
ar
X

iv
:m

at
h/

07
02

04
3v

1 
 [

m
at

h.
C

A
] 

 2
 F

eb
 2

00
7

TOWARDS A CLASSIFICATION OF 6× 6 COMPLEX HADAMARD

MATRICES

MÁTÉ MATOLCSI, FERENC SZÖLLŐSI

Abstract. Complex Hadamard matrices have received considerable attention in the past
few years due to their appearance in quantum information theory. While a complete char-
acterization is currently available only up to order 5 (in [5]), several new constructions of
higher order matrices have appeared recently [4, 12, 2, 7, 11]. In particular, the classification
of self-adjoint complex Hadamard matrices of order 6 was completed by Beuachamp and
Nicoara in [2], providing a previously unknown non-affine one-parameter orbit. In this paper
we classify all dephased, symmetric complex Hadamard matrices with real diagonal of order
6. Furthermore, relaxing the condition on the diagonal entries we obtain a new non-affine
one-parameter orbit connecting the Fourier matrix F6 and Diţă’s matrix D6. This answers
a recent question of Bengtsson & al. in [3].

2000 Mathematics Subject Classification. Primary 05B20, secondary 46L10.
Keywords and phrases. Complex Hadamard matrices

1. Introduction

Throughout this paper we will use the notation of [12, 13] for well-known complex Hadamard
matrices such as F6, D6, B6 etc.

Original interest in complex Hadamard matrices arose in connection with orthogonal pairs
of maximal Abelian ∗-subalgebras (MASA’s) of the n × n matrices [5, 10, 6, 8, 9]. Subse-
quently, it was realized in [14] that complex Hadamard matrices also play an essential role
in constructions of teleportation and dense coding schemes in quantum information theory.
This fact has given a new boost to the study of complex Hadamard matrices in recent years.
On the one hand, several new and general constructions of such matrices have appeared
[4, 12, 7, 11]. On the other hand it is natural to try to fully classify complex Hadamard
matrices of small order, as such characterization is currently available only up to order 5
in [5]. Recently some progress has been made in the 6 × 6 case in [2] where all self-adjoint
complex Hadamard matrices are characterized, and in [3] where numerical evidence is given
of the existence of a conjectured 4-parameter family. While an algebraic form of such a
4-parameter family (if it exists at all) remains out of reach, in this paper we present a previ-
ously unknown non-affine one-parameter family of 6× 6 complex Hadamard matrices which
connects the Fourier matrix F6 and Diţă’s matrix D6. This result complements the recent
catalogue [12] and answers a question of [3], proving that apart from the isolated matrix S6

the set of known 6× 6 Hadamard matrices is connected.
It is also important to mention that the 6× 6 case is distinguished as the smallest dimen-

sion where the maximum number of mutually unbiased bases (MUBs) is not known. It is
well-known that if d is a prime power than the maximal number of MUBs in Cd is d + 1.
The existence of MUBs is equivalent to the existence of d × d complex Hadamard matrices
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satisfying certain conditions (see e.g. [12]). For the current status of MUB-related problems
and, in particular, the case d = 6 we refer to [3] and references therein. The recent discovery
of the new family in [2], and the results of this paper may well be useful in the resolution
of the MUB problem in dimension 6, and may give an indication to the maximal number of
MUB’s in dimension d = pq.

Throughout the paper we restrict attention to dephased, symmetric complex Hadamard
matrices of order 6 (the standard terminology dephased meaning the normalization condition
that all entries of the first row and column are +1). It is quite natural to study the symmetric
case for two reasons. First, the results of [2] show that it is hopeful to obtain closed algebraic
expressions if we require the matrix to satisfy certain symmetry assumptions (in [2] the
self-adjoint case was classified). Second, the inspection of known 6 × 6 complex Hadamard
matrices shows that many of them, such as F6, D6, C6, S6, are equivalent to a symmetric one
(throughout the paper we use the standard notion of equivalence (see e.g. [12]), i.e. H1 and
H2 are equivalent, H1

∼= H2, ifH1 = D1P1H2P2D2 with unitary diagonal matricesD1, D2 and
permutation matrices P1, P2). These two facts suggested that the set of symmetric Hadamard
matrices of order 6 is on the one hand ’small’ enough to be described in algebraic form and,
on the other hand, ’rich’ enough to contain interesting families of matrices. However, this
intuitive approach turned out to be a little too optimistic in the first respect, and we needed
to put further restrictions on the diagonal elements so that our algebraic calculations come
to a comprehensible end. Accordingly, the outline of the paper is as follows. In Section 2 we
fully classify dephased, symmetric complex Hadamard matrices of order 6 with real diagonal.
It turns out that under this restriction well-known matrices emerge only. Therefore, in
Section 3 we relax the condition on some diagonal entries and this leads to the discovery of
a new non-affine one-parameter family.

2. Symmetric matrices with real diagonal

First we recall a simple but extremely useful result of [5] (see also [2, Lemma 2.6]).

Lemma 2.1. Let u, v, s, t be complex numbers on the unit circle. Then
(u+ v)(s+ t)(us+ vt) ∈ R. �

We will also need the following elementary facts. In a dephased Hadamard matrix the sum
of the entries in each row is 0 (except for the first row where the sum is, of course, n). Given
a row (x1, x2, x3, x4, x5, x6) we distinguish two possibilities. First, if Σ := x1+x2+x3+x4

2
= 0

then x5 = −x6. Second, and more importantly, if Σ 6= 0 and |Σ| ≤ 1 then the last two
coordinates are determined (up to change of order) as

(1) x5,6 = −Σ± i
Σ

|Σ|
√

1− |Σ|2

The point is that −2Σ = x5 + x6 and it is easy to see geometrically that x5 and x6, being
unit vectors, are determined as above.

The main result of this section is the following

Theorem 2.2. Let H be a dephased, symmetric complex Hadamard matrix of order 6 with
real diagonal. Then H is equivalent to S6 or D6.

The proof is based on Lemma 2.1, and some considerations similar to those in [2].
The diagonal elements of H belong to {−1, 1} by assumption. It is clear that there

are either at least four 1’s in the diagonal or at most three. Therefore, after a possible
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permutation of the rows and columns it is enough to consider the following two possibilities
for the diagonal of H :

(2) Diag(H) ∈ {(1, 1, 1, 1, ∗, ∗), (1,−1,−1,−1, ∗, ∗)},
where the ∗’s stand for ±1.

Lemma 2.3. Let H be a 6× 6 symmetric complex Hadamard matrix of the form:

(3) H =















1 1 1 1 1 1
1 1 x y ∗ ∗
1 x 1 z ∗ ∗
1 y z 1 ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗















Then

(a) two of x, y, z must be equal.
(b) H is equivalent to S6.

(Note that we do not assume here that the last two diagonal entries are real; it is already
implied by the above form.)

Proof. First we prove (a). Let us denote h2,5 = u, h2,6 = v, h3,5 = s, h3,6 = t. We will use
Haagerup’s idea as in Lemma 2.1. By the orthogonality relations of rows 1, 2, 3 we have

(4) 2 + x+ y = −(u+ v)

(5) 2 + x+ z = −(s + t)

(6) 1 + x+ x+ zy = −(su+ tv).

Now, Lemma 2.1 implies

(7) (2 + x+ y)(2 + x+ z)(1 + x+ x+ zy) ∈ R.

By similar arguments we obtain

(8) (2 + x+ y)(2 + y + z)(1 + y + y + zx) ∈ R

(9) (2 + x+ z)(2 + y + z)(1 + z + z + yx) ∈ R.

After summing up these three expressions and eliminating real terms we get

(10) x2y + xy2 + xz2 + x2z + y2z + yz2 + 8 (xy + xz + yz) ∈ R

Since a complex number is real if and only if it is equal to its conjugate, we obtain
an equality if we replace each variable by its conjugate (i.e. its reciprocal) in the above
expression. The resulting equality can then be rearranged by simple algebra to yield

(11) (x− y) (x− z) (y − z)
(

xy + yz + zx+ 8xyz + x2yz + xy2z + xyz2
)

= 0



4 MÁTÉ MATOLCSI, FERENC SZÖLLŐSI

The last factor in the product is clearly non-zero by the triangle inequality (one term has
modulus 8, and the others have modulus 1). This proves (a).

Now we turn to (b). It is easy to see that all x = y, x = z, y = z lead to equivalent
Hadamard matrices by permutation, thus we can assume without loss of generality that
x = y.

Now substitute back to (7) and eliminate all real terms to get

(12) x2 + xz + xz ∈ R.

Therefore this expression equals its conjugate and we obtain

(13) x2 + xz + xz − x2 − xz − xz = 0

which yields

(14)
(

x2 − 1
) (

z + x2z − x− xz2
)

= 0

Here x = y = 1 is clearly a contradiction, because the first two rows of H cannot be
orthogonal.

To show that x = y = −1 is also impossible we need to consider two subcases. If
x = y = −1 = z then the rows of the leading 4 × 4 minor of H are already mutually
orthogonal, therefore the last two entries of the first four rows of H should also be mutually
orthogonal, which is clearly impossible. If x = y = −1 6= z then H must be equivalent to a
matrix of the following form

(15) H =















1 1 1 1 1 1
1 1 −1 −1 u −u
1 −1 1 z −z −1
1 −1 z 1 −1 −z
1 u −z −1 ∗ ∗
1 −u −1 −z ∗ ∗















.

The last two entries of rows 3, 4 are determined by (1), and the order of −1 and z in the
fourth row is forced by the orthogonality of rows 3-4. The same orthogonality now implies
z = ω or z = ω2 (with ω being the third root of unity). If z = ω then the orthogonality of
rows 2 and 3 implies that u = − i√

3
which is a contradiction. z = ω2 implies u = i√

3
, again

a contradiction.
Therefore in (14) we must have (z + x2z − x− xz2) = (z − x)(1− xz) = 0, which implies

z = x or z = x. The case z = x = y leads again to contradiction due to the following reasons.
First, we cannot have x = y = z = −1 as argued already above. Second, if x = y = z 6= −1
then (1) implies that two of the rows 2, 3, 4 must contain the same two entries in the last
two places. However, those two rows then contain the same element in four places, therefore
they cannot be orthogonal.
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Thus, we must have y = x 6= ±1, z = x. In this case H must be equivalent with the
following form

(16) H =















1 1 1 1 1 1
1 1 x x ∗ ∗
1 x 1 x u v
1 x x 1 v u
1 ∗ u v ∗ ∗
1 ∗ v u ∗ ∗















where ℜ[x] ≤ 0 due to the orthogonality of rows 1 and 3. After conjugating H if necessary
(and noting that S6 is equivalent to its conjugate) we can also assume that ℑ[x] ≥ 0. The
third and fourth rows are being forced by (1) as follows (we are free to choose the order due
to permutation equivalence):

(17) u = −1 −ℜ[x] + i
√

−ℜ[x]2 − 2ℜ[x],

(18) v = −1− ℜ[x]− i
√

−ℜ[x]2 − 2ℜ[x].

Now, due to the orthogonality of rows 3, 4 we get 4ℜ[x]2 + 10ℜ[x] + 4 = 0 which gives the
only possible solution ℜ[x] = −1

2
and, by ℑ[x] ≥ 0, we get x = ω. Then by (17) and (18)

u = ω, v = ω2, and

(19) H =















1 1 1 1 1 1
1 1 ω ω ∗ ∗
1 ω 1 ω2 ω ω2

1 ω ω2 1 ω2 ω
1 ∗ ω ω2 ∗ ∗
1 ∗ ω2 ω ∗ ∗















All the remaining entries are determined uniquely (using (1) and orthogonality) and we
obtain

(20) H =















1 1 1 1 1 1
1 1 ω ω ω2 ω2

1 ω 1 ω2 ω ω2

1 ω ω2 1 ω2 ω
1 ω2 ω ω2 1 ω
1 ω2 ω2 ω ω 1















This matrix is clearly equivalent to Tao’s matrix S6 (we note here, that this matrix was
published earlier in [1], page 104). �

Having classified dephased, symmetric Hadamard matrices with diagonal (1, 1, 1, 1, ∗, ∗)
we can assume that the number of 1’s in the diagonal are at most three, in other words, the
diagonal is (1,−1,−1,−1, ∗, ∗).
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Lemma 2.4. Let H be a 6× 6 symmetric complex Hadamard matrix of the form

(21) H =















1 1 1 1 1 1
1 −1 x y ∗ ∗
1 x −1 z ∗ ∗
1 y z −1 ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗















Then H is equivalent to D6. (Note that we do not assume here that the last two diagonal
entries are real.)

Proof. We can assume that ℑ[x] ≥ 0 (by conjugating all entries of H if necessary, and noting
that D6 is equivalent to its conjugate).

First assume that two of x, y, z are equal, say x = y (we are free to choose due to permu-
tation equivalence) and, furthermore, z = −x. Then H is equivalent to

(22) H =















1 1 1 1 1 1
1 −1 x x −x −x
1 x −1 −x u −u
1 x −x −1 v −v
1 −x u v ∗ ∗
1 −x −u −v ∗ ∗















By the orthogonality of rows 3, 4

(23) 1 + 1 + x+ x+ uv + uv = 0,

which yields uv ∈ R, therefore v = u or v = −u. The former is not possible due to (23),
therefore v = −u. Then, using again (23) we get x + x = 0 and hence, by the assumption
ℑ[x] ≥ 0, x = i.

Then, using (1) we obtain that the last two entries of rows 5, 6 must be −1 and i in some
order. The same order in both rows is not possible because then these rows would agree in
four entries and could not be orthogonal. Therefore we have two possibilities:

(24) H =















1 1 1 1 1 1
1 −1 i i −i −i

1 i −1 −i u −u
1 i −i −1 −u u
1 −i u −u −1 i

1 −i −u u i −1















, or H =















1 1 1 1 1 1
1 −1 i i −i −i

1 i −1 −i u −u
1 i −i −1 −u u
1 −i u −u i −1
1 −i −u u −1 i















.

In the first case, by the orthogonality of rows 4, 5 we get u = ±i. Both choices lead to
Hadamard matrices equivalent to D6.

In the second case the orthogonality of rows 4, 5 yields u = ±1. Both choices lead to
Hadamard matrices equivalent to D6.

Let us now turn to the case when x = y, but z 6= −x. We will show that it is not possible.
The last two entries of row 3 must be −x and −z and we are free to choose the order due to
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permutation equivalence. Therefore,

(25) H =















1 1 1 1 1 1
1 −1 x x −x −x
1 x −1 z −x −z
1 x z −1 ∗ ∗
1 −x −x ∗ ∗ ∗
1 −x −z ∗ ∗ ∗















By the orthogonality of rows 2, 3 it we get

(26) 1− x− x+ xz + 1 + xz = 0,

thus xz ∈ R implying x = z or x = −z. The first case is not possible by (26), while the
second contradicts our current assumptions.

Now we turn to the case when x, y, z are all distinct. Again, we will show that it is not
possible. We need to distinguish two subcases. First we assume that one variable is the
negative of another, say y = −x (we are free to choose due to permutation equivalence). By
assumption we cannot have z = x or z = −x (in the latter case z = y would hold). Therefore
we have two choices to fill up the last two entries of rows 3, 4:

(27) H =















1 1 1 1 1 1
1 −1 x −x u −u
1 x −1 z −x −z
1 −x z −1 x −z
1 u −x x ∗ ∗
1 −u −z −z ∗ ∗















or H =















1 1 1 1 1 1
1 −1 x −x u −u
1 x −1 z −x −z
1 −x z −1 −z x
1 u −x x ∗ ∗
1 −u −z −z ∗ ∗















In the first case the orthogonality of rows 3, 4 implies z = ±i and we can assume (by
conjugation if necessary) that z = i. Then the orthogonality of rows 2, 3 and 2, 4 yield
the equalities 1 − x − x − xi − ux + ui = 0 and 1 + x + xi + x + ux + ui = 0 which, after
summation, imply u = −i. Substituting back u = −i we get x = ±i. But this implies z = x
or z = y(= −x) which contradicts our current assumptions.

In the second case of (27) the orthogonality of rows 3, 4 implies 1−1−z−z+xz−xz = 0,
which yields xz − xz ∈ R. This is only possible if xz ∈ R, that is x = z or −x = z = y,
which are both excluded by assumption.

Lastly, assume that all x, y, z are all distinct and none of them is the negative of another.
By formula (1) there are the following four different possibilities to fill out the last two
entries of rows 2, 3, 4 (we are free to fix the order of −x and −y in row 2 due to permutation
equivalence):

(28)















1 1
−x −y
−x −z
−y −z
∗ ∗
∗ ∗















,















1 1
−x −y
−x −z
−z −y
∗ ∗
∗ ∗















,















1 1
−x −y
−z −x
−y −z
∗ ∗
∗ ∗















,















1 1
−x −y
−z −x
−z −y
∗ ∗
∗ ∗















Now we analyze these cases separately.



8 MÁTÉ MATOLCSI, FERENC SZÖLLŐSI

CASE[1]: consider the first possibility listed in (28), that is

(29) H =















1 1 1 1 1 1
1 −1 x y −x −y
1 x −1 z −x −z
1 y z −1 −y −z
1 −x −x −y ∗ ∗
1 −y −z −z ∗ ∗















Taking the inner product of rows 2, 3

(30) 1− x− x+ yz + 1 + yz = 0

Thus, yz ∈ R and hence z = y or z = −y which are both excluded by assumption.
CASE[2]: the second possibility listed in (28). Consider rows 2, 4 and apply the same

simple argument as in CASE[1] above.
CASE[3]: the third possibility listed in (28). The orthogonality of rows 2, 3 implies

(31) 1− x− x+ yz + xz + xy = 0,

which means that xy + xz + yz ∈ R. Therefore this expression equals its conjugate, i.e.

(32) xy + xz + yz = xy + xz + yz.

Using that conjugates are the same as reciprocals this equation is equivalent to

(33) (x+ y)(x+ z)(y − z) = 0,

which contradicts our assumptions.
CASE[4]: the fourth possibility listed in (28). Consider rows 3, 4 and apply the same

simple argument as in CASE[1] above. �

3. A new family of 6× 6 complex Hadamard matrices

In Theorem 2.2 we have classified all dephased symmetric Hadamard matrices with real
diagonal. Furthermore, from Lemmas 2.3 and 2.4 we see that it was, in fact, enough to
specify four real entries in the diagonal. It is then natural to investigate the two remaining
real options for the first four entries of the diagonal, i.e. the cases DiagH ∈ (1,−1, 1, 1, ∗, ∗)
and DiagH ∈ (1,−1,−1, 1, ∗, ∗).

Along the lines of Lemmas 2.3 and 2.4 a case-by-case argument shows that there exists no
dephased symmetric complex Hadamard matrix with diagonal (1,−1,−1, 1, ∗, ∗). We do not
include the details of this fruitless calculation.

The last remaining case, DiagH ∈ (1,−1, 1, 1, ∗, ∗), turns out to be the most interesting
one. Unfortunately we do not have a full classification in this case, but we are able to obtain
new matrices nevertheless. For some preliminary calculations we disregard the last +1 entry
in the diagonal, and assume only that DiagH ∈ (1,−1, 1, ∗, ∗, ∗). Due to the presence of the
−1 in the second row, the remaining entries must be x,−x and y,−y, and H takes the form
(up to permutation equivalence)
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(34) H =















1 1 1 1 1 1
1 −1 x −y y −x
1 x 1 a b c
1 −y a ∗ ∗ ∗
1 y b ∗ ∗ ∗
1 −x c ∗ ∗ ∗















.

Using the orthogonality of rows 1, 2, 3 we apply Lemma 2.1 as follows.

(35) x+ y = − (−y − x) ,

(36) 2 + x+ b = − (a+ c) ,

(37) 1− x+ x+ by = − (−ay − cx) ,

therefore

(38) (x+ y)
(

2 + x+ b
)

(1− x+ x+ by) ∈ R

After expanding and eliminating the real entries one gets:

(39) − 2x2 − 2xy + 2xy + x2y − x2b− xyb+ xyb+ y + b ∈ R

This expression therefore equals its conjugate and by simple algebra we get

(40) (y + x)
[

b2(1 + x2) + b(2− x3 − 2x3y − 2x2 − x+ y + x2y + 2xy)− xy(1 + x2)
]

= 0

Unfortunately, we do not know how to handle the case when the second factor equals zero,
therefore we need to settle for the simplifying assumption y = −x. We remark here, however,
that there exist non-trivial solutions with y 6= −x too, such as the permuted version of
Björck’s cyclic matrix

(41) C6 =

















1 1 1 1 1 1
1 −1 d2 −d d −d2

1 d2 1 −d3 −d d2

1 −d −d3 −d3 −d d4

1 d −d −d d −1
1 −d2 d2 d4 −1 −d4

















,

where d = 1−
√
3

2
+ i ·

√√
3
2
.

Having made the assumption y = −x the matrix H will now be determined up to permu-
tation equivalence and possible conjugation. Now, H takes the form

(42) H =















1 1 1 1 1 1
1 −1 x x −x −x
1 x 1 a b c
1 x a t u v
1 −x b u p q
1 −x c v q r















From the orthogonality of rows 2, 3 and 1, 3 we get:
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(43) 1− x+ x+ xa− xb− xc = 0

(44) 1 + x+ 1 + a + b+ c = 0

Multiplying (44) by x and then summing up and using x = 1/x we get

(45) a =
x2 − 2x− 3

2
.

This equation does have two solutions such that both x and a are on the unit ball,

(46) x1,2 =
1−

√
13

3
± i

√

−5 + 2
√
13

3

Let us take x = x1 (the other choice leads to the conjugate matrix), and hence

(47) a = −7−
√
13

9
− i

√

19 + 14
√
13

9

Now, since 2 + x+ a 6= 0 we can apply (1) and obtain (up to change of order, which we are
free to choose due to permutation equivalence)

(48) b =
−14 + 2

√
13−

√

−58 + 34
√
13

18
− i

√

134 + 22
√
13− 8

√

−2446 + 730
√
13

18

(49) c =
−14 + 2

√
13 +

√

−58 + 34
√
13

18
+ i

√

134 + 22
√
13 + 8

√

−2446 + 730
√
13

18

Next we find t, u and v. The orthogonality of rows 1, 4 and 2, 4 yield

(50) 1 + x+ a+ t + u+ v = 0,

(51) 1− x+ ax+ tx− ux− vx = 0.

Multiplying (51) by x and then summing up we obtain

(52) t =
x2 − 2x− 1− 2a

2
.

Substituting the values of x and a we get t = 1.
Then, using (1) we obtain (the order being determined by the orthogonality of rows 3, 4)

(53) u = c

(54) v = b

Finally we can use (1) once again to complete rows 5 and 6 as (the order being determined
by orthogonality of rows 4, 5, 6):

(55) p = r = 3−
√
13− i

√

−21 + 6
√
13

(56) q =
−19 + 4

√
13

9
+ i

2
√

−122 + 38
√
13

9
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Therefore, we have obtained

(57) M6 =















1 1 1 1 1 1
1 −1 x x −x −x
1 x 1 a b c
1 x a 1 c b
1 −x b c p q
1 −x c b q p















,

where x, a, b, c, p, q are determined by (46), (47), (48), (49), (55) and (56), respectively.
It is easy to check that M6 is indeed Hadamard. What we have shown above is that
up to permutation equivalence M6 and its conjugate M∗

6 are the only dephased symmetric
Hadamard matrices with diagonal (1,−1, 1, ∗, ∗, ∗) and second row consisting of the elements
(1, 1, x, x,−x,−x).

We will now proceed to show that M6 is not contained in any of the previously known
6× 6 families. We need the following trivial

Lemma 3.1. If a symmetric complex Hadamard matrix H is equivalent to a self-adjoint
one, then it is also equivalent to its own conjugate i.e. H ∼= H.

Proof. Let H be a symmetric complex Hadamard matrix and suppose that it is equivalent to
a self-adjoint one, say to A = A∗. Then there are unitary diagonal D1, D2 and permutational
matrices P1, P2 such that

(58) P1D1HD2P2 = A = A∗ = P ∗
2D

∗
2H

∗D∗
1P

∗
1

By multiplying both sides with D2P2 from the left and P1D1 from the right we get:

(59) D2P2P1D1HD2P2P1D1 = H∗ = H

This clearly says that H ∼= H . �

As a consequence we have

Proposition 3.2. M6 and M∗
6 are not equivalent to any previously known complex Hadamard

matrix of order 6.

Proof. We will use the Haagerup Λ-set of a matrix H = [hjk], defined as

(60) ΛH = {hijhkjhklhil for all 1 ≤ i, j, k, l ≤ 6}.
It is well-known that ΛH is invariant under equivalence (see [5]).

The list of known 6 × 6 Hadamard matrices is as follows. The Fourier family F
(2)
6 (a, b)

and its transposed
(

F
(2)
6 (a, b)

)T

, the Diţă family D
(1)
6 (c), and Tao’s matrix S6 are listed in

[12]. The recently discovered non-affine family B
(1)
6 (a) is given in [2].

M6 is clearly inequivalent to S6 due to the Haagerup Λ-set being different. M6 is inequiva-

lent to any matrix in F
(2)
6 (a, b) since the third root of unity ω ∈ Λ

F
(2)
6 (a,b)

for every matrix in

that family (i.e. for every a, b), while ω /∈ ΛM6 . The same is true for the transposed family
(

F
(2)
6 (a, b)

)T

. M6 is inequivalent to any matrix in D
(1)
6 (c) since i ∈ Λ

D
(1)
6 (c)

for every matrix

in that family, while i /∈ ΛM6. Finally, using Lemma 3.1, M6 is inequivalent to any of the

matrices contained in the self-adjoint non-affine family B
(1)
6 (a) since M6 is inequivalent to
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M 6, which can be seen as follows. Let a be as in M6. One can easily check that a2 ∈ ΛM6

and a2 /∈ ΛM6, while a2 /∈ ΛM6
and a2 ∈ ΛM6

.
The same proof works for M∗

6 , too. �

We will now generalize our discrete result above and construct a continuous one-parameter
family stemming fromM6. AsM6 is in block-matrix form it is quite natural to try and replace
the 1’s on the main diagonal by some parameter d and consider dephased symmetric matrices
of the following form:

(61) M6(x) =















1 1 1 1 1 1
1 −1 x x −x −x
1 x d a b c
1 x a d c b
1 −x b c p q
1 −x c b q p















,

The orthogonality of rows 2, 3 and 1, 3 imply

(62) 1− x+ dx+ ax− bx− cx = 0

(63) 1 + x+ d+ a + b+ c = 0

Multiplying (62) by x and then summing up we get

(64) a =
x2 − 2x− 1

2
− d.

It is easy to see that 0 < |x2 − 2x− 1| < 4 for each choice of x on the unit circle, therefore
we can use (64) to apply (1) to obtain the values of a and d as follows (we are free to choose
the order due to permutation equivalence):

(65) a =
x2 − 2x− 1

4
− i

(x2 − 2x− 1)
√

16− |x2 − 2x− 1|2

4 |x2 − 2x− 1|

(66) d =
x2 − 2x− 1

4
+ i

(x2 − 2x− 1)
√

16− |x2 − 2x− 1|2

4 |x2 − 2x− 1|
From (64) we see that 1+x+a+d = x2+1

2
which vanishes if and only if x = ±i. We exclude

x = ±i from these considerations and remark that this case can be handled separately as in
Lemma 2.4, and leads to H ∼= D6. For x 6= ±i the values of b and c are determined uniquely
by (1) as follows (we are free to choose the order due to permutation equivalence):

(67) b = −1 + x2

4
− i

(1 + x2)
√

16− |1 + x2|2

4 |1 + x2|

(68) c = −1 + x2

4
+ i

(1 + x2)
√

16− |1 + x2|2

4 |1 + x2|
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It is easy to check (rather by computer) that with these parametric choices the first four
rows of H are mutually orthogonal to each other.

We evaluate 1−x+b+c in order to use (1) again to determine p and q. The orthogonality
of rows 1, 5 and 2, 5 imply

(69) 1− x+ b+ c+ p+ q = 0

(70) 1 + x+ xb+ xc− xp− xq = 0.

Multiplying (70) by x and summing up we get

(71) 1− x+ b+ c =
−x2 − 2x+ 1

2

and we see that it does not vanish for unit vectors x. Therefore we can apply (1) to determine
p and q as follows (the order now being forced by orthogonality):

(72) p =
x2 + 2x− 1

4
+ i

(x2 + 2x− 1)
√

16− |x2 + 2x− 1|2

4 |x2 + 2x− 1|

(73) q =
x2 + 2x− 1

4
− i

(x2 + 2x− 1)
√

16− |x2 + 2x− 1|2

4 |x2 + 2x− 1|
It is easy to check by computer that the emerging matrix H is Hadamard for all x 6= ±i.

Therefore we have obtained the following

Theorem 3.3. There is a one parameter symmetric non-affine family of Hadamard matrices
given by (61), with x = eit, x 6= ±i, and a, b, c, d, p, q being given as in (65), (67), (68), (66),
(72), (73), respectively.

Finally we make the following observation which answers a question raised in [3] and shows
that the set of currently known Hadamard matrices of order 6 is connected except for the
isolated matrix S6. In particular, the family M6(x) above connects the Fourier matrix F6

and Diţă’s matrix D6.

Observation 3.4. M6(1) ∼= F6, lim
t→ 3π

2

M6

(

eit
) ∼= D6, and finally, M6

(

e
i arccos

“

1−
√

13
3

”

)

= M6.

(74) lim
t→ 3π

2

M6

(

eit
)

=















1 1 1 1 1 1
1 −1 −i −i i i

1 −i −1 i −1 1
1 −i i −1 1 −1
1 i −1 1 −i −1
1 i 1 −1 −1 −i















,

(75) M6 (1) =















1 1 1 1 1 1
1 −1 1 1 −1 −1
1 1 ω2 ω ω2 ω
1 1 ω ω2 ω ω2

1 −1 ω2 ω −ω2 −ω
1 −1 ω ω2 −ω −ω2















.
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In summary, we have given a full classification of dephased symmetric complex Hadamard
matrices of order 6 with real diagonal, showing that in this case the well-known matrices S6

and D6 emerge only. Furthermore, relaxing the reality condition on the diagonal entries we
have been able to obtain a new non-affine family of dephased symmetric Hadamard matrices
of order 6 which connects F6 and D6.

It would be interesting to see whether this family can be extended by further parameters.
For example, it is natural to try to replace the second entry of the diagonal (−1) by a
parameter h. However, currently we are unable to classify that case. It also remains to be
seen whether this new family helps to increase the number of bases appearing in MUBs in
C6.
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