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On the Kondo problem and thermodynamics of dilute magnetic alloys
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An argument is given showing that Coulomb attraction between conduction electrons and impurity
ions in a dilute magnetic alloy (DMA) can be disregarded, provided the system’s inverse temper-
ature β is replaced by an effective inverse temperature t < β. This replacement allows to remove
the singularity in Kondo’s expression for DMA impurity resistivity and extend his theory to 0 K.
The extended Kondo formula agrees with experimental data on resistivity of CuFe in the range
of low temperatures and in the neighbourhood of the resistivity minimum.

Using an asymptotic solution of the thermodynamics of a dilute s-d system at inverse tem-
perature t, the impurity thermodynamic functions are derived and shown to provide good agree-
ment with experimental data on CuFe, CuCr and (LaCe)Al

2
alloys in the low-temperature range.

The magnitude of these functions agrees with experiment and does not require rescaling as in previ-
ous s-d theories. Nonlinear dependence of CuFe heat capacity on impurity concentration has been ac-
counted for the first time.

PACS numbers: 72.15.Qm, 75.10.Jm, 75.30.Hx

Keywords: s-d exchange Hamiltonian; resistivity; heat capacity; magnetization; susceptibility

I. INTRODUCTION

The anomalous thermal behaviour of dilute magnetic alloys (DMA) has been the subject of extensive experimental
and theoretical research over the past decades. The main stream of theoretical investigations (e.g. Refs. 1,2,3,4,5,6,
7,8,9,10,11) has focused on the construction of a conductivity theory and thermodynamics of DMA on the grounds
of the s-d Hamiltonian Hs-d introduced by Kasuya12.
Kondo’s theory of DMA impurity resistivity ∆ρ1 has successfully explained the experimentally observed dependence

of ∆ρ on impurity concentration c and temperature T in the vicinity of the resistivity minimum. Unfortunately,
the theory fails at T = 0, where Kondo’s expression for ∆ρ exhibits a logarithmic singularity. The question of removing
this singularity is known as the “Kondo problem”.
Substantial progress in understanding the anomalous DMA thermodynamics was made by Andrei et al.5,6

who solved Hs-d thermodynamics for an s-d system with indistinguishable impurities and point s-d interaction.
Their rescaled thermodynamic functions, agree, up to a small error, with experimental impurity specific heat and mag-
netization of (LaCe)Al2. The solution found in Refs. 5,6 yields universal single-impurity curves for each thermody-
namic function corresponding to a given value of impurity spin, which are independent of impurity concentration c.
The shape of experimental plots of DMA thermodynamic functions, in general, varies slowly with c (e.g. Refs. 1,

13,14), meaning that their dependence on c is nonlinear. This type of dependence has been accounted for by theory
only in exceptional cases (e.g. Refs. 1,15).
A different solution of Hs-d thermodynamics, which treats a dilute s-d system (with a smeared s-d interaction) con-

taining arbitrarily positioned distinguishable impurities and yields nonlinear dependence of thermodynamic functions
on c, was presented by the author in Refs. 16,17. The first quantization Hamiltonian Hs-d in this approach is

H
(n,M)
s-d = A(n)

(

H
(n)
0 + g2

M
∑

α=1

n
∑

i=1

U(Rα − ri)⊗ Szασzi

)

, (1)

n (M) denoting the number of electrons (impurities), A(n) the antisymmetrizer with respect to electron variables
with indices i = 1, . . . , n, and

H
(n)
0 = −

n
∑

i=1

ℏ
2

2m
∆i. (2)

Rα denotes the position vector of the αth impurity, Szα its spin operator and ri, σzi stand for the respective quantities
of the ith electron. U ≥ 0 represents any sufficiently regular function depending on |Rα−ri|, which allows application

of the Feynman-Kac theorem to exp[−βH
(n,M)
s-d ]18. This theorem was applied in Ref. 16 to derive an upper and lower

bound to the system’s free energy per electron,

f(H
(n,M)
s-d , β) := −(nβ)−1 lnTr exp[−βH

(n,M)
s-d ],
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and to prove that the two bounds coaleesce in the limit of small c → 0 (d-lim) and, as a consequence, that

lim
n→∞

d-lim f(H
(n,M)
s-d , β) = lim

n→∞

d-limmin
ξ,η

f(h(n,M)(ξ, η), β) = lim
n→∞

f(H
(n)
0 A(n), β), (3)

where h(n,M)(ξ, η) is the mean-field Hamiltonian of an s-d system S0 with separated electron and impurity vari-
ables. Both the electron subsystem Se and the impurity subsystem Simp of S0 consist of noninteracting particles.

According to Eq. (3), h(n,M)(ξ, η) is almost thermodynamically equivalent to Hs-d in the extreme dilute limit.
The 1-electron Hamiltonian of Se has the form

h(1,M)
e (ξ, η) = h̃(1,M)

e (ξ, η) +
1

2
M(ξ2 − η2)I (4)

with

h̃(1,M)
e (ξ, η) = H

(1)
0 − g

√
n(ξ − η)

M
∑

α=1

U (1)
α ⊗ σ(1)

z . (5)

U
(1)
α denoting the multiplication operator by U(Rα − ri) and η(ξ) = ξ − f2(ξ), where

f2(ξ) = − g√
n
〈Sz〉h(1)

imp

, 〈B〉h :=
Tr(B exp(−βh))

Tr exp(−βh)
, (6)

whereas h
(1)
imp is the 1-impurity Hamiltonian of Simp:

h
(1)
imp(ξ) = g

√
nξSzα +

1

2
g2S2

zα. (7)

The necessary condition for the minimum in Eq. (3) takes the form

ξ = f3(ξ) (8)

with

f3(ξ) := f1 (f2(ξ)) + f2(ξ), (9)

f1(ξ) := g
√
n
〈

Γn
1U

(1)
α σ(1)

z

〉

nΓn
1 h̃

(1,M)
e (ξ,0)

, (10)

Γn
1B

(1) := A(n)
(

B(1) ⊗ I
(n−1)

)

A(n), (11)

nΓn
1h

(1) denoting the Hamiltonian of n noninteracting fermions with the 1-fermion Hamiltonian h(1) (cf. Ref. 19).
The mean-field thermodynamics founded on Eq. (3) was used in Ref. 17 to explain the presence of the impurity

heat capacity peak of CuCr and (LaCe)Al2 in the vicinity of the Kondo temperature TK . In contradistinction to earlier
papers (e.g. Refs. 5,6,20) scaling procedures were not used and nonlinear dependence of the CuCr peak’s shape on c
was taken into account.
One of the shortcomings of DMA theories founded on s-d type Hamiltonians is the omission of the Coulomb at-

traction between impurity ions and conduction electrons. This problem has been treated in various ways in the past.
Kondo introduced an additive term in his resistivity formula1 to account for these interactions. In Refs. 21,22 the equi-
librium state of an electron gas interacting with impurity ions was studied by averaging the 1-electron Green’s function
over impurity positions. By applying this method to the 1-particle equilibrium density matrix of a quantum particle
in a field of randomly positioned wells, representing the screened Coulomb potential at each impurity site, it was shown
in Ref. 17 that in the low temperature regime, a gas of such particles behaves effectively, with respect to 1-particle
measurements, like a gas of free particles at an inverse temperature t related to the system’s real temperature T
by the equality

t(δ, T ) = δ−1 tanh(δ(kBT )
−1) (12)
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where δ = 1
2ℏ

√
Mu2m−1, u2 denoting the 2nd derivative at the well’s minimum. Accordingly, the inverse tem-

perature β = (kBT )
−1 of the s-d system under consideration will be subsequently replaced by t(δ, T + ∆T )

and δ, ∆T will be treated as adjustable parameters. The shift ∆T is introduced in order to compensate omission
of other DMA interactions in Hs-d.
In the high temperature range, t(δ, T ) approaches smoothly β, whereas lim t(δ, T ) = δ−1 as T → 0. Replacement

of β by t in Kondo’s resistivity formula1, therefore allows to account for the Coulomb interactions between impurity
ions and conduction electrons and to remove the singularity in his theory. In Section II the resulting expression
for DMA impurity resistivity ∆ρ is shown to give a good fit with experimental ∆ρ for CuFe with c = 110 ppm.
Kondo’s expression for the total DMA resistivity ρ is also shown to comply with experimental ρ under this substitution.
The objective of subsequent sections is to study the impurity heat capacity ∆C, magnetization ∆M and susceptibil-

ity ∆χ of the mean-field system S0 and to adjust the constants which enter these thermodynamic functions to obtain
the best possible agreement with experiment. For alloys with spin 1/2 impurities, such as CuFe and (LaCe)Al2,
there is good agreement between theory and experiment, as regards dependence on c and T in the low-temperature
range. In particular, nonlinear dependence of ∆C on iron concentration in CuFe has been accounted for successfully
the first time. The magnitude of all thermodynamic functions agrees with experiment. For the CuCr alloys, containing
spin 3/2 ions, agreement is slightly weaker, presumably due to the simplicity of the assumed s-d interaction in Eq. (1),
which permits only orbital s-wave scattering (cf. Ref. 2).
Computations were carried out using Wolfram’s Mathematica 5.2.

II. A SOLUTION OF THE KONDO PROBLEM

In 1964 Kondo derived his well known formula1 for the impurity resistivity of DMA:

∆ρ = cρA + cρM
(

1− 3zg2ε−1
F lnT

)

(13)

where ρA, ρM , z are constants and z is positive for antiferromagnetic s-d interaction. Inclusion of lattice resis-
tivity ρL = aT 5 yields Kondo’s expression for the total DMA resistivity ρ , which provides a good fit to the c,
T dependence of experimental data on resistivity of several DMA (cf. Ref. 1).
The breakdown of formula (13) at T = 0 can be easily amended by noting that Kondo’s theory takes into account

the Coulomb attraction between conduction electrons and impurity ions simply by including an additive constant
into the r.h.s. of Eq. (13). From the viewpoint of Eq. (12) it would be more appropriate to replace in Eq. (13)
the true inverse temperature of the alloy by t. For ∆T = 0, the resulting expression for ∆ρ then takes the form

∆ρ = ∆ρ0 +∆ρ1 ln(tanh(
δ

kBT
)) (14)

and is regular at T = 0.
Plausibility of formula (14) was tested by adjusting the constants ∆ρ0, ∆ρ1, δ to fit experimental ∆ρ(T ) data

for CuFe, with c = 22 ppm, plotted in Ref. 23. The function (14), for ∆ρ0 = 1.455/109 ohm cm per ppm, ∆ρ1 =
0.07/109 ohm cm per ppm and δ = 2/104 eV, is depicted in Fig. 1. Agreement with experiment is good.
The experimental ∆ρ data for CuFe with c = 22 ppm are quite typical. Resistivity measurements of a variety

of DMA samples point to the close similarity of ∆ρ(T )/∆ρ(0) curves for various alloys24. Formula (14) can be
therefore expected to provide good agreement with experiment for a large class of DMA.
Hamann’s expression for impurity resistivity25, with t replacing β, was also confronted with the data of Ref. 23.

Qualitative agreement was found.
Performing the substitution β → t in Kondo’s expression for total DMA resistivity ρ, one obtains

ρ(T ) = ∆ρ(T ) + ∆ρ2

(

tanh(
δ

kBT
)

)

−5

. (15)

For ∆ρ0 = 319.2937×10−4µohm cm , ∆ρ1 = 2×10−3µohm cm , ∆ρ2 = 1.065×10−7µohm cm and δ = 2.66×10−4 eV,
the function ρ(T ) provides a good fit to the experimental plot of ρ(T ) for CuFe with c = 1.23 × 10−3 (Ref. 26)
and is depicted in Fig. 2.
The graphs of kBT and t(δ, T )−1 for δ = 2.66 × 10−4 eV are plotted in Fig. 3. Close similarity of the two plots

above 15 K shows that Eq. (15) provides an extension of Kondo’s formula (14) to the vicinity of 0 K.
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FIG. 1: Impurity resistivity ∆ρ of CuFe, with c = 22 ppm, as given by Eq. (14), for ∆ρ0 = 1.455/109 ohm per ppm, ∆ρ1 =
0.07/109 ohm cm per ppm and δ = 2/104 eV. The points are experimental results from Ref. 23.
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FIG. 2: The total resistivity ρ of CuFe, with c = 1.23/103 , as given by Eq. (15), for ∆ρ0 = 319.2937/104 µohm cm, ∆ρ1 =
2/103 µohm cm, ∆ρ2 = 1.065/107 µohm cm and δ = 2.66/104 eV. The points are experimental results from Ref. 26.

III. MEAN-FIELD IMPURITY HEAT CAPACITY

Expressions for the mean-field energy ∆Us-d and heat capacity ∆C of a dilute s-d system, relative to that of a free
electron gas, will be derived, using the Hamiltonian h(n,M)(ξ, η), and compared with experimental data on impu-
rity heat capacity of CuFe13,27, (LaCe)Al2

28 and CuCr29. The system’s inverse temperature β will be replaced
by t(δ, T ). To compensate deficiencies of Hs-d, such as non-inclusion of the interaction between d-electrons present
in the Anderson Hamiltonian, a shift ∆T > 0 in the temperature scale will be implemented (cf. Refs. 2,28). Thus the ef-
fective inverse temperature (EIT)

t(δ, T +∆T ) = δ−1 tanh
(

δ(kB(T +∆T ))−1
)

. (16)
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FIG. 3: The graphs of kBT and t(δ, T )−1 for δ = 2.66/104 eV.

A. CuFe alloys

The spin of the Fe ions in CuFe equals 1/2 according to Ref. 27, therefore

f2(ξ) =
γ

M
√
n1

tanh (t(δ, T +∆T )γ
√
n1ξ) (17)

where n = Mn1, γ =
√
Mg, n1 denoting the number of conduction electrons per impurity. f1 defined by Eq. (10)

is a linear function in the simplest approximation: f1(ξ) = b0 + b1ξ + . . .17.
The expectation energy of a spin 1/2 system Simp containing M impurities with the 1-impurity Hamiltonian (7)

equals

Uimp =
〈

h
(M)
imp

〉

h
(M)
imp

= −M2n1ξf2(ξ) +
1

2
γ2 (18)

and, according to Appendix B of Ref. 17, the interaction energy of electrons with the Hamiltonian h̃
(n,M)
e (ξ, η) equals

∆Ue =
〈

h̃(n,M)
e (ξ, η)

〉

h̃
(n,M)
e (ξ,η)

−
〈

nΓn
1H

(1)
0

〉

nΓn
1 H

(1)
0

= −Mnf2(ξ)(b0 + b1f2(ξ) + . . .), (19)

where ξ is the minimizing solution of Eq. (8).
Using Eqs. (4), (18), (19) and the definition

h(n,M)(ξ, η) := h
(M)
imp (ξ) + h(n,M)

e (ξ, η) (20)

one obtains

∆Us-d = Uimp +∆Ue +Mnξf2(ξ)−
1

2
Mnf2

2 (ξ). (21)

The n-electron, M -impurity spin 1/2 s-d system will be now treated as a subsystem of a sample S containing one
mole of impurities. The energy ∆US = 6.022× 1023M−1∆Us-d of such sample expressed in mcals, equals

∆US = 602.2× 38271.78M−1

(

1

2
γ2 − 1

2
M2n1f

2
2 (ξ)−M2n1f2(ξ)(b0 + b1f2(ξ) + . . .)

)

, (22)

if b0, γ, δ, ξ are given in powers of eV.
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TABLE I:

Alloy c n1 b0[10
−3

√
eV] b1 γ[

√
eV] M δ[10−4 eV] ∆T [K]

CuFe 0.05% 2000 0.1 −101 0.19 108 7.14 2.6

CuFe 0.1% 1000 0.1 −101 0.245 109 7.48 3

CuFe 0.2% 500 0.1 −101 0.288 1010 7.48 3.9

CuCr 212× 10−7 107/212 1.01/n1 −631 0.086 36000 10−13 0.78

CuCr 51× 10−6 106/51 1.09/n1 −461 0.091 248500 10−13 1.05
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 0.2%

FIG. 4: Impurity heat capacity ∆C of CuFe given by Eq. (23), with b0, b1, γ, M , δ, ∆T equal to the values in Table I.
The points are experimental results from Refs. 13,27.

The excess heat capacity of one mole of CuFe alloy, relative to that of one mole of pure Cu, then equals

∆C = n−1
1

(

∂∆US

∂T
+

∂∆US

∂ξ

∂ξ

∂T

)

, (23)

where ξ is the unique minimizing solution of Eq. (8) and

∂ξ

∂T
= −∂f3

∂T

(

∂f3
∂ξ

− 1

)

−1

. (24)

The mean-field ∆C(T + ∆T ) curves best fitting to experimental data of Refs. 13,27 were obtained for the values
of M , γ, b0, b1, δ, ∆T given in Table I and are depicted in Fig. 4. Agreement with experiment is good, especially
for c = 0.05%, 0.1% and below 10 K. Discrepancies at higher temperatures are presumably due to experimental error,
which increases with temperature (e.g. Refs. 28,29), and to an increase of the spin values of Fe ions in this temperature
range2,23. In fact, Triplett et al.29 estimate the spin of Fe ions in CuFe to be equal 3/2.
The minimizing solutions of Eq. (8) are plotted in Fig. 5. Uniqueness of these solutions is proved in the Appendix.
It is worth emphasizing how significantly variation of c affects the shape of both experimental and theoretical

plots of ∆C(T + ∆T ) in Fig. 4. It has been suggested by some authors (e.g. Refs. 29,30) that nonlinearity of ∆C
in c observed in DMA is due to impurity-impurity interactions. The above analysis shows that this nonlinearity
can be explained on the grounds of the s-d Hamiltonian without additional interaction terms.
Another remarkable property of the theoretical plots of ∆C(T +∆T ) in Fig. 4 is their dependence on M . The best

fitting values Mf of M fall in the range 1 ≪ Mf ≪ A = 6.022×1023. The sample S can be therefore viewed as made up
of magnetic domains, each containingMf impurities with a favoured impurity-spin orientation, which varies, in general,
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FIG. 5: The plots of the minimizing solutions ξ(T +∆T ) of Eq. (8) corresponding to the ∆C(T +∆T ) curves of CuFe depicted
in Fig. 4.

from one domain to another. Experiment has confirmed existence of magnetic domains in some magnetic materi-
als (e.g. Ref. 31). The orientation of electron spins is opposite to that of impurities, as follows from Eqs. (5), (7).
Since the solution ξ(T ) of Eq. (8) decreases with decreasing T (Fig. 5), it follows that the ordering of impurity spins

declines as the temperature is lowered. A similar dependence of ξ(T ) on c can be observed. In order to find lim ξ(T )
as T → 0 for small enough c let us recall that lim t(δ, T ) = β as δ → 0. The graphs of ξ(T ) for t = β, depicted
in Fig. 3 of Ref. 17, as well as the form of Eq. (8) in all cases considered therein, show that as T → 0, lim ξ(T ) = 0
if δ = 0, ∆T = 0. Hence, there is no ordering of impurity spins at T = 0 if δ = 0, ∆T = 0, a picture which agrees
with the RKKY description of interactions between impurity spins in a DMA.

B. (LaCe)Al
2

Bader et al.28 performed interesting measurements of ∆C/c on (La1−xCex)Al2, with x = 0.0064, in external
magnetic fields ranging from 0 kOe to 38 kOe. For strong fields Andrei et. al., obtained good agreement of their 1-
impurity ∆C(T ) function with rescaled data of Ref. 28.
According to Refs. 14,28, a typical Kondo effect, without any superconducting side-effects observed

in (La1−xCex)Al2 with Ce content exceeding x = 0.0067. However, for x = 0.0064, Bader et. al. estimate the difference
between the expected normal state and measured superconducting-state heat capacities as insignificant. Thus a mean-
field normal-state theory of ∆C/c for (La1−xCex)Al2, with x = 0.0064, can be expected to provide good agreement
with experiment.
The number of valence electrons per host atom in LaAl will be assumed 8/3. For x = 0.0064,

c =
0.0064

2.9936
=

4

1871
, n1 =

8

3
c−1 =

3742

3
.

The ground state of the Ce ion can be described by a spin with magnitude 1/2 and a modified Lande factor g′ =
10/7 (Ref. 14), therefore in the presence of an external magnetic field H , the system’s Hamiltonian is

H
(n,M)
s-d (H) = H

(n,M)
s-d − 1

2
g′µBH̃

∑

α

Szα − 1

2
µBHA(n)

∑

i

I0 ⊗ σzi, (25)

I0 denoting the identity in L2(R3)n and

f2(ξ) =
γ

M
√
n1

tanh

(

t(δ, T +∆T )(γ
√
n1ξ −

1

2
g′µBH̃)

)

, (26)
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FIG. 6: The plots of ∆C(T + ∆T )/c of (La1−xCex)Al2 in various external magnetic fields, as given by Eqs. (23), (27),
for x = 0.0064 and b0, b1, γ, M , δ, ∆T , g0 equal to the values in Table II. The points are experimental results from Ref. 28.

TABLE II:

b0[10
−4

√
eV] b1 γ[10−4

√
eV] M δ[10−5 eV] ∆T [K] g0 H [kOe] g2[10−9 eV]

1.9 −13101 3.1 65 3.1215 0.39 - 0 1.4785

1.9 −13101 3.1 64 0.6243 0.27 0.006 2 1.50156

1.9 −13101 7.285 215 3.1215 0.11 0.006 20 2.46843

1.9 −13101 10.85 850 12.486 0.1 0.006 38 1.38497

where H̃ = g0H is the effective magnetic field at each impurity site and µB the Bohr magneton. The excess en-
ergy ∆US/c of a sample S of (LaCe)Al2, with x = 0.0064, expressed in joules, equals

c−1∆US =
1

4
M−11871× 602.2× 160.2×

(

1

2
γ2 − 1

2
M2n1f2(ξ)

2 −M2n1f2(ξ) (ξ − f2(ξ)) +
1

2
γ−1µBg

′H̃M2√n1f2(ξ)

) (27)

if b0, γ, δ, ξ are expressed in powers of eV. For one mole of impurities

∆C =
∂∆US

∂T
+

∂∆US

∂ξ

∂ξ

∂T
. (28)

Adjusting the parameters b0, b1, γ, M , δ, ∆T , g0, one obtains the best fitting to experiment ∆C(T + ∆T )/c
curves plotted in Fig. 6. The corresponding values of the parameters are given in Table II. The mean-field thermody-
namics founded on the Hamiltonian h(n,M) thus provides satisfactory agreement with experimental data on the field
dependence of ∆C(T ).
The value of g0 was found by adjusting ∆C(T+∆T )/c to experiment forH = 2 kOe, with b0, b1, γ equal to their best

fitting values for H = 0 and allowing only small variations of M . The smallness of g0 indicates the strong influence
of the Kondo effect in the formation of a polarization cloud of conduction electrons around each impurity. The cloud
screens each magnetic ion from interactions with other magnetic ions27 and, as implied by the inequality g0 ≪ 1,
also from the applied field H .
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FIG. 7: The graph of ∆C(T +∆T )/c of CuCr with c = 21.7 ppm as given by Eqs. (23), (31), with b0, b1, γ, M , δ, ∆T equal
to the values in Table I. The points are experimental results from Ref. 29.

C. CuCr alloys

Triplett et. al.29 performed high-precision measurements of CuCr impurity heat capacity ∆C for a variety of con-
centrations. For c = 51 ppm their ∆C(T ) peak is well defined and terminates at low temperatures with a ∆C jump
which they consider to be the effect of impurity-impurity interactions. Explanation of these experimental ∆C(T )
data above the jump temperature is a challenge to any s-d theory.
According to Monod et. al.32 the spin of the Cr ions in CuCr equals 3/2. Thus one finds

f2(ξ) =
γ

M
√
n1

3e−4tγ2M−1

sinh
(

3tγ
√
n1ξ
)

+ sinh
(

tγ
√
n1ξ
)

e−4tγ2M−1 cosh
(

3tγ
√
n1ξ
)

+ cosh
(

tγ
√
n1ξ
) (29)

and

Uimp =
〈

h
(M)
imp

〉

h
(M)
imp

= −M2n1ξf2(ξ) +
1

2
γ2 + f4(ξ) (30)

where

f4(ξ) = 4γ2 e−4tγ2M−1

cosh
(

3tγ
√
n1ξ
)

e−4tγ2M−1 cosh
(

3tγ
√
n1ξ
)

+ cosh
(

tγ
√
n1ξ
) .

Using Eqs. (19), (21), one obtains the following formula for ∆US (expressed in joules) of a sample S of CuCr:

∆US = 602.2× 160.2×M−1

(

1

2
γ2 + f4(ξ)−

1

2
M2n1f

2
2 (ξ)−M2n1f2(ξ)(ξ − f2(ξ))

)

, (31)

if b0, γ, δ, ξ are given in powers of eV. ∆C(T +∆T ) obtains using Eqs. (24), (28).
The best fitting graphs of ∆C(T +∆T )/c for c = 21.7 ppm and c = 51 ppm are plotted in Figs. 7, 8. The corre-

sponding values of parameters b0, b1, γ, M , δ, ∆T are given in Table I.
Agreement with experimental data of Ref. 29 is satisfactory, especially for c = 21.7 ppm, although not as good

as for CuFe (Section IIIA), presumably due to simplicity of the assumed s-d interaction in Eq. (1) and variation
of Cr spin values at higher temperatures. It has been suggested2,33 that for larger impurity spins the s-d interaction
should account for the momentum dependence of s-d coupling.
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FIG. 8: The graph of ∆C(T + ∆T )/c of CuCr with c = 51 ppm as given by Eqs. (23), (31), with b0, b1, γ, M , δ, ∆T equal
to the values in Table I. The points are experimental results from Ref. 29.

TABLE III:

b0[10
−11√erg] b1 γ[10−10√erg] M δ[10−17erg] ∆T [K] g0 H [kOe] g2[10−24erg]

28.8576 −13101 3.9237 104 2 0.045 0.006 1 15.3954

38.4768 −13101 7.8474 2× 104 3.1 0.094 0.006 2 30.7908

48.096 −13101 19.6185 2.5× 104 4 0.18 0.006 5 153.9542

48.096 −13101 39.237 3× 104 4.2 0.23 0.006 10 513.1807

IV. MAGNETIZATION OF (LaCe)Al
2

Various measurements of DMA impurity magnetization ∆M (e.g. Ref. 14 and references therein) point to a similar
field dependence of the ∆M(H,T ) vs. H/T curves. A typical experimental plot of ∆M(H,T ), for (La1−xCex)Al2
with x = 0.015, can be found in Ref. 14. The single-impurity theoretical ∆M(H,T ) curves found by Andrei et al.5,6

fit the rescaled data of Ref. 14 up to a small error.
As implied by the form of the mean-field counterpart of the Hamiltonian (25), viz.,

h(n,M)(H) = h(n,M)(ξ, η)− 1

2
g′µBH̃

∑

α

Szα − 1

2
µBH

∑

i

I0 ⊗ σziA
(n),

for a mole of spin 1/2 impurities

∆M =
1

2
g′µB

A
∑

α=1

〈Szα〉h(A)
imp

=
1

2
g′µBA tanh

(

t(δ, T +∆T )(
1

2
g′µBH̃ − γ

√
n1ξ)

)

(32)

where ξ is the unique solution of Eq. (8) with f2(ξ) given by Eq. (26). The resulting plots of ∆M(H,T ) for various
applied fields are depicted in Fig. 9. The corresponding values of b0, b1, γ, M , δ, g0 are presented in Table III.
Agreement with experiment is good in the range of low temperatures, but less satisfactory at higher T .



11

1E-1 1 10 100

0

500

1000

1500

2000

2500

 1 kOe
 2 kOe
 5 kOe
 10 kOe

I
 I 

[e
m

u 
(m

ol
e 

C
e 

)-1
]

H/T [ kOe/K ]

FIG. 9: The impurity magnetization |∆M | of (La1−xCex)Al2 in various external magnetic fields as given by Eq. (32), with x =
0.015 and b0, b1, γ, M , δ, ∆T , g0 equal to the values in Table III. The points are experimental results from Ref. 14.

V. MAGNETIC SUSCEPTIBILITY

The zero-field impurity susceptibility

∆χ =

(

∂∆M

∂H̃
+

∂∆M

∂ξ

∂ξ

∂H̃

)

H̃=0

(33)

has been the most frequently measured property of DMA. The theory of ∆χ, developed by Souletie et al.15 for a DMA
with RKKY interaction between impurities, predicts a dependence of the form

∆χ(T, c) = f(T/c) (34)

where f is a function independent of concentration. Felsch et al.14 have confirmed approximate validity of Eq. (34)
for (La1−xCex)Al2 with x ranging from 0.02 to 0.06.
Here validity of formula (33), with ∆M given by Eq. (32), is tested on ∆χ experimental data for CuFe with c =

110 ppm (Ref. 23) and (La1−xCex)Al2 with x = 0.015, 0.02 (Ref. 14).

A. CuFe

Daybell et al.23 expressed their measured ∆χ values for CuFe in emu per gram of alloy per ppm. Formula (32),
expressed in these units, takes the form

∆MCuFe =
1

220
g′µBMFe tanh

(

t(δ, T +∆T )(
1

2
g′µBH̃ − γ

√
n1ξ)

)

(35)

where MFe = 1.042032405×1018 is the number of Fe ions contained in one gram of CuFe with c = 110 ppm. A possible
fit of the resulting function ∆χ, expressed in these units, to the experimental data on ∆χ, for CuFe from Ref. 23
is presented in Fig. 10. The corresponding values of the parameters are given in Table IV. Concavity of the ∆χ(T−1)
curve in Fig. 10 appears not to be fully adjustable to concavity of the experimental plot at higher temperatures,
however, agreement is satisfactory in the range of low temperatures. The discrepancy between theory and experiment
at higher T is presumably due to the increase of Fe spin values with increasing T (Ref. 23).
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FIG. 10: The impurity susceptibility ∆χ(T−1) of CuFe, with c = 110 ppm, as given by Eq. (33), with b0, b1, γ, M , δ, g′,
∆T equal to the values in Table IV. The points are experimental results from Ref. 23.

TABLE IV:

Alloy x n1 b0[10
−10√erg] b1 γ[10−15√erg] M δ[10−17 erg] g′ ∆T [K]

CuFe - 105/11 8 −101 1 104 1 1.05 0.005

(La1−xCex)Al2 0.015 1592/3 2.4048 −13101 392370 200 1 10/7 0.2

(La1−xCex)Al2 0.02 1192/3 2.4048 −13101 392370 400 0.1 10/7 0.6
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FIG. 11: The inverse impurity susceptibility ∆χ(T +∆T )−1 of (La1−xCex)Al2 according to Eq. (33), with x, b0, b1, γ, M , δ,
g′, ∆T equal to the values in Table IV. The points are experimental results from Ref. 14.
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B. (LaCe)Al
2

Felsch et al.14 performed detailed measurements of (La1−xCex)Al2 susceptibility for x ranging from 0.01 to 0.2.
Their plots of ∆χ(T )−1 for x = 0.01, 0.015 are almost indistinguishable and follow a Curie-Weiss law

∆χ(T ) = χCF (T )T/(T +Θ), χCFT = const (36)

for T ∈ (0.15 K, 3 K). Below 0.15 K their data on ∆χ(T )−1 for x = 0.015, deviate from Eq. (36) to lower values,
contrary to measurements of ∆χ on AuV34 and earlier theories4,20,35,36 which predict a flattening-off of ∆χ(T )−1 to
higher values. For x ≥ 0.02 the ∆χ(T )−1 curves of Ref. 14 no longer obey Eq. (36) and exhibit a weak concavity.
Eq. (33), with ∆M expressed by Eq. (32), provides a good fit to the ∆χ(T +∆T )−1 data of Ref. 14 for x = 0.01,

0.015 and, as could be expected from Eq. (3), a less satisfactory adjustment for x ≥ 0.02. The plots of ∆χ(T +∆T )−1,
as given by Eq. (33), are depicted in Fig. 11 for x = 0.015, 0.02. A minor deviation from the Curie-Weiss law at very
low temperatures, similar to the one found for AuV in Ref. 34, can be observed. The corresponding values of b0, b1,
γ, M , δ are given in Table IV.

VI. CONCLUDING REMARKS

The mean-field theory of dilute s-d systems presented in Ref. 16 has, in general, proved successful in providing quan-
titative explanation of the T , c, H dependence of DMA heat capacity, magnetization and susceptibility in the range
of low temperatures.
It has been shown that nonlinear dependence of DMA impurity heat capacity on c can be explained in the dilute

limit exclusively in terms of the s-d interaction, without introducing an impurity-impurity potential.
The EIT t has improved the dependence of all thermodynamic functions on temperature and removed the singularity

in Kondo’s expression for DMA impurity resistivity.
Deviations of the theory from experiment, in the case of heat capacity, magnetization and CuFe susceptibility,

are presumably due to increasing spin values of impurity ions observed in some DMA at higher temperatures and
simplicity of the s-d coupling assumed. It has been suggested that, apart from s-wave, the coupling should account for
the d-type character of the interaction.
Further improvement of the theory can be expected after including higher expansion terms of f1 and correction terms

to the mean-field free energy. The variation of impurity spin values at higher temperatures also suggests investigation
of the thermodynamics of a more general s-d system containing impurity spins with various S = 1/2, 1, 3/2, . . ..

APPENDIX

To prove uniqueness of the minimizing solutions of the equations

∂

∂ξ
f(h(n,M)(ξ, η), β) = 0, (A.1)

∂

∂η
f(h(n,M)(ξ, η), β) = 0, (A.2)

it suffices to note that Eqs. (A.1), (A.2) take the form (cf. Ref. 16)

ξ = f1(ξ − η) + f2(ξ), (A.3)

η = f1(ξ − η). (A.4)

Thus, η(ξ) = ξ − f2(ξ), and therefore, for η satisfying these equations16,

d

dξ
f(h(n,M)(ξ, η(ξ)), β) =

∂

∂ξ
f(h(n,M)(ξ, η(ξ)), β) = M(ξ − f1(f2(ξ))− f2(ξ)). (A.5)

Since f1(x) = b0 + b1x and b1 < 0, 1 ≪ |b1|, f ′

2(ξ) > 0, it follows that the solution ξm of Eq. (8) is unique and

d

dξ
f(h(n,M)(ξ, η(ξ)), β) < 0 for ξ < ξm,
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d

dξ
f(h(n,M)(ξ, η(ξ)), β) > 0 for ξ > ξm.
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