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D-50937 Köln, Germany

October 16, 2007

Abstract

We present a proof for the quantum channel coding theorem which relies
on the fact that a randomly chosen code space typically is highly suitable for
quantum error correction. In this sense, the proof is close to Shannon’s original
treatment of information transmission via a noisy classical channel.

1 Preliminaries

1.1 Quantum channel

In the theory of information transmission the information is ascribed to the configura-
tion of a physical system, and the transmission is ascribed to the dynamical evolution
of that configuration under the influence of an in general noisy environment. It is
therefore customary to characterize an information carrying system solely by its con-
figuration space, and to consider its intrinsic dynamics as part of the transmission.

In a quantum setting we identify a system Q with its Hilbert space, denoted by
the same symbol Q. Its dimension |Q| will be always assumed to be finite. The
system’s configuration is a quantum state described by a density operator ρ in B(Q),
the set of bounded operators on Q.

The process of information transmission can be any dynamics of an open quantum
system Q according to which an initial input state ρ evolves to a final output state
ρ′, defining in this way the operation of a quantum channel N 1. Mathematically,
N is a completely positive mapping of B(Q) onto itself, or, when we admit that the

∗Email address: rk@thp.uni-koeln.de
1For an introduction into the theory of quantum information see e.g. [1, 2].
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system may change to an other system Q′ during the course of transmission, onto
B(Q′), the set of bounded operators on Q′,

N : B(Q) → B(Q′)

ρ 7→ ρ′ = N (ρ) .

According to Stinespring’s theorem [3] the operation of the channel can be always
understood as an isometric transformation followed by a restriction [4, 2]. That
is, one always finds an ancilla system E with |E| ≥ 1 and an isometric operation
V : Q→ Q′E such that for all states ρ

N (ρ) = trEV ρV
† ,

where trE denotes the partial trace over E. In the following we refer to this con-
struction as Stinespring representation. An elementary physical interpretation of it
becomes obvious in the case Q = Q′. Here one can find a unitary operator U on
QE and a state vector |ϕE〉 ∈ E such that V |ψ〉 = U |ψ〉 ⊗ |ϕE〉 for all state vectors
|ψ〉 ∈ Q. Interpreting U as time evolution operator of the joint system QE, an initial
state ρ⊗ ϕE , where ϕE = |ϕE〉〈ϕE |, will evolve to final state Uρ⊗ ϕEU

†. Its partial
trace with respect to E yields indeed N (ρ) as the reduced density operator for Q,

trEUρ⊗ ϕEU
† = trEV ρV

† = N (ρ) .

If we fix an orthonormal basis |1〉, . . . |N〉 of E 2, the Stinespring representation
can be rewritten more explicitly in an operator sum as

N (ρ) =
N
∑

k=1

AkρAk
† ,

where Kraus operators A1, . . . , AN : Q → Q′ are defined by A|ψ〉 := 〈k|V |ψ〉 [4, 1,
2]. Because V is an isometry the Kraus operators satisfy the completeness relation
∑N
k=1Ak

†Ak = 1
¯Q

.
Below, we will often have to refer to the number of Kraus operators of a channel

N in a certain operator-sum representation, which, of course, equals the dimension
|E| of the ancilla E in the corresponding Stinespring representation. It is therefore
convenient to define the length |N | of a channel N by the minimum number of
Kraus operators in an operator-sum representation, or, equivalently, as the minimum
dimension of an ancilla in a Stinespring representation needed to represent N .

According to the above definition a quantum channel maps density operators to
density operators, and therefore should be trace-preserving. As a matter of fact, it
is sometimes advantageous to be less restrictive and to consider also trace-decreasing

2Since we assumed the dimensions |Q| and |Q′| to be finite also the ancilla E can be chosen to be
of finite dimension |E| = N .
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channels. Being still a completely positive mapping, an in general trace-decreasing
channel N : B(Q) → B(Q′) has a Stinespring representation with an operator V :
Q → Q′E satisfying V †V ≤ 1

¯Q
. As a consequence, corresponding Kraus operators

A1, . . . AN of N may be incomplete, meaning that
∑N
k=1Ak

†A ≤ 1
¯Q

. Physically, a
trace-decreasing channel describes a transmission that involves either some selective
process or some leakage, as an effect of which a system does not necessarily reach its
destination. This motivates us to denote trN (ρ) as the transmission probability of
state ρ with respect to N .

1.2 Fidelities

A frequently used quantity for measuring the distance of general quantum states is
the fidelity [5, 6, 1]

F (ρ, σ) :=‖√ρ√σ‖2tr ,

where ‖ . . .‖tr denotes the trace norm, ‖A‖tr= tr
√
A†A. If one of the states is pure,

say ρ = ψ = |ψ〉〈ψ|, this reduces to

F (ψ, σ) = 〈ψ|σ|ψ〉 .

Generally, 0 ≤ F (ρ, σ) ≤ 1, and F (ρ, σ) = 1 if and only if ρ = σ. The fidelity of two
states is related to their trace norm distance by [1]

1− ‖ρ− σ‖tr ≤ F (ρ, σ) ≤ 1− 1

4
‖ρ− σ‖2tr .

Furthermore, the fidelity is monotonic under quantum operations in the sense that
for any trace-preserving completely positive E : B(Q) → B(Q′),

F (ρ, σ) ≤ F (E(ρ), E(σ)) .

A remarkably theorem by Uhlmann [5] states that the fidelity of ρ and σ can be
also understood as the maximum transmission probability |〈ψ|ϕ〉|2 of purifications ψ
and ϕ for ρ and σ, respectively. The fidelity F (ρ, σ) thus tells us how close two pure
states ψ and ϕ of a universe can be if they are known to reduce to states ρ and σ on a
subsystem Q. More precisely, the theorem states that if ψRQ in RQ is a purification
of ρ, and if σ can be also purified on RQ, then

F (ρ, σ) := max
ϕRQ

|〈ψRQ|ϕRQ〉|2 ,

where the maximum is taken over all purifications ϕRQ of σ in RQ [6].
To determine how well a state ρ is preserved under a channel E : B(Q) → B(Q′)

we will generally use the entanglement fidelity [7]

Fe(ρ, E) := 〈ψRQ|IR ⊗ E(ψRQ)|ψRQ〉 , (1)
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where ψRQ is any purification of ρ on Q extended by an ancilla system R, and IR
is the identity operation on R. In terms of Kraus operators A1, . . . , A|E| of E the
entanglement fidelity can be expressed as [7]

Fe(ρ, E) =
|E|
∑

k=1

|tr ρAk|2 . (2)

The entanglement fidelity of a state ρ =
∑

i piψi is known to be a lower bound of the
averaged fidelities F (ψi, E(ψi)) [1],

Fe(ρ, E) ≤
∑

i

piF (ψi, E(ψi)) .

This relation becomes particularly useful if ρ is chosen to be the normalized projection
πC on a subspace C of Q, πC = ΠC/|C|. Then the entanglement fidelity yields a lower
bound of the average subspace fidelity,

Fe(πC , E) ≤
∫

C
dψ F (ψ, E(ψ)) =: Fav(C, E) . (3)

where the integral is taken with respect to the normalized, unitarily invariant measure
on C. Actually, there also exists a strict relation between the two fidelities [8, 9],

Fav(C, E) =
|C| Fe(πC , E) + 1

|C|+ 1
.

We emphasize that with Eq. (1) also the entanglement fidelity with respect to
a trace-decreasing channel E is defined. In this case representation (2) turns out to
hold as well, leading to the following simple but nevertheless useful observation. Let
a channel E : B(Q) → B(Q′) be defined by Kraus operators A1, . . . , A|E|. We call

a second channel Ẽ : B(Q) → B(Q′) a reduction of E if it can be represented by a
subset of the Kraus operators A1, . . . , A|E|, i.e.

Ẽ(ρ) =
∑

k∈Ñ

AkρAk
† , Ñ ⊂ {1, . . . , |E|} .

By Eq. (2) we notice that reducing a channel can never increase entanglement fidelity:
for any reduction Ẽ of a channel E

F (ρ, Ẽ) ≤ F (ρ, E) . (4)

2 Quantum coding theorem

2.1 Quantum capacity of a quantum channel

For the purpose of quantum-information transmission, Alice (sender) and Bob (re-
ceiver) may employ a quantum channel N : B(Q) → B(Q′) that conveys an input
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quantum system Q from Alice to an in general different output system Q′ received
by Bob.

In the simplest case, Alice may prepare quantum information in form of some
state ρ of Q, which after transmission via the channel becomes a state ρ′ = N (ρ)
of Q′ received by Bob. In order to obtain Alice’s originally sent state ρ, Bob may
subject ρ′ to suited physical manipulations, which eventually should result in a state
ρ′′ of Q close to ρ. Mathematically, this corresponds to the application of a trace-
preserving, completely positive mapping R : B(Q′) → B(Q), which we denote as
recovery operation in the following. Referring to Sec. 1.2, relation (3), the overall
performance of this elementary transmission scheme can be conveniently assessed by
the entanglement fidelity Fe(π,R ◦ N ) of the homogeneous density π = 1

¯Q
/|Q| of

Q with respect to R ◦ N , or, if we suppose that Bob has optimized the recovery
operation R, by the maximized entanglement fidelity

max
R

Fe(π,R ◦ N ) . (5)

To improve the transmission scheme, Alice and Bob may agree upon using only
states ρ whose supports lie in a certain linear subspace C of Q 3. A subspace used for
this purpose is called a (quantum) code. Its size k is defined as k = log2 |C|, meaning
that a pure state in C carries k qubits of quantum information [12]. Corresponding
to (5), an appropriate quantity for assessing the suitability of a code C for a channel
N is the quantity

Fe(C,N ) := max
R

Fe(πC ,R ◦ N ) ,

where πC = ΠC/|C| is the normalized projection on C (again cf. Sec. 1.2). We refer
to this quantity as the entanglement fidelity of the code C with respect to the channel
N .

The definition involves a non-trivial optimization of the recovery operation R.
At first sight, this makes the code entanglement fidelity rather difficult to determine
and therefore may cast doubts on its usefulness. However, following Schumacher
and Westmoreland [13] we will derive a useful explicit lower bound for Fe(C,N ) in
Sec. (4).

In the elementary transmission scheme considered so far the quantum information
is encoded in single quantum systems Q and transmitted in single uses (“shots”) of
the channel N . Like in classical communication schemes the restriction to single-shot
uses of the channel is very often far from being optimal. Since the work of Shannon
[14] it is known that encoding and transmission of information in large blocks yields
much better results.

3This can be advantageous when the interaction of system and environment does affect states in
C significantly less than the average state, for instance, because C obeys certain symmetries of the
system-environment interaction Hamiltonian. Moreover, the restriction to a suited subspace C may
allow Bob to employ quantum error-correcting schemes in the recovery operation R [10, 11].
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In an n-block transmission scheme, Alice uses n identical copies of the quantum
system Q, in which she encodes quantum information as a state ρ with support
in a chosen code Cn ⊂ Qn. During the transmission each individual system Q is
independently transformed by the channel N , and Bob receives the state N⊗n(ρ), on
which he applies a recovery operation Rn : B(Qn) → B(Q′n). The crucial differences
to a single-shot scheme are the usage of a code Cn and a recovery operation Rn which
in general will not obey the tensor product structure, i.e. Cn 6= C⊗n

1 and Rn 6= R⊗n
1 .

The rate R = 1
n log2 |Cn| of an n-block code Cn ⊂ Qn denotes the average number of

qubits encoded per system Q and sent per channel use.
In the end, we wish to know up to which rate the channel N can reliably transmit

quantum information when an optimal block code Cn of arbitrarily large block number
n is used. This rate defines the quantum capacity Q(N ) of the channel N [15, 16, 17]
(for a recent review see e.g. [18]). A mathematically precise definition uses the notion
of an achievable rate. A rate R is called achievable by the channel N if there is a
sequence of codes Cn ⊂ Qn, n = 1, 2, . . ., such that

lim
n→∞

sup
log2 |Cn|

n
≥ R , and lim

n→∞
Fe(Cn,N⊗n) = 1 .

The supremum of all achievable rates of a channel N is the quantum capacity Q(N )
of the channel N .

2.2 Quantum coding theorem

Determining the quantum capacity of a channel N poses one of the central problems
of quantum information theory. It is partially solved by the quantum coding theorem
[15, 16, 17] which relates quantum capacity to coherent information [19], the quan-
tum analogue to mutual information in classical information theory. The coherent
information is defined for a state ρ with respect to a trace-preserving channel N as

I(ρ,N ) = S(N (ρ))− Se(ρ,N ) .

This is the von Neuman entropy of the channel output, S(N (ρ)), minus the entropy
exchange Se(ρ,N ) between system and environment, which is given by

Se(ρ,N ) = S(IR ⊗N (ψRQ)) ,

where ψRQ is a purification of ρ, and IR is the identity operation on the ancilla system
R [7].

The quantum noisy coding theorem states that the quantum capacity Q(N ) of a
channel N is the regularized coherent information Ir(N ) of N ,

Q(N ) = Ir(N ) := lim
n→∞

1

n
max
ρ
I(ρ,N⊗n) .
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The limiting procedure corresponds to the one in the definition of an achievable rate
and thus contributes to the fact that generally optimal coding can be only asymptot-
ically reached in the limit of block numbers n → ∞. As a consequence of this limit
the regularized coherent information and thus the quantum capacity of a channel is
still difficult to determine.

The regularized coherent information has long been known an upper bound for
Q(N ), which is the content of the converse coding theorem [16, 17]. The direct coding
theorem, stating that Ir(N ) is actually attainable, has been strictly proven first by
Devetak [20]. His proof utilizes a correspondence of classical private information and
quantum information.

Sections 4, 5, 7, and 8 below represent the four stages of a different proof for the
direct quantum coding theorem, of which an earlier version appeared in Ref. [21].
The working hypothesis underlying this proof is that randomly chosen block codes
of sufficiently large block number typically allow for almost perfect quantum error
correction. In this respect, the present proof as well as the one of Hayden et al.
[22] and also the earlier approaches of Shor [23] and Lloyd [15] follow Shannon’s
original treatment [14] of the classical coding problem.

3 Outline of proof

In the first stage of the the proof (Sec. 4) we establish a lower bound for the code
entanglement fidelity. It is essentially an earlier result of Schumacher and Westmore-
land [13], of which has been also made good use of recently by Abeysinghe et al. [24]
and Hayden et al. [22] in the same context. The bound can be explicitly determined
in terms of Kraus operators of the channel N , and its use will relieve us from the
burden of optimizing a recovery operation R for a given code C and channel N in the
course of proving the coding theorem. In deriving the lower bound the optimization
of R is solved by means of Uhlmann’s theorem.

In the next stage (Sec. 5) we investigate the error correcting ability of codes
that are chosen at random from a unitarily invariant ensemble of codes with a given
dimension K. Taking the average of the lower bound derived in Sec. 4 we will show
the averaged code entanglement fidelity of a channel N : B(Q) → B(Q′) to obey

[Fe(C,N )]K ≥ trN (π) −
√

K|N | ‖N (π)‖F , (6)

where π = 1
¯Q
/|Q|, and ‖ . . .‖F denotes the Frobenius norm or two norm.

In Sec. 6 we will illustrate the efficiency of random coding by means of the special
case of a unital channel U : B(Q) → B(Q′), which by definition satisfies U(π) = π′.
In this case the lower bound (6) immediately proves the attainability of the quantum
Hamming bound by random coding, and thus provides evidence for the validity of
the above mentioned working hypothesis. Moreover, if we demand the channel U to
be also uniform, as will be defined in Sec. 6, we can easily establish the coherent
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information I(π,U) to be a lower bound of the quantum capacity Q(U),

Q(U) ≥ I(π,U) .

The third stage of the proof (Sec. 7) is merely the generalization of this relation
to an arbitrary channel N : B(Q) → B(Q′). To this end we have to consider n-block
transmission schemes. For large n it is possible to arrange for unitality and unifor-
mity of N⊗n in an approximate sense by, as it will turn out, only minor modifications
of N⊗n. Approximate uniformity is achieved by reducing the operation N⊗n to an
operation Nε,n consisting only of typical Kraus operators. Furthermore, letting Nε,n

follow a projection on the typical subspace of N (π) in Q′n establishes an approxi-
matively uniform and unital channel Ñε,n, which nevertheless is close to the original
N⊗n. In the end, this suffices to prove Q(N ) ≥ I(π,N ) for a general channel N . A
corollary is that for any subspace V ⊂ Q with normalized projection πV = ΠV /|V |

Q(N ) ≥ I(πV ,N ) .

Finally, in Sec. 8 we employ a lemma of Bennett, Shor, Smolin, and Thapliyal
(BSST) [25] in order to deduce from the last relation

Q(N ) ≥ 1

m
I(ρ,N⊗m)

for an arbitrary integer m, and any density ρ of Qn. This shows the regularized
coherent information to be a lower bound of Q(N ) and thus concludes the proof of
the direct coding theorem.

4 A lower bound for the code entanglement fidelity

Let a (possibly trace-decreasing) quantum channel N : B(Q) → B(Q′) have a Stine-
spring representation with an operator V : Q→ Q′E, and let C ⊂ Q be a code whose
normalized projection πC = ΠC/|C| may have a purification ψRQ on RQ, with R
being an appropriate ancilla system. Following Schumacher and Westmoreland we
will establish

Fe(C,N ) ≥ p− p ‖ρ′RE − ρR ⊗ ρ′E ‖tr , (7)

where p = trN (πC), ρR = trQ ψRQ, and the states ρ′RE and ρ′E are reduced density
operators of the final normalized pure state

ψ′
RQ′E =

1

p
(1
¯R

⊗ V )ψRQ(1
¯R

⊗ V †) , (8)

ρ′RE = trQ′ ψRQ′E , ρ′E = trRQ′ ψRQ′E .

Furthermore, we will show show that the lower bound (7) can alternatively be for-
mulated in terms of Kraus operators A1, . . . , AN of N as

Fe(C,N ) ≥ p− ‖D‖tr , (9)
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where

D = |C|
N
∑

ij=1

(

πCAi
†AjπC − tr(πCAi

†AjπC) πC
)

⊗ |i〉〈j| , (10)

with |1〉, . . . , |N〉 being orthonormal states of some ancilla system.
Proof of relation (7): We recall that the code entanglement fidelity involves a

non-trivial optimization procedure of a recovery operation R (cf. Sec. 2.1). The idea
is to hand over this job to Uhlmann’s theorem. To this end we consider the pure
state

ψ̃ := ψRQ ⊗ ψ′
RQ′E

of the joint system RSQ′E, where S denotes a copy of QR. Obviously, ψ̃ is a
purification of the state ρR ⊗ ρ′E with respect to the ancilla SQ′. Next, we extend
ψ′
RQ′E by the operation

E : B(Q′) → B(SQ′) , ρ 7→ ψS ⊗ ρ ,

where ψS is any fixed pure state of S, to a pure state

ψ′ := IR ⊗ E ⊗ IE(ψ′
RQ′E)

of RSQ′E. ψ′ is a purification of ρ′RE with respect to SQ′, since

trSQ′ψ′ = trQ′trSψ
′ = trQ′ψ′

RQ′E = ρ′RE .

Now, let another purification ϕ of ρ′RE in RSQ′E maximize the transition amplitude
to ψ̃,

|〈ψ̃|ϕ〉|2 = max
χ purification of ρ′RE

|〈ψ̃|χ〉|2 .

According to Uhlmann’s theorem (cf. Sec. 1.2) we know that

|〈ψ̃|ϕ〉|2 = F (ρR ⊗ ρ′E , ρ
′
RE) . (11)

Then, an optimal recovery operation R : B(Q′) → B(Q) can be constructed my means
of a unitary operation USQ′ on SQ′ that rotates the actual (extended) final state ψ′

to the maximizing state ϕ,

ϕ = (1
¯R

⊗ USQ′ ⊗ 1
¯E

)ψ′(1
¯R

⊗ USQ′
† ⊗ 1

¯E
) .

Keeping in mind that S = QR we define

R(ρQ′) := trRQ′USQ′E(ρQ′)USQ′
† ,

and realize that for the state ρRQ′ = trEψ
′
RQ′E

IR ⊗R(ρ′RQ′) = trRQ′ (1
¯R

⊗ USQ′)IR ⊗ E(ρ′RQ′)(1
¯R

⊗ USQ′
†)

= trRQ′E (1
¯R

⊗ USQ′ ⊗ 1
¯E

)ψ′(1
¯R

⊗ USQ′
† ⊗ 1

¯E
)

= trRQ′E ϕ ,
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where here and in the following the partial trace over R refers to the second R
appearing in the product Hilbert space RSQ′E = RQRQ′E. Since further

ψRQ = trRQ′Eψ̃ ,

we conclude

Fe(πC ,R ◦ N ) ≥ p F (ψRQ,IR ⊗R(ρ′RQ′))

= p F (trRQ′E ψ̃, trRQ′E ϕ)

≥ p|〈ψ̃|ϕ〉|2 ,
where the second inequality is due to the monotonicity of the fidelity under partial
trace. With Eq. (11) and the general relation F (ρ, σ) ≥ 1− ‖ ρ − σ ‖tr this proves
relation (7).

Proof of relation (9): We choose a purification ψRQ of πC with a state vector

|ψ〉RQ =
1√
K

K
∑

l=1

|cRl 〉|cQl 〉 ,

where K = |C|, and |cR1 〉, . . . |cRK〉 and |cQ1 〉, . . . |cQK〉 denote orthonormal vectors that
span R and C, respectively. Supposing that the orthonormal states |1〉, . . . , |N〉 span
the ancilla E and the Kraus operators A1, . . . AN are associated to V by Ai|ψ〉Q =
〈i|V |ψQ〉, we immediately obtain from Eq. (8)

p ψ′
RQ′E =

1

K

K
∑

lm=1

N
∑

ij=1

|cRl 〉〈cRm| ⊗Ai|cQl 〉〈cQm|Aj† ⊗ |i〉〈j| .

Hence

p ρ′RE =
1

K

K
∑

lm=1

N
∑

ij=1

〈cQm|Aj†Ai|cQl 〉 |cRl 〉〈cRm| ⊗ |i〉〈j|

p ρR ⊗ ρ′E =
1

K2

K
∑

m=1

|cRm〉〈cRm| ⊗
K
∑

l=1

N
∑

ij=1

〈cQl |Aj†Ai|c
Q
l 〉 |i〉〈j| .

The trace norm of p(ρ′RE − ρR⊗ ρ′E) appearing in the lower bound (7) becomes more
handy if we transform the operator difference by an isometry J : B(RE) → B(QE),

J :
∑

lm,ij

αlm,ij |cRl 〉〈cRm| ⊗ |i〉〈j| 7→
∑

lm,ij

α∗
lm,ij |cQl 〉〈cQm| ⊗ |i〉〈j| .

J shifts from R to Q and then complex conjugates with respect to the basis |cQl 〉⊗|i〉,
which clearly leaves the trace norm invariant. A straightforward calculation then
shows

D := pJ (ρ′RE − ρR ⊗ ρ′E) = K
N
∑

ij=1

(

πCAi
†AjπC − tr(πCAi

†AjπC) πC
)

⊗ |i〉〈j| ,

10



as in Eq. (10), and further

Fe(C,N ) ≥ p − p ‖ρ′RE − ρR ⊗ ρ′E ‖tr = p− ‖J (ρ′RE − ρR ⊗ ρ′E)‖tr = p− ‖D‖tr .

which is what we wanted to proof.

5 Random coding

Let the unitarily invariant code ensemble of allK-dimensional codes C ⊂ Q be defined
by the ensemble average

[A(C)]K :=

∫

U
¯
(Q)

dµ(U) A(UC0) (12)

of a code dependent variable A(C). Here, C0 is some fixed K-dimensional code space
in Q, and µ is the normalized Haar measure on U

¯
(Q), the group of all unitaries on

Q. Below we will show that the ensemble averaged code entanglement fidelity of a
(possibly trace-decreasing) channel N : B(Q) → B(Q′) obeys

[Fe(C,N )]K ≥ trN (π) −
√

K|N | ‖N (π)‖F , (13)

where π = 1
¯Q
/|Q| is the uniform density on Q.

We begin with the ensemble average of relation (9),

[Fe(C,N )]K ≥ [trN (πC)]K − [‖D‖tr]K , (14)

where, as always, πC = ΠC/|C|, and

D = K
N
∑

i,j=1

(

πCAi
†AjπC − tr(πCAi

†AjπC) πC
)

⊗ |i〉〈j| , (15)

with A1, . . . , AN being N = |N | Kraus operators of a minimal operator-sum repre-
sentation of N . To average trN (πC) we realize that ρ 7→ trN (ρ) as a linear operation
interchanges with the average. Since [πC ]K = π we thus obtain

[trN (πC)]K = trN ([πC ]K) = trN (π) .

Directly averaging the trace norm of D turns out to be quite cumbersome. Therefore,
we first estimate

[‖D‖tr ]2K ≤ KN [‖D‖F ]2K ≤ KN
[

‖D‖2F
]

K
,

where ‖D‖F = (trD†D)1/2 denotes the Frobenius norm (two-norm) of D. The first
inequality follows from the general relation ‖A ‖tr≤

√
d ‖A ‖F , where d is the rank

of A, and the second inequality is Jensen’s inequality. This leads us to

[Fe(C,N )]K ≥ trN (π) −
√

KN
[‖D‖2F

]

K
, (16)
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and it remains to determine the ensemble average of ‖ D ‖2F . From the explicit
representation Eq. (15) follows

‖D‖2F= trD†D =
N
∑

ij=1

tr(πCWij
†πCWij)−

1

K
|tr πCWij|2 ,

where operators Wij are
Wij = Ai

†Aj .

It is useful to introduce a Hermitian form

b(V,W ) :=

[

tr(πCV
†πCW ) − 1

K
tr(πCV

†) tr(πCW )

]

K
, (17)

with which
[

‖D‖2F
]

K
=

N
∑

ij=1

b(Wij ,Wij) . (18)

The point is that the unitary invariance of the ensemble average entails the unitary
invariance of b, i.e., for any U ∈ U

¯
(Q)

b(V,W ) = b(UV U†, UWU†) .

which, in fact, already determines b to a large extend: According to Weyl’s theory
of group invariants [26, 27] b(V,W ) must be a linear combination of the only two
fundamental unitarily invariant Hermitian forms tr V †W and tr V † trW ,

b(V,W ) = α tr V †W + β tr V † trW . (19)

An elementary proof of this fact is outlined in Appendix A. To determine the co-
efficients α and β we consider two special choices of the operators V and W . For
V =W = 1

¯Q
Eqs. (17) and (19) yield

αM + βM2 =
1

K
, (20)

where here and henceforth M = |Q|. Secondly, when we set V and W to a projection
ψ = |ψ〉〈ψ| on Q we obtain from Eq. (17)

b(ψ,ψ) =
K − 1

K

[

|〈ψ|πC |ψ〉|2
]

K
.

Reverting to random matrix theory we find in Appendix (B)
[|〈ψ|πC |ψ〉|2

]

K = (1 +
1/K)/(M2 +M), and hence

b(ψ,ψ) =
1−K−2

M2 +M
.
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With b(ψ,ψ) = α+ β from Eq. (19) this yields the second equation,

α+ β =
1−K−2

M2 +M
. (21)

Solving Eqs. (20) and (21) for α and β, and inserting the solution into (19) produces

b(V,W ) =
1−K−2

M2 − 1

(

tr V †W − 1

M
tr V † trW

)

,

and, by Eq. (18),

[

‖D‖2F
]

K
=

1−K−2

M2 − 1

∑

ij

(

trWij
†Wij −

1

M
|trWij|2

)

. (22)

In general, not much is given away when we use the upper bound for
[‖D‖2F

]

K that
we obtain by using (1−1/K2)/(M2−1) ≤ 1/M2 and by omitting the negative terms
−|trWij |2/M in the sum. Then

[

‖D‖2F
]

K
≤ 1

M2

∑

ij

trWij
†Wij = tr(

∑

j

Aj
1
¯Q
M
Aj

†
∑

i

Ai
1
¯Q
M
Ai

†) ,

where we cyclically permuted operators under the trace to obtain the last equality.
We realize that the argument of the trace is simply N (π)2 (with π = 1

¯Q
/M). This

yields the rather simple upper bound

[

‖D‖2F
]

K
≤ ‖N (π)‖2F , (23)

which finally proves the lower bound (13) by relation (16).

6 Unital and uniform channels

The efficiency of random coding can be easily demonstrated by relation (13) for the
case of a unital channel U : B(Q) → B(Q′), which by definition maps the homoge-
neously distributed input state π to the homogeneously distributed output state π′.
An example is a random unitary channel Ur : B(Q) → B(Q) , ρ 7→∑

i piUiρUi
†, where

arbitrary unitary operators U1, . . . , UN are applied with probabilities p1, . . . , pN on
the system Q.

Thus, for a unital channel ‖ U(π) ‖F=‖ π′ ‖F= |Q′|−1/2, which by relation (13)
predicts the average entanglement fidelity of K-dimensional codes to obey

[Fe(C,U)]K ≥ 1−
√

K|U|
|Q′| .

13



This means that almost all codes of dimension K allow for almost perfect correction
of the unital noise U , provided that

K|U| ≪ |Q′| .

Recalling that |U| is the number of Kraus operators in an operator-sum representation
of U , this relation clearly shows the attainability of the quantum Hamming bound
[28] by random coding. Formally, this is equivalent to the lower bound

Q(U) ≥ log2 |Q′| − log2 |U| (24)

of the quantum information capacity of U . To see this, we consider the n-times
replicated noise U⊗n, and study the averaged entanglement fidelity of codes with
dimension Kn = ⌊2nR⌋ for some positive rate R. Since with U also U⊗n unital, and
|U⊗n| = |U|n, this time we arrive at

[Fe(C,U⊗n)]Kn ≥ 1−
(

2R |U|
|Q′|

)n/2

.

For n→ ∞ the right hand side converges to unity if R < log2 |Q′| − log2 |U|. Hence,
all rates below log2 |Q′| − log2 |U| are achievable, which by the definition of quantum
capacity (cf. Sec. 2.1) shows relation (24).

Finally, let us assume that the channel U is also uniform, meaning that U has
a minimal operator-sum representation with Kraus operators A1, . . . , A|U| obeying

trAi
†Aj = 0 for i 6= j and 1

|Q|trAi
†Ai = const. = |U|−1. The first condition is actually

no restriction, because a non-diagonal representation can always be transformed to
a diagonal one4 . The second condition demands that errors Ei associated with
Kraus operators Ai appear with equal probability pi = 1/|U|. We observe that by
Schumacher’s representation [7] the entropy exchange of π under a uniform U is
simply given by

Se(π,U) = S(1
¯|U|/|U|) = log2 |U| .

Since U is unital we also have

S(U(π)) = S(π′) = log2 |Q′| .

Comparing these expressions with relation (24) and recalling the definition of coherent
information (cf. Sec. 2.2) establishes the lower bound

Q(U) ≥ I(π,U) .

In fact, the following section we will show this bound to hold for general channels.

4 For arbitrary operation elements B1, . . . , BN of N , N = |N |, let an N ×N matrix H be defined
by Hij := trBi

†Bj . Since H = H†, there is a unitary matrix U such that UHU† is diagonal. Because
of the unitary freedom in the operator-sum representation [1], the operators Am :=

∑

j
U

†
jmBj

equivalently represent N . It is readily verified that trAl
†Am = 0 for l 6= m.

14



7 General channels

Starting again with relation (13) we will proof for a general channel N : B(Q) →
B(Q′)

Q(N ) ≥ I(π,N ) , (25)

where π = 1
¯Q
/|Q|, and, as a corollary,

Q(N ) ≥ I(πV ,N ) , (26)

where πV is the normalized projection πV = ΠV /|V | on any subspace V ⊂ Q.
The strategy of proving is to approximate N⊗n by an almost uniform and unital

channel Ñε,n, with which we then proceed as in the preceding section. We construct
Ñε,n in two steps. The first step is to reduce N⊗n to its typical Kraus operators,
as will be defined below. This yields an almost uniform operation Nε,n. In a second
step, we let Nε,n follow a projection on the typical subspace of N (π) in Q′n, resulting
in an operation Ñε,n with the desired properties.

We begin with briefly recalling definitions and basic properties of both typical
sequences [29] and typical subspaces [12, 1].

7.1 Typical sequences

Let X1, X2, X3, . . . be independent random variables with an identical probability
distribution P over an alphabet ℵ. Let H(P) = −∑a∈ℵ P(a) log2 P(a) denote the
Shannon entropy of P, let n be a positive integer, and let ε be some positive number.
A sequence a

¯
= (a1, a2, . . . , an) ∈ ℵn is defined to be ε-typical if its probability of

appearance pa
¯
= P(a1)P(a2) . . .P(an) satisfies

2−n(H(P)+ε) ≤ pa
¯

≤ 2−n(H(P)−ε) .

Let ℵε,n denote the set of all ε-typical sequences of length n.
Below we will make use of the following two well-known facts:

(i) The number |ℵε,n| of all ε-typical sequences of length n is less than 2n(H(P)+ε).

(ii) The probability Pε,n =
∑

a
¯
∈ℵε,n

pa
¯
of a random sequence of length n being ε-

typical exceeds 1 − 2e−nψ(ε), where ψ(ε) is a positive number independent of
n.

Proofs can be found in Appendix C.

7.2 Typical subspaces

Let ρ be some density operator of a quantum system Q, let n be a positive integer,
and let ε be a positive number. An eigenvector |v

¯
〉 of ρ⊗n is called ε-typical if its

eigenvalue pv
¯
satisfies

2−n(S(ρ)+ε) ≤ pv
¯

≤ 2−n(S(ρ)−ε) .
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The ε-typical subspace Tε,n of ρ in Q⊗n is defined as the span of all ε-typical eigen-
vectors of ρ⊗n. We denote the projection on Tε,n by Πε,n.

Notice that typical eigenvectors correspond to typical sequences when an or-
thonormal eigen-system |v1〉, . . . , |v|Q|〉 of ρ is chosen as alphabet ℵ, a sequence of
length n over ℵ is identified with an eigenvector |v

¯
〉 = |vj1〉|vj2〉 . . . |vjn〉 of ρ⊗n, and

the probability P(|v
¯
〉) of an eigenvector |v

¯
〉 of ρ is taken to be its eigenvalue. Then,

the above stated properties of typical sequences translate to

(i’) The dimension of Tε,n is less than 2n(S(ρ)+ε) .

(ii’) The probability Pε,n = tr Πε,nρ
⊗n of measuring an ε-typical eigenvalue of ρ⊗n

exceeds 1− 2e−nψ(ε), where ψ(ε) is a positive number independent of n.

7.3 Reduction of N⊗n

Let a trace-preserving channel N : B(Q) → B(Q′) be given. N may be represented
in a minimal operator sum with Kraus operators A1, . . . , A|N |, which without loss

of generality we assume to be diagonal, i.e. trAj
†Ai = 0 for i 6= j (cf. footnote 4).

Accordingly, N⊗n can be represented by |N |n Kraus operators Aj1 ⊗Aj2 ⊗ . . .⊗Ajn
where jν = 1, . . . , |N |.

Now, letting an alphabet ℵ be defined as the set of Kraus operators A1, . . . , A|N |

of N , the Kraus operators of N⊗n can obviously be regarded as sequences over ℵ of
length n. In order to identify an ε-typical sequence of length n, and with it also an
ε-typical Kraus operator of N⊗n, we define a probability distribution P over ℵ by

P(A) =
1

|Q|trA
†A , A ∈ ℵ .

The normalization of P follows from the completeness relation
∑

A∈ℵA
†A = 1

¯Q
, and,

owing to the diagonality of the Kraus operators, the Shannon entropy H(P) turns out
to agree with the entropy exchange Se(π,N ): Again by Schumacher’s representation
[7],

Se(π,N ) = S





|N |
∑

i=1

1

|Q|tr(Ai
†Ai)|i〉〈i|



 = S





|N |
∑

i=1

P(Ai)|i〉〈i|


 = H(P) .

Being in the possession of the probability distribution P over the set of Kraus
operators ℵ, we can define the ε-typical channel Nε,n of N⊗n to consist precisely of
the operators A

¯
that are ε-typical with respect to P,

ρ 7→ Nε,n(ρ) :=
∑

A
¯
∈ℵε,n

A
¯
ρA
¯
† .
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As a direct consequence of properties (i) and (ii) of typical sequences one finds (cf. Ap-
pendix D)

|Nε,n| ≤ 2n(Se(π,N )+ε) ,

trNε,n(πn) ≥ 1− 2enψ1(ε) ,

where πn = 1
¯Q

n/|Q|n, and ψ1(ε) is a positive number independent of n. Furthermore,

the relative weight 1
|Q|n trA¯

†A
¯
of an ε-typical operator A

¯
= Aj1 ⊗ . . .⊗Ajn is just the

probability pA
¯
= P(Aj1) . . .P(Ajn) and therefore obeys

2−n(Se(π,N )+ε) ≤ pA
¯
≤ 2−n(Se(π,N )−ε) .

Hence, keeping only the ε-typical Kraus operators the original channel N⊗n re-
duces to a channel Nε,n with Kraus operators A

¯
∈ ℵε,n of similar probability pA

¯
.

In general, this strongly reduced the number of Kraus operators from |N |n to |Nε,n|
and renders Nε,n much closer to a uniform channel than the original channel N⊗n.
At the same time, the transmission probability of the homogeneously mixed state πn
deviates only by an exponentially small amount from unity.

In order to achieve also approximate unitality, we will further modify the channel
by letting Nε,n follow a projection Tε,n : ρ 7→ Πε,nρ Πε,n on the ε-typical subspace
Tε,n ⊂ Qn of the density N (π). This defines the ε-reduced operation of N⊗n by

Ñε,n := Tε,n ◦ Nε,n ,

with the following properties shown in Appendix D:

|Ñε,n| ≤ 2n(Se(π,N )+ε) , (27)

tr Ñε,n(πn) ≥ 1− 4e−nψ3(ε) , (28)

‖Ñε,n(πn)‖2F ≤ 2−n(S(N (π))−3ε) , (29)

where ψ3(ε) is a positive number independent of n. Now we are ready to proof relation
(25):

7.4 Q(N ) ≥ I(π,N )

We note that for any code C ⊂ Q⊗n

Fe(C,N⊗n) ≥ Fe(C,Nε,n) ≥ Fe(C, Ñε,n) . (30)

The first inequality holds because Nε,n is a reduction of N⊗n (cf. Sec. 1.2, relation
(4)), and the second one follows from

max
R

F (πC ,R ◦ Nε,n) ≥ max
R

F (πC ,R ◦ Tε,n ◦ Nε,n) = max
R

F (πC ,R ◦ Ñε,n) .
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Averaging relation (30) over the unitary ensemble of codes C ⊂ Qn of dimension

Kn = ⌊2nR⌋ ,

we immediately obtain with relation (13) and the bounds (27), (28), (29)

[

Fe(C,N⊗n)
]

Kn
≥ trÑε,n(πn)−

√

Kn|Ñε,n| ‖Ñε,n(πn)‖F

≥ 1− 4e−nψ3(ε) − 2
n
2
(R+Se(π,N )−S(N (π))+4ε) .

For all ε > 0, the right-hand side of inequality converges to unity in the limit n→ ∞
if the asymptotic rate R obeys

R+ 4ε < S(N (π)) − Se(π,N ) ≡ I(π,N ) .

That is, all rates R = limn→∞
1
n log2Kn below I(π,N ) are achievable and therefore

I(π,N ) is a lower bound of the capacity Q(N ).
Relation (26) follows as a corollary:

7.5 Q(N ) ≥ I(πV ,N )

Let V be any subspace of the input Hilbert space Q of a channel N : B(Q) → B(Q′),
and let πV = ΠV /|V | be the normalized projection on V . The restriction of N to
densities with support in V ,

NV : B(V ) → B(Q′) , ρ 7→ N (ρ) ,

is a channel for which the result of the previous subsection obviously predicts I(πV ,NV )
an achievable rate. It is evident that then I(πV ,N ) = I(πV ,NV ) is also an achievable
rate of the complete channel N . Thus, for any subspace V ⊂ Q

Q(N ) ≥ I(πV ,N ) .

8 Q(N ) ≥ Ir(N )

Finally, we will show that with the BSST lemma the result of the last subsection
implies the lower bound

Q(N ) ≥ 1

m
I(ρ,N⊗m) ,

where m is an arbitrary large integer, and ρ any density on Qm. Clearly, this suffices
to prove the regularized coherent information Ir(N ) (cf. Sec. 2.2 ) a lower bound of
Q(N ).

The BSST lemma [25] states that for a channel N and an arbitrary state ρ on
the input space of N

lim
ε→0

lim
n→∞

1

n
S(N⊗n(πε,n)) = S(N (ρ)) ,
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where πε,n is the normalized projection on the frequency-typical subspace T
(f)
ε,n of ρ.

As a corollary, one obtains an analogous relation for the coherent information,

lim
ε→0

lim
n→∞

1

n
I(πε,n,N⊗n) = I(ρ,N ) .

T
(f)
ε,n is similar to the ordinary typical subspace Tε,n which we have used above. The

difference is that for T
(f)
ε,n typicality of a sequence is defined via the relative frequency

of symbols in this sequence, whereas for Tε,n it is defined by its total probability. For
details we refer the reader to the work of Holevo [30], where an elegant proof of the
BSST lemma is given.

Here, what matters is solely the fact that πε,n is a homogeneously distributed
subspace density of the kind that we used in the previous subsection. Thus we can
make use of the bound Q(E) ≥ I(πV , E) with, for instance, E = N⊗mn, and V being

the frequency-typical subspace T
(f)
ε,n ⊂ Qmn of an arbitrary density ρ on Qm. This

means that for any ε > 0 and any m,n

Q(N⊗mn) ≥ I(πε,n,N⊗mn) .

Using the trivial identity Q(N⊗k) = kQ(N ) we can therefore write

Q(N ) =
1

m
lim
n→∞

1

n
Q(N⊗mn)

≥ 1

m
lim
ε→0

lim
n→∞

1

n
I(πε,n, (N⊗m)⊗n)

=
1

m
I(ρ,N⊗m) ,

where the last equation follows from the corollary.

I would like to thank Michal Horodecki and Milosz Michalski for inviting me to
contribute to the present issue of OSID on the quantum coding theorem.

A Unitary invariant Hermitian form

Let H be a finite dimensional Hilbert space with an orthonormal basis |1〉, . . . , |N〉,
and let b : B(H) × B(H) → C be a unitary invariant Hermitian form. For i, j ∈
{1, . . . , N} let Eij := |i〉〈j|. As a consequence of the unitary invariance one finds
constants α, β and γ such that for i, j,∈ {1, . . . , N}, i 6= j

b(Eij , Eij) = α ,

b(Eii, Ejj) = β ,

b(Eii, Eii) = γ ,
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and for all other combinations of indices i, j, l,m ∈ {1, . . . , N}

b(Eij , Elm) = 0 .

This immediately leads to

b(V,W ) = (γ − α− β) b1(V,W ) + β trV †trW + α tr V †W ,

with

b1(V,W ) =
N
∑

i=1

〈i|V †|i〉〈i|W |i〉 .

Obviously, b1 is not unitary invariant, from which we conclude γ − α − β = 0 and
thus

b(V,W ) = β trV †trW + α tr V †W ,

which is what we wanted to prove.

B Average of |〈ψ|πC |ψ〉|2

We show that independent of the normalized vector |ψ〉 ∈ Q

[|〈ψ|πC |ψ〉|2]K =
1 +K−1

M2 +M
(31)

(notations as in Sec. 5). By definition,

[|〈ψ|πC |ψ〉|2]K =
1

K2

∫

dµ(U) |〈ψ|U Π0U
†|ψ〉|2 ,

where the integral extends over U
¯
(Q) and Π0 is the projection on an arbitrarily chosen

linear subspace C0 ⊂ Q of dimension K. We extend |ψ〉 ≡ |ψ1〉 to an orthonormal
basis |ψ1〉, . . . , |ψM 〉 of Q, and chose

C0 := span{|ψ1〉, . . . , |ψK〉} .

Then
∫

dµ(U) |〈ψ|U Π0U
†|ψ〉|2 =

K
∑

i,j=1

∫

dµ(U) |U1i|2|U1j |2 ,

where Uij = 〈ψi|U |ψj〉. Making use of the unitary invariance of µ, this becomes

K

∫

dµ(U) |U11|4 + (K2 −K)

∫

dµ(U) |U11|2|U12|2 .

20



For the calculation of these integrals we refer to the work of Pereyra and Mello [31],
in which, amongst others, the joint probability density for the elements U11, . . . , U1k

of a random unitary matrix U ∈ UK has been determined to be

p(U11, . . . , U1k) = c

(

1−
k
∑

a=1

|U1a|2
)n−k−1

Θ(1−
k
∑

a=1

|U1a|2) ,

where c is a normalization constant, and Θ(x) denotes the standard unit step function.
By a straightforward calculation, we obtain from this

∫

dµ(U) |U11|4 =
2

M2 +M
,

∫

dµ(U) |U11|2|U12|2 =
1

M2 +M
,

which immediately leads to Eq. (31).

C Typical Sequences

The first property follows from

1 =
∑

a
¯
∈ ℵn

pa
¯

≥
∑

a
¯
∈ ℵε,n

pa
¯

≥ |ℵε,n|2−n(H(P)+ε) .

To prove the second property we first realize that by definition

Pε,n = Pr( “a
¯
∈ ℵn is ε-typical” ) = Pr(

∣

∣− log2(pa
¯
)− nH(P)

∣

∣ ≤ nε)

= Pr( |
n
∑

l=1

(− log2 P(al)−H(P)) | ≤ nε ) .

The negative logarithms of the probabilities P(al) can be understood as n independent
random variables Yl that assume values − log2P(a) for all a ∈ ℵ with probabilities
P(a). Their mean is the Shannon entropy H(P),

µ = E(Y1) = −
∑

a∈ℵ

P(a) log2P(a) = H(P) .

This means that

1− Pε,n = Pr( |
n
∑

l=1

(Yl − µ)| ≥ nε )

is the probability of a large deviation ∝ n. Since the variance σ and all higher
moments of Y1−µ are finite we can employ a result from the theory of large deviations
[32], according to which

Pr( |
n
∑

l=1

(Yl − µ)| ≥ nε ) ≤ 2e−nψ(ε) ,

where ψ(ε) is a positive number that is approximately ε2/2σ2.
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D Properties of Nε,n and Ñε,n

We will show the following relations (definitions and notations as in Sec. 7.3):

|Nε,n| ≤ 2n(Se(π,N )+ε) (32)

trNε,n(πn) ≥ 1− 2e−nψ1(ε) (33)

|Ñε,n| ≤ 2n(Se(π,N )+ε) (34)

tr Ñε,n(πn) ≥ 1− 4e−nψ3(ε) (35)

‖Ñε,n(πn)‖2F ≤ 2−n(S(N (π))−3ε) , (36)

where ψ1(ε) and ψ3(ε) are positive numbers independent of n.
The first relation follows from |Nε,n| = |ℵε,n| ≤ 2n(H(P)+ε) and H(P) = Se(π,N ).

To prove relation (33) we note that for a Kraus operator A
¯
= Aj1 ⊗ . . .⊗Ajn

1

|Q|n tr A¯
†A
¯
=

1

|Q|trAj1
†Aj1 . . .

1

|Q| trAjn
†Ajn = P(Aj1) . . .P(Ajn) ≡ pA

¯
.

Making use of property (ii) of typical sequences this shows

trNε,n(πn) =
1

|Q|n
∑

A
¯
∈ℵε,n

tr A
¯
†A
¯
=

∑

A
¯
∈ℵε,n

pA
¯
≥ 1− 2enψ1(ε) ,

where ψ1(ε) is a positive number independent of n. Relation (34) is evident by
relation (32) and

Ñε,n(ρ) = Πε,n Nε,n(ρ) Πε,n =
∑

A
¯
∈ℵε,n

(Πε,nA
¯
)ρ(Πε,nA

¯
)† .

In order to show (35) it is convenient to introduce the complementary operation
Mε,n of Nε,n by

N⊗n = Nε,n +Mε,n ,

i.e. Mε,n consists of the ε-“untypical” Kraus operators of N⊗n,

Mε,n(ρ) =
∑

A
¯
∈ℵ\ℵε,n

A
¯
ρA
¯
† .

Then,

tr Ñε,n(πn) = tr Πε,n(N⊗n(πn)−Mε,n(πn))

≥ trΠε,nN⊗n(πn)− trMε,n(πn) . (37)

The inequality results from the fact that for two positive operators A,B always
trAB ≥ 0, and therefore (indices suppressed)

trM(ρ) = tr ΠM(ρ) + tr (1
¯
−Π)M(ρ) ≥ tr ΠM(ρ) .
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Taking into account that Πε,n projects on the typical subspace Tε,n of N (π) and using
property (ii’) of typical subspaces, the first term in Eq. (37) can be bounded from
below as

tr Πε,nN⊗n(πn) = tr Πε,nN⊗n(π⊗n) = tr Πε,n(N (π))⊗n ≥ 1− 2e−nψ2(ε) .

The second term in Eq. (37) obeys

trMε,n(πn) = trN⊗n(πn) − trNε,n(πn) ≤ 2e−nψ1(ε) ,

by relation (33). We thus find

tr Ñε,n(πn) ≥ 1− 2(e−nψ2(ε) + e−nψ1(ε)) ≥ 1− 4 e−nψ3(ε) ,

when ψ3(ε) := min{ψ1(ε), ψ2(ε)}.
Finally, we address the Frobenius norm of Ñ (πn). For positive operators A,B

‖A+B ‖2F = ‖A‖2F + ‖B ‖2F +2trAB ≥ ‖A‖2F + ‖B ‖2F .

This can be used to derive

‖Tε,n ◦ N⊗n(πn)‖2F = ‖Tε,n ◦ (Nε,n +Mε,n)(πn)‖2F ≥ ‖Tε,n ◦ Nε,n(πn)‖2F .

Thus

‖Ñε,n(πn)‖2F = ‖Tε,n ◦ Nε,n(πn)‖2F
≤ ‖Tε,n ◦ N⊗n(πn)‖2F
= ‖Πε,n (N (π))⊗n Πε,n ‖2F
=

∑

|v
¯
〉 ε-typical eigenvector

(

pv
¯

)2

≤ 2−n(S(N (π))−3ε) ,

where we used dimTε,n ≤ 2n(S(N (π))+ε) (property (i’)) and pv
¯
≤ 2−n(S(N (π))−ε) to

derive the last inequality.
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