
ar
X

iv
:0

80
1.

10
57

v1
  [

qu
an

t-
ph

] 
 7

 J
an

 2
00

8

On completely positive non-Markovian evolution

of a d-level system

Andrzej Kossakowski

Institute of Physics

Nicholaus Copernicus University

87-100 Torun, Poland

kossak@fizyka.umk.pl

and

Rolando Rebolledo ∗

Laboratorio de Análisis Estocático
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Abstract

A sufficient condition for non-Markovian master equation which en-

sures the complete positivity of the resulting time evolution is presented.

1 Introduction

An open system is one coupled to an external environment [1, 2]. The interaction
between the system and its environment leads to phenomena of decoherence
and dissipation, and for this reason recently receive intense consideration in
quantum information, where decoherence is viewed as a fundamental obstacle
to the construction of quantum information processors[3] . In principle, the von
Neumann equation for the total density matrix of the system and the reservoir
provides complete predictions for all the observables. However, this equation
is in practice impossible to solve since all degrees of freedom of the reservoir
have to be taken into account. Main efforts have focused in deducing the time
evolution of the reduced state density matrix. This is the aim of the well-known
exact theory of subsystem dynamics due to Nakajima-Zwanzig ([4, 5]) which
relies in a generalized (non-Markovian) master equation approach.
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The Nakajima-Zwanzig projection operator method makes possible to derive
an exact equation for the reduced density from the von Neumann equation of
the composed system. The resulting generalized master equation -an integrod-
ifferential equation- is mostly of formal interest since such an exact equation
can almost never be even written down explicitely in the closed form. In con-
trast, when one makes the Markovian approximation, i.e., when one neglects the
reservoir memory effects, the resulting Markovian master equation [6, 7] takes
a simple form and the required [8] complete positivity of the resulting time evo-
lution is maintained. The main goal of the theory of open quantum systems is
a non-Markovian description of the dynamics which at the same time include
reservoir memory effects and retain complete positivity.

A variety of non-Markovian master equations have been proposed (cf. [2,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30]). However, the complete positivity of the resulting time evolution is still an
important problem to be investigated.

In the present paper a sufficient condition for non-Markovian master equa-
tions is given, which ensures that the resulting time evolution is completely
positive. It is shown that this condition is rather difficult to verify in practice.
The main reason for that is related to the normalization condition of the time
evolution. This difficulty can be overcomed if one looks first for completely
positive unnormalized solutions to non-Markovian master equations, while the
normalization is imposed separately.

2 Notations

Let Cd be a d-dimensional Hilbert space with the scalar product 〈·, ·〉 and ele-
ments e, x, y, z, . . ..

The C∗–algebra of linear operators on Cd will be denoted by Md. Elements
of Md will be denoted by a, b, c, . . . and the unit of Md is 1d. The Md is the
Hilbert space under the scalar product 〈a, b〉 = tr (a∗b).

The C∗–algebra of linear maps from Md into Md will be denoted by L(Md),
its elements are A,B,C, . . . and the identity map in L(Md) will be denoted by
id. The conjugation (duality) ·# in L(Md) is defined by the relation:

〈A#a, b〉 = 〈a,Ab〉, (2.1)

for all a, b ∈ Md.
This operation endows the following property: the relations

A1d = 1d, L1d = 0, (2.2)

and
tr
(
A#a

)
= tr (a) , tr

(
L#a

)
= 0, (2.3)

are equivalent.
The cone of all completely positive maps on Md will be denoted by B+(Md).
Finally, if At ∈ L(Md), t ≥ 0, then the Laplace transform of At will be

denoted by Âp.
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3 Non-Markovian master equations

The reduced dynamics can be studied equivalently in the Schrödinger or the
Heinsenberg pictures. Suppose that At : Md → Md describes the reduced
dynamics in the Heisenberg picture, then it should satisfy the following condi-
tions: At ∈ B+(Md), At1d = 1d, for all t ≥ 0, and A0 = limt→0 At = id. In the

Schrödinger picture these relations are given in terms of A#
t , t ≥ 0.

In the present section, the reduced dynamics is investigated under the as-
sumption that At is the solution of a non-Markovian master equation of the
form:

dAt

dt
= LAt +

∫ t

0

dsLt−sAs, (3.1)

with the initial condition A0 = id, where

La = i[h, a] + Fa− 1

2
{F (1d), a} , (3.2)

and h = h∗ ∈ Md, F ∈ B+(Md), that is, L is the generator of a completely
positive semigroup.

The normalization condition At1d = 1d. implies the equality

Lt1d = 0. (3.3)

A non-Markovianmaster equation of the form (3.1)can be easily derived from
the Heisenberg equation for the composed system by the Nakajima-Zwanzig
method under the assumption of factorization of the initial state of the composed
system and the invariance of the initial reservoir state under the reservoir free
evolution, c.f. [2]. In this case, La = i[h, a] only, with h = h∗ ∈ Md.

Taking the Laplace transform of (3.1) one finds:

(id p− L− L̂p)Âp = id. (3.4)

The equality before implies that both relations below:

Âp = (p id− L− L̂p)
−1 (3.5)

and
Âp(id− L− L̂p)

−1 = id, (3.6)

hold.
It follows from (3.6) that equation (3.1) can also be written in the form

dAt

dt
= AtL+

∫ t

0

dsAsLt−s, (3.7)

and consequently, the dual dynamics becomes:

dA
#
t

dt
= −LA

#
t +

∫ t

0

dsLt−s
#A#

s . (3.8)
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This means that in the case of non-Markovian master equations there is an
analogy to the Markovian case.

To find conditions on L and Lt that ensure that the time evolution At

resulting from (3.1) is completely positive for all t ≥ 0 is the fundamental
problem of non-Markovian master equations. The main result of the current
paper can be summarized in the following theorem.

Theorem 1 Let us suppose that At is the solution of the equation (3.1), where
Lt has the form

Lt = Bt + Zt, (3.9)

where Bt ∈ B+(Md) for all t ≥ 0,

Zta = −1

2
{Bt(1d), a}+ i[ht, a], (3.10)

and ht = h∗
t , then At is completely positive for all t ≥ 0 if the solution of the

normalization equation

dNt

dt
= LNt +

∫ t

0

dsZt−sNs, (3.11)

with the initial condition N0 = id, is completely positive for all t ≥ 0.

Proof. It follows from (3.1) that the Laplace transform Âp of At is given by
the formula

Âp = (id p− L− Ẑp − B̂p)
−1, (3.12)

and satisfies the equation

Âp = (id p− L− Ẑp)
−1 + (id p− L− Ẑp)

−1B̂pÂp. (3.13)

It follows from (3.13) and (3.11) that (3.1) can be written in the form:

At = Nt +

∫ t

0

du

∫ t−u

0

dsNt−u−sBuAs. (3.14)

If Nt is completely positive for all t ≥ 0, then iterating (3.14) it is easy to see
that At is completely positive as well for all t ≥ 0, since Bt ∈ B+(Md), provided
the iteration procedure converges.

In order to analyze the problems related to the solution of the normalization
equation let us consider the non-Markovian master equation of the form

dAt

dt
=

∫ t

0

dsk(t− s)(Bt−s − id)As, (3.15)

where Bt ∈ B+(Md) and Bt(1d) = 1d for all t ≥ 0, and k(t) ≥ 0.
The normalization equation takes the form

dNt

dt
= −

∫ t

0

dsk(t− s)Ns, (3.16)
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with the initial condition N0 = id.
The solution of (3.16) has the form

Nt = f(t)id, (3.17)

where f(t) satisfies the equation

df(t)

dt
= −

∫ t

0

dsk(t− s)f(s), (3.18)

and f(0) = 1.
As a particular case, let us choose k(t) in the Lidar-Shabani form, cf. [28],

ie.,
k(t) = κ2e−2κγt. (3.19)

In this case one easily finds

f(t) =





e−κγt

[
cos(κt

√
1− γ2) + γ√

1−γ2
sin(κt

√
1− γ2)

]
, if 0 ≤ γ < 1 ,

e−κt(1 + κt), if γ = 1,

e−κγt

[
coshκt

√
γ2 − 1) + γ√

γ2−1
sinh(κt

√
γ2 − 1)

]
, if γ > 1.

(3.20)
It follows from (3.17) that Nt is completely positive if and only if f(t) ≥ 0 for
all t ≥ 0 for all t ≥ 0, and (3.20) shows that f(t) ≥ 0 for all t ≥ 0 if and only if
γ ≥ 1.

The above example clearly indicates that the structure of non-Markovian
master equations is much more complicated than the Markovian ones.

4 Modified non-Markovian master equations

The time evolution (in the Heisenberg picture) is given by the family of maps
At : Md → Md, t ≥ 0, such that At ∈ B+(Md), for all t ≥ 0, (complete pos-
itivity condition), At(1d) = 1d for all t ≥ 0, (normalization condition) and
A0 := limt↓0 At = id. In section 3 it has been shown that if At satisfies equation
(3.1), then the normalization condition can be imposed with no trouble. Indeed,
if (3.2), (3.9) and (3.10) are satisfied, then the normalization condition is triv-
ially fulfilled. On the other hand, complete positivity of At leads to complete
positivity of solutions to the normalization equation (3.10) which is a very diffi-
cult problem. However one can circumvent the above difficulty in the following
manner. Let Vt, t ≥ 0 be the family of complete positive maps on Md such that
limt→0 Vt = id. If Vt(1d) > 0 for all t ≥ 0, then the maps At, t ≥ 0, defined as

At(a) = Vt(1d)
−1/2Vt(a)Vt(1d)

−1/2, (4.1)

are completely positive and normalized.
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Let Vt, t ≥ 0 be the solution of the following modified non-Markovian master
equation:

dVt

dt
= PVt +

∫ t

0

dsBt−sVs, (4.2)

with the initial condition limt→0 Vt = id, where P is a completely positive map
and Bt ∈ B+(Md) for all t ≥ 0.

The resolvent of (4.2),

V̂p = (id p− P − B̂p)
−1, (4.3)

satisfies the equation

V̂p = (id p− P )−1 + (id p− P )−1
B̂pV̂p, (4.4)

which is the integral form of (4.2).
Iteration of (4.4) yields that Vt is completely positive since exp(tP ) and Bt

are completely positive.
If the solution of (4.2) satisfies the condition Vt(1d) > 0 for all t ≥ 0, then

At, t ≥ 0, defined through (4.1) gives the correct time evolution, i.e., it is
completely positive and normalized.

The above approach contains as a special case the semigroup form of the
dynamics. Let us consider the equation

dVt

dt
= LVt + λ2

∫ t

0

ds e(t−s)LVs, (4.5)

where L is the generator of a completely positive semigroup. One easily finds
the solution of (4.5) which is of the form:

Vt = cosh(λt)etL, (4.6)

and Vt(1d) = 1d cosh(λt). The corresponding normalized evolution At has the
form

At = etL, (4.7)

that is, it is a semigroup.
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