(Q−H(B)+H(E)+3δ)

≤ 2−nδ ≤ ǫ

provided that δ ≤ 1
c . By choosing δ > 0 to be arbitrarily small, it

therefore follows from Lemma 1.1 and the above estimates that for
every rate 0 ≤ Q ≤ Ic(ϕ

A′

,N ), there exists a (Q,n, 6ǫ) code for all
sufficiently large n. Furthermore, Markov’s inequality implies that a
randomly selected code will be a

(
Q,n,

√
6ǫ
)

code with probability at

least 1 −
√

6ǫ. ✷

4. Final remarks

We proved that the coherent information is an achievable rate for en-
tanglement generation over a noisy quantum channel by showing that
a state which is maximally entangled with a random subspace of the
typical subspace is, with high probability, decoupled from the environ-
ment. While this is not the first proof of the quantum channel coding
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theorem, by avoiding the need to explicitly construct and analyze the
receiver’s decoding operation, the proof becomes significantly simpler
than other approaches. The observation that decoupling from the envi-
ronment would be sufficient for quantum error correction goes back at
least as far as the first analyses of the entropic conditions for quantum
error correction [12]. Recently, versions of the idea as used here have
been shown to have a wide range of applications in quantum informa-
tion theory ranging from state merging and multiuser quantum data
compression [7] to noisy channel simulation and entanglement-assisted
communication over quantum channels [13].

When proving coding theorems for network problems [14, 15, 16], it
is often useful to start with randomized single-user codes whose average
input is close to a product state [4]. By absorbing the normalizations
of the code states into the induced measure, the resulting expected
input state to the channel is the normalized version of ΠA′

δ (ϕA′

)⊗nΠA′

δ

which, in turn, is close to (ϕA′

)⊗n by typicality. On the other hand,
it is also possible to obtain codes which are maximally entangled with
a uniformly random subspace of a subspace of the input by the fol-
lowing modification of our procedure. Appendix A of [13] shows that
for every δ > 0 and all sufficiently large n, there is a projection ΠA

t

acting on An such that the normalized version |ϕt〉AnBnEn
of the state

ΠA
t |ϕ〉A

nBnEn
satisfies the following desirable properties. First, ϕAn

t is
maximally mixed on a subspace At of dimension ≥ 2nH(A)−nδ . There-
fore, |ϕt〉AnBnEn

can be obtained by acting with U⊗n
N on half of a

suitable maximally entangled state. Second, it is shown that this state
is exponentially close (in nδ2) to a state |ϕt,δ〉A

nBnEn
which satisfies

the bounds (8) and (9). Using these in place of the states |ϕ〉AnBnEn

and |ϕδ〉A
nBnEn

introduced by Lemma 3.1 in the proof of Theorem I,
one finds that the random state |ψ〉RBnEn

obtained by the covariant
measurement on the At subspace of |ϕt〉A

nBnEn
is always maximally

mixed on R, and thus can be created by maximally entangling with a
uniformly random subspace of At.

The random codes we have constructed use an infinite amount of
common randomness, owing to the uncountability of the unitary group.
On the other hand, as argued in [13], it is possible to replace the
integrals over the unitary group with finite sums over any unitary
2-design, for which there are known efficient exact and approximate
constructions [17, 18]. For example, the Clifford group forms a unitary
2-design, which implies that the coherent information can be achieved
using random stabilizer codes [19]. (The decoding procedure for these
codes, however, need not be the standard stabilizer code decoding pro-
cedure.) This result was anticipated in work by Hamada, who showed
that for a large class of input states, the coherent information can be
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10 P. Hayden, M. Horodecki, A. Winter, J. Yard

achieved using stabilizer codes [20]. In fact, it is possible to build on the
results of the current paper to construct codes achieving the coherent
information while being encodeable and decodable in polynomial time
on a quantum computer [21].

For a general quantum channel, the best known expression of the
quantum capacity is

Q(N ) = lim
n→∞

1

n
Q(1)(N⊗n) (19)

where Q(1)(N ) ≡ maxϕA′ Ic(ϕ
A′

,N ). This follows by combining the

coding theorem, which shows that 1
nQ(1)(N⊗n) is a lower bound for the

quantum capacity, with a so-called multi-letter converse (see e.g. [4]).
The formula (19) is of limited practical use, however, as it does not
seem to lead directly to a computable expression for the quantum
capacity. Indeed, it is currently a major open problem to give an ef-
fective procedure for computing the quantum capacity of an arbitrary
quantum channel; the exact answer is not even known for the qubit p-
depolarizing channel Np(ρ) = (1−p)ρ+ p

211. A notable exception is the

class of degradable channels, for which Q(1) is additive [14], meaning
that Q(1)(N⊗n) = nQ(1)(N ), which leads to a single-letter expression
Q(N ) = Q(1)(N ) for the capacity of degradable channels. This is
known not to be the case for the depolarizing channel [22, 23]. While
additive upper bounds on (19) are known [24], it is entirely conceivable
that a different coding strategy could show the achievability of some
other function on channels which is additive, leading to a complete
characterization of the quantum capacity as in the classical case [25].

Appendix

Proof of Lemma 1.1 We follow a line of reasoning similar to that
introduced in [11]. For completeness, we give a version of the argument
after recalling some facts about distance measures. The fidelity can be

defined for an arbitrary pair of density matrices as F (ρ, σ) ≡
∣∣∣∣√ϕ√σ

∣∣∣∣2
1
,

where the trace norm ||X||1 of an operator X is the sum of its singular
values. Fidelity satisfies 0 ≤ F (ϕ, σ) ≤ 1, where the second inequality
is saturated iff ϕ = σ. An alternate characterization of fidelity, known
as Uhlmann’s theorem [10], says that given any purification |ϕ〉AB of
ϕA, the fidelity F (ϕA, σA) equals the maximum of |〈ϕ|σ〉|2 over all
purifications |σ〉AB of σA. The trace distance gives a lower bound to
the fidelity (see e.g. [9]):

F (ϕ, σ) ≥ 1 − ||ϕ− σ||1 (20)
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A decoupling approach to the quantum capacity 11

Furthermore, fidelity behaves monotonically under the action of a quan-
tum channel N :

F (ϕ, σ) ≤ F
(
N (ϕ),N (σ)

)
. (21)

We now give the proof. By Uhlmann’s theorem, there is a purification
|Ψ′〉RBnEn

of πR ⊗ ϕEn
satisfying

|〈Ψ|Ψ′〉|2 = F
(
ΨREn

, πR ⊗ ϕEn)
.

Because Ψ′R = πR is maximally mixed, it is also purified by a maxi-

mally entangled state |Φ〉RR̂. Furthermore, since πR⊗ϕEn
is a product

state, it must have a purification which is a tensor product of pure
states. Therefore, there is another Hilbert space B′, a pure state |ξ〉B′En

and an isometry WBn→R̂B′

under which

WBn→R̂B′ |Ψ′〉RBnEn

= |Φ〉RR̂|ξ〉B′En

.

Combining monotonicity of fidelity (21) with the relation (20), this

implies that the decoding DBn→R̂ ≡ TrB′ WBn→R̂B′

satisfies (2) as
required. ✷
Proof of Lemma 2.1 By the triangle inequality,

||ρ− σ||1 ≤ ||ρ− cρ||1 + ||cρ− σ||1
= |1 − c| + ||cρ− σ||1.

However, |1− c| =
∣∣Tr[cρ−σ]

∣∣ ≤ ||cρ− σ||1 and the lemma is proved. ✷
Proof of Lemma 2.2 Observe that G is invariant under the represen-
tation U ⊗U of the unitary group whose restrictions to the symmetric
and antisymmetric subspaces of A⊗A are irreducible. Writing ΠA

± for
the projections onto these respective subspaces, Schur’s lemma implies
that G has the form

G = 1
D+

Tr
[
FRΠA

+

]
ΠA

+ + 1
D−

Tr
[
FRΠA

−

]
Π−

where D± = 1
2(D2 ±D) = Tr ΠA

±. Writing ΠR
± for the projections onto

the symmetric and antisymmetric subspaces of R⊗R, observe that we

may write each of the flip operators as F {A,R} = 1
2Π

{A,R}
+ − 1

2Π
{A,R}
− .

Since ΠR
±ΠA

± = ΠR
± and ΠA

±ΠR
∓ = 0 we have, for Tr ΠR

± = 1
2(d2±d) ≡ d±

G = d+
D+

ΠA
+ + d−

D−

ΠA
−

= 1
2

(
d+
D+

+ d−
D−

)
11AA + 1

2

(
d+
D+

+ d−
D−

)
FA

as required. ✷
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Proof of Lemma 3.2 The trace norm of a Hermitian operator X can
be expressed as ||X||1 = max{TrY X : −11 ≤ Y ≤ 11}. Suppose now that
the random matrix YV achieves the maximum for ||V XV †||1, so that
−11 ≤ YV ≤ 11 and ||V XV †||1 = TrYV V XV

†. In particular, observe that
−V †V ≤ V †YV V ≤ V †V . Together with our assumption E[V †V ] ≤ 11,
this yields the inequalities −11 ≤ E[V †YV V ] ≤ 11. We therefore conclude
from cyclicity of the trace and linearity of expectation that

E
∣∣∣∣V XV †

∣∣∣∣
1

= TrE[V †YV V ]X ≤ ||X||1.

✷
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