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Institute of Mathematics, Jagiellonian University

Reymonta 4, 30-059 Kraków, Poland

wojciech.slomczynski@im.uj.edu.pl

Tomasz Zastawniak

Department of Mathematics, University of York

Heslington, York YO10 5DD, UK

tz506@york.ac.uk

Abstract

The notion of utility maximising entropy (u-entropy) of a probability den-
sity, which was introduced and studied in [SZ04], is extended in two di-
rections. First, the relative u-entropy of two probability measures in ar-
bitrary probability spaces is defined. Then, specialising to discrete prob-
ability spaces, we also introduce the absolute u-entropy of a probability
measure. Both notions are based on the idea, borrowed from mathemat-
ical finance, of maximising the expected utility of the terminal wealth of
an investor. Moreover, u-entropy is also relevant in thermodynamics, as it
can replace the standard Boltzmann-Shannon entropy in the Second Law.
If the utility function is logarithmic or isoelastic (a power function), then
the well-known notions of the Boltzmann-Shannon and Rényi relative en-
tropy are recovered. We establish the principal properties of relative and
discrete u-entropy and discuss the links with several related approaches
in the literature.

1 Introduction

The notion of utility maximising entropy (or u-entropy for brevity) of a density f
of a probability distribution with respect to a given probability measure µ was
introduced and studied by two of the present authors in [SZ04].

The work in [SZ04] was motivated, on the one hand, by problems in math-
ematical finance concerned with a trader with a concave utility function u who
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wants to maximise the expected utility Eν(u(w)) under the true market proba-
bility measure ν over all contingent claims w (where w is a non-negative random
variable representing the final value of a contingent claim) whose initial value
Eµ(w) under a pricing measure µ is equal to the initial wealth of the trader, taken
to be 1 for simplicity, so that Eµ(w) = 1. A value c ∈ R, called the certainty
equivalent, can be assigned to each contingent claim w so that u(c) = Eν(u(w)).
If ν is absolutely continuous with respect to µ with density f , then the u-entropy
Hu(f) is defined as the highest possible value of the logarithm of the certainty
equivalent c over all contingent claims w with initial value Eµ(w) = 1.

Expected utility maximisation problems in mathematical finance have been
studied extensively, for example, in [PK96], [AIS98], [REK00], [GR01], [BF02],
[FB05], [Gun05], [GF06]. Some of the most general and elegant results, which
have provided much inspiration for our work, belong to Kramkov and Schacher-
mayer [KS99], [KS03], [Sch04], [HKS05].

On the other hand, further motivation for u-entropy comes from thermody-
namics and statistical mechanics. When u(x) = lnx, then the u-entropy Hu(f)
is equal to the classical Boltzmann-Gibbs entropy H(f) = Eµ(f ln f) (note the
sign convention typical of mathematical literature; the opposite sign for entropy
would normally be used in physics). The properties of the Boltzmann-Gibbs
entropy H(f) and, in particular, its role in the Second Law of thermodynamics
provided a fertile ground for generalisation to the case of u-entropy. As is very
well known, a physical system in state f evolves towards equilibrium whenever
H(f) tends to zero. An extension of this and other properties of entropy was
achieved in [SZ04] by replacing the Boltzmann-Gibbs entropy H(f) with the
u-entropy Hu(f) for an arbitrary u from a broad class of utility functions.

In the present paper the concept of u-entropy is extended further to include
relative entropy of two arbitrary probability measures ν and µ. It will be called
the relative u-entropy and denoted by Hu (ν ‖ µ). We also introduce the u-
entropy hu(p) of a probability measure p (rather than the relative entropy of
one measure with respect to another or that of a density with respect to a given
probability measure), but to do so need to specialise to the case of a discrete
probability space, where p is a probability vector.

We establish some properties of relative u-entropy and discrete u-entropy,
and study their relationships with other similar approaches in the literature.
In particular, we discuss a link with the recent work by Friedman, Huang and
Sandow [FHS07], and with a much older approach by Arimoto [Ari71], which
does not refer to utility maximisation explicitly but is based on a similar concept.
These two approaches work in the discrete case only. Moreover, returning once
again to general probability spaces, we also establish a connection of relative u-
entropy with Frittelli’s generalised distance between two probability measures,
introduced in [Fri00] to solve the dual convex problem in a utility maximisation
framework for asset pricing in an incomplete market.

It will prove convenient to adopt the convention∞·0 = −∞·0 = 0 through-
out this paper.
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2 Utility maximising relative entropy

2.1 Utility functions

Definition 2.1 Let u : (0,∞)→R. We call u a utility function whenever u
satisfies the Inada conditions, that is, u is a strictly concave strictly increasing
continuously differentiable function such that

u′ (0) := lim
xց0

u′ (x) =∞, u′ (∞) := lim
xր∞

u′ (x) = 0 .

We shall also use the notation

u (0) := lim
xց0

u (x) , u (∞) := lim
xր∞

u (x) .

Proposition 2.2 The function I := (u′)
−1

: (0,∞) → (0,∞) is strictly de-

creasing and satisfies

I (0) := lim
xց0

I (x) =∞, I (∞) := lim
xր∞

I (x) = 0 .

Definition 2.3 Let u : (0,∞) → R be a utility function. The convex dual
u∗ : (0,∞)→ R is defined by

u∗ (y) = sup
x>0

(u (x)− yx) (2.1)

for any y ∈ (0,∞). We also put

u∗(0) := lim
xց0

u∗(x) = u(∞), u∗ (∞) := lim
xր∞

u∗ (x) = u(0). (2.2)

If Λ > 0 and s = 0, we put I (Λ/s) := 0 and u∗ (Λ/s) := u (0), consistently
with the adopted notation I (∞) = 0 and u∗ (∞) = u (0).

Example 2.4 Let γ ∈ (−∞, 1). Define u : (0,∞)→ R by

u (t) =

{ 1
γ

(tγ − 1) for t ∈ (0,∞) and γ ∈ (−∞, 0) ∪ (0, 1)

ln t for t ∈ (0,∞) and γ = 0
.

We call u the isoelastic utility of order γ if γ 6= 0, and the logarithmic
utility if γ = 0.

The following definition is due to Kramkov and Schachermayer [KS99].

Definition 2.5 The asymptotic elasticity of a utility function u : (0,∞)→
R is defined by

AE(u) = lim sup
xր∞

xu′ (x)

u (x)
.

A utility function u is said to have reasonable asymptotic elasticity if
AE(u) < 1.

Under the assumption of reasonable asymptotic elasticity, duality theory for
utility maximisation works in a similar manner as in the finite-dimensional case.
See [Sch04] for equivalent formulations of this assumption and a discussion of
its economic meaning.
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2.2 Relative u-entropy and u-entropy

2.2.1 Definition

Notation 2.6 Let (Ω,Σ) be a measurable space. We denote by M1(Ω,Σ) the
space of all probability measures on (Ω,Σ). For any µ ∈ M1(Ω,Σ) we denote
by D (µ) the set of all densities on the probability space (Ω,Σ, µ), that is,

D (µ) :=

{
w ∈ L1 (µ) : w ≥ 0 and

∫

Ω

wdµ = 1

}
.

By B (Ω,Σ) we denote the set of all bounded measurable real-valued functions on
(Ω,Σ). In the sequel we shall write simply M1 and B whenever the measurable
space (Ω,Σ) is unambiguous. For any µ ∈ M1 and f ∈ D(µ) we shall write fµ
to denote the measure in M1 with density f with respect to µ.

Definition 2.7 Let u : (0,∞)→R be a utility function. Let (Ω,Σ) be a mea-
surable space and let ν, µ ∈M1 (Ω,Σ). We put

Nu (ν ‖ µ) := sup
w∈A(ν,µ)

∫

Ω

u (w) dν ,

where
A (ν, µ) :=

{
w ∈ D (µ) : u (w)

− ∈ L1 (ν)
}

.

Here x− = max(−x, 0) denotes the negative part of x ∈ R. Note that∫
Ω u(w)dν ∈ (−∞,∞] for each w ∈ A (ν, µ). We define

Hu (ν ‖ µ) := lnu−1 (Nu (ν ‖ µ))

and call it the relative u-entropy (or relative utility maximising entropy)
of ν with respect to µ.

Definition 2.8 (from [SZ04]) Let u : (0,∞)→ R be a utility function and let
µ ∈M1. For any f ∈ D(µ) we put

Nu (f) := sup
w∈A(f)

∫

Ω

u (w) f dµ ,

where
A (f) :=

{
w ∈ D (µ) : u (w)

− ∈ L1 (fµ)
}

.

Note that
∫
Ω
u(w)f dµ ∈ (−∞,∞] for each w ∈ A (f). We define

Hu (f) := lnu−1 (Nu (f))

and call it the u-entropy (utility maximising entropy) of f .

The next proposition follows immediately from the definitions.

Proposition 2.9 Let µ ∈M1 and f ∈ D(µ). Then

Nu (f) = Nu (fµ ‖ µ) ,

Hu (f) = Hu (fµ ‖ µ) .
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2.2.2 Properties

Proposition 2.10 The following inequalities hold:

u (1) ≤ Nu (ν ‖ µ) ≤ u (∞) ,

0 ≤ Hu (ν ‖ µ) ≤ ∞ .

Proof Taking w ≡ 1 ∈ A (ν, µ) , we obtain the lower bound. The upper bound
follows immediately from the definition.

Proposition 2.11 Let µ, ν1, ν2 ∈M1 and a ∈ [0, 1]. Then

Nu (aν1 + (1− a) ν2 ‖ µ) ≤ aNu (ν1 ‖ µ) + (1− a)Nu (ν2 ‖ µ) .

Proof Put ν := aν1 + (1− a) ν2. First observe that for w ∈ D (µ) we
have

∫
Ω
u− (w) dν = a

∫
Ω
u− (w) dν1 + (1− a)

∫
Ω
u− (w) dν2, and so A (ν, µ) =

A (ν1, µ) ∩ A (ν2, µ). Hence

Nu (aν1 + (1− a) ν2 ‖ µ)

= sup

{∫

Ω

u (w) dν : w ∈ A (ν, µ)

}

= sup

{
a

∫

Ω

u (w) dν1 + (1− a)

∫

Ω

u (w) dν2 : w ∈ A (ν, µ)

}

≤ a sup

{∫

Ω

u (w) dν1 ∈ A (ν, µ)

}
+ (1− a) sup

{∫

Ω

u (w) dν2 : w ∈ A (ν, µ)

}

≤ a sup

{∫

Ω

u (w) dν1 ∈ A (ν1, µ)

}
+ (1− a) sup

{∫

Ω

u (w) dν2 : w ∈ A (ν2, µ)

}

= aNu (ν1 ‖ µ) + (1− a)Nu (ν2 ‖ µ) ,

as desired.

Next we show that relative u-entropy can be reduced to the case when ν ≪ µ.

Theorem 2.12 Let µ, ν ∈M1. Then

Nu (ν ‖ µ) = ν⊥ (Ω)u (∞) + ν≪ (Ω)Nu

(
ν≪

ν≪ (Ω)
‖ µ

)
,

where ν⊥ + ν≪ = ν is the Lebesgue decomposition of ν into the singular part ν⊥
and absolutely continuous part ν≪ with respect to µ.

Proof Let A ∈ Σ be such that µ (A) = 0 and ν⊥ (A) = ν⊥ (Ω).
Step 1. If ν ≪ µ, that is, ν⊥ (Ω) = 0, then the assertion is trivial. Suppose

that ν ⊥ µ, i.e., ν⊥ (Ω) = 1. Then ν (A) = 1 and wn :≡ n1A + 1Aq ∈ A (ν, µ)
for n ∈ N, and

∫
Ω u (wn) dν = u (n). Hence and from Proposition 2.10 we get

Nu (ν ‖ µ) = u (∞), as required.
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Step 2. Now we assume that 0 < ν⊥ (Ω) < 1. Note that ν = ν⊥ (Ω) ν⊥
ν⊥(Ω) +

ν≪ (Ω) ν≪
ν≪(Ω) , and from Proposition 2.11 and from Step 1 we get

Nu (ν ‖ µ) ≤ ν⊥ (Ω)u (∞) + ν≪ (Ω)Nu

(
ν≪

ν≪ (Ω)
‖ µ

)
.

Let now w ∈ A
(

ν≪
ν≪(Ω) , µ

)
. Put wn :≡ n1A + w1Aq for n ∈ N. Clearly,

wn ∈ A (ν, µ) and

ν⊥ (Ω)u (n) + ν≪ (Ω)

∫

Ω

u (w) d
ν≪

ν≪ (Ω)
=

∫

Ω

u (wn) dν ≤ Nu (ν ‖ µ) .

Taking n→∞ completes the proof.

Corollary 2.13 In particular, if u (∞) =∞ and ν is not absolutely continuous

with respect to µ, or if ν ⊥ µ, then Nu (ν ‖ µ) = u (∞) and Hu (ν ‖ µ) =∞.

Proposition 2.14 Let µ, ν ∈M1. Then the following conditions are equivalent:

(1) Nu (ν ‖ µ) < u (∞) ;

(2) Nu (ν ‖ µ) <∞ ;

(3) Hu (ν ‖ µ) <∞ .

In particular, all three conditions are satisfied for any utility function u such

that u (∞) <∞.

Proof The implications (1) ⇒ (3) ⇒ (2) are obvious, as is (2) ⇒ (1) when
u(∞) =∞.

We shall prove 2) ⇒ 1) when u(∞) < ∞. Put An := {w ≥ n} for any
n ∈ N. Then

⋂
n∈N

An = ∅. Consequently, there exists an n ∈ N such that
ν (An) =: γ < 1. Hence

∫

Ω

u (w) dν =

∫

An

u (w) dν +

∫

(An)
q

u (w) dν

≤ u (∞) γ + u (n) (1− γ)

for any w ∈ A (ν, µ). Thus Nu (ν ‖ µ) ≤ u (∞) γ + u (n) (1− γ) < u (∞), as
required.

Proposition 2.15 The following conditions are equivalent:

(1) Hu (ν ‖ µ) = 0 ;

(2) ν = µ .
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Proof (1) ⇒ (2). Let ν = µ. Take w ∈ A (ν, µ). By Jensen’s inequality∫
Ω u(w)dν ≤ u

(∫
Ωwdν

)
= u (1). Hence, by Proposition 2.10, Nu (ν ‖ µ) = u(1),

and so Hu (ν ‖ µ) = 0.
(2) ⇒ (1). Suppose that ν 6= µ. Then there is an A ∈ Σ such that µ(A) 6=

ν(A) and µ(A) < 1. We put

wa := a1A +
1− aµ(A)

µ(Aq)
1Aq ,

ϕ (a) :=

∫

Ω

u(wa)dν = u(a)ν(A) + u

(
1− aµ(A)

µ(Aq)

)
ν(Aq)

for any a ∈ (0, 1/µ(A)). Clearly, wa ∈ A (ν, µ) and w1 ≡ 1. Moreover,

ϕ′ (1) = u′ (1) ν(A)−µ(A)
µ(Aq) 6= 0. Hence there exists an a ∈ (0, 1/µ(A)) such that∫

Ω u (wa) dν = ϕ (a) > ϕ (1) =
∫
Ω u (w1) dν = u (1). Thus Hu (ν ‖ µ) > 0.

Proposition 2.16 (linear transformation) Let u : (0,∞)→R be a utility

function, let a > 0 and let b ∈ R. Then ũ = au + b is a utility function,

and for any ν, µ ∈M1

Neu (ν ‖ µ) = aNu (ν ‖ µ) + b ,

Heu (ν ‖ µ) = Hu (ν ‖ µ) .

Proof This follows immediately from the definition.

Remark 2.17 It has recently been proved by Urbański [Urb07] that in prob-
ability spaces without atoms ũ = au + b is not only a sufficient condition, but
in fact an equivalent condition for Heu = Hu. The equivalence can fail in a
probability space with atoms.

In [SZ01, Theorem 20] we established a formula for u-entropy by convex du-
ality methods. Namely, under the reasonable asymptotic elasticity assumption,
if f ∈ D (µ), then

Nu (f) =

∫

Ω

u (I (Λf/f)) f dµ =

∫

Ω

u∗ (Λf/f) f dµ + Λf ,

Hu (f) = lnu−1

(∫

Ω

u (I (Λf/f)) f dµ

)
,

where Λf > 0 is given implicitly as the unique solution of

∫

Ω

I (Λf/f) dµ = 1 .

Combined with Theorem 2.12, this makes it possible to evaluate the relative
u-entropy Hu (ν ‖ µ) for any ν, µ ∈M1.
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Example 2.18 (logarithmic utility) Let u : (0,∞)→R be given by u (x) =
lnx for x ∈ (0,∞). Then Hu is equal to the Boltzmann-Shannon relative
entropy

H1 (ν ‖ µ) =

{ ∫
Ω

dν
dµ

ln dν
dµ

dµ if ν ≪ µ ,

∞ otherwise

for µ, ν ∈M1.

Example 2.19 (isoelastic utility) Let u : (0,∞)→R be given by u (x) =
1
γ

(xγ − 1) for γ ∈ (−∞, 0) ∪ (0, 1) and x ∈ (0,∞). Then Hu is equal to the

Rényi relative entropy of order α = (1− γ)
−1 ∈ (0, 1) ∪ (1,∞) given by

Hα (ν ‖ µ) =





1
α−1 ln

∫
Ω

(
dν≪
dµ

)α
dµ if γ ∈ (−∞, 0) ,

1
α−1 ln

∫
Ω

(
dν
dµ

)α
dµ if γ ∈ (0, 1) and ν ≪ µ ,

∞ otherwise

for µ, ν ∈M1.

Remark 2.20 The Boltzmann-Shannon relative entropy was introduced in
[KL51] under the name of directed divergence. It is also called the Kullback-
Leibler divergence, relative information, conditional entropy, information gain
or function of discrimination. The definition of the Rényi relative entropy (or
divergence) of order α was proposed in [Rén61].

3 Discrete u-entropy

Let Ω = {ω1, . . . , ωk} be a finite probability space equipped with the sigma-
field Σ = 2Ω of all subsets of Ω. The family of probability measures on
(Ω,Σ) will be denoted by Sk. For any p ∈ Sk we shall write pi = p(ωi)
for i = 1, . . . , k. Thus, we can identify Sk with the set of probability vec-

tors
{
p ∈ R

k :
∑k

i=1 pi = 1 and pi ≥ 0 for i = 1, . . . , k
}

. Our definition of the

relative u-entropy covers also the discrete case. In this situation (though not
necessarily in the general case) it is also possible to define the (non-relative)
u-entropy as follows.

Definition 3.1 Let u : (0,∞)→R be a utility function, and let p ∈ Sk. Then
we put

nu (p) := sup
w∈Sk

k∑

i=1

u (wi) pi ,

and define the discrete u-entropy of p by

hu (p) := − lnu−1 (nu (p)) .

Remark 3.2 Note that hu depends only on the restriction of u to (0, 1].
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Proposition 3.3 Let u : (0,∞)→R be a utility function. Let p ∈ Sk and let

p(k) ∈ Sk be the uniform probability vector, that is, (p(k))i = 1/k for each

i = 1, . . . , k. Then

Hu

(
p ‖ p(k)

)
= ln k − huk

(p) ,

where uk : (0,∞)→R is the rescaled utility function

uk (x) := u (kx) (3.1)

for x ∈ (0,∞).

Proof Since u−1 = ku−1
k and

Nu(p ‖ p(k)) = sup
w∈D(p(k))

k∑

i=1

u(wi)pi

= sup
w∈Sk

k∑

i=1

u(kwi)pi = sup
w∈Sk

k∑

i=1

uk(wi)pi = nuk
(p) ,

it follows that

Hu

(
p ‖ p(k)

)
= lnu−1(Nu(p ‖ p(k))) = ln[ku−1

k (nuk
(p))] = ln k − huk

(p) .

Using the above statement we can deduce many properties of discrete u-
entropy from the respective properties of relative u-entropy. However, one can
also prove them straightforwardly without assuming anything about the be-
haviour of the function u outside the interval (0, 1]. We could assume that
u : (0, 1]→R is a strictly concave strictly increasing continuously differentiable

function such that limxց0 u
′ (x) =∞. In this case I := (u′)

−1
would be defined

on the interval [u′ (1) ,∞). The proofs of the following properties of discrete
u-entropy are elementary.

Proposition 3.4 Let p = (p1, . . . , pk) ∈ Sk. Then

(1) 0 ≤ hu(p) ≤ ln k.

(2) hu(p) = 0 iff pi = 1 for some i = 1, . . . , k.

(3) hu(p) = ln k iff p = p(k).

(4) hu(p) = hu((pπ(1), . . . , pπ(k))) for every permutation π.

(5) hu(p) = hu((p1, . . . , pk, 0)).

(6) For a > 0 and b ∈ R we have hau+b = hu.

The proof of the formula for u-entropy in the discrete case is also elementary
and, by contrast to the general case, it does not require any further assumptions
on u.
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Proposition 3.5 Let p ∈ Sk. Then:

(1) There exists a unique Λp ≥ α (p) := u′ (1) max
j=1,...,k

pj > 0 such that

k∑

i=1

I (Λp/pi) = 1 .

(2) The following formulae hold:

nu (p) =

k∑

i=1

u (I (Λp/pi)) pi =

k∑

i=1

u∗ (Λp/pi) pi + Λp , (3.2)

hu (p) = lnu−1

(
k∑

i=1

u (I (Λp/pi)) pi

)
.

Proof To prove (1) consider the function φp : [α (p) ,∞) → (0,∞) given

by φp (Λ) =
∑k

i=1 I (Λ/pi) for Λ ≥ α (p). Clearly, φp is continuous, strictly

decreasing and satisfies φp (α (p)) =
∑k

i=1 I (u′ (1) maxj=1,...,k pj/pi) ≥ 1 and
limΛ→∞ φp (Λ) = 0. As a result, there is a unique Λp ≥ α (p) such that φp (Λp) =

1, as required. It follows from (1) that nu (p) ≥
∑k

i=1 u (I (Λp/pi)) pi. To prove
the reverse inequality take w ∈ Sk. Let i = 1, . . . , k. From the well-known
formula u∗(y) = u(I(y))− yI(y) for the convex dual we get

u (wi)− (Λp/pi)wi ≤ u∗ ((Λp/pi)) = u (I ((Λp/pi)))− (Λp/pi) I ((Λp/pi)) .
(3.3)

Multiplying (3.3) by pi, summing over i = 1, . . . , k, and adding Λp, we obtain

k∑

i=1

u (wi) pi ≤
k∑

i=1

u∗ ((Λp/pi)) pi + Λp =

k∑

i=1

u (I ((Λp/pi))) pi

Taking the supremum of the left-hand side over all such w’s, we obtain the
assertion.

Proposition 3.6 The function hu : Sk → [0, ln k] is continuous.

Proof According to (3.2), it is enough to prove that Sk ∋ p→ Λp ∈ [α (p) ,∞)
is continuous. Define F : {(p,Λ)} : p ∈ Sk,Λ ∈ [α (p) ,∞)} → R by F (p,Λ) =∑k

i=1 I (Λ/pi) − 1. Clearly, F is continuous, F (p,Λp) = 0 for p ∈ Sk, and
[α (p) ,∞) ∋ Λ → F (p,Λ) ∈ R is strictly decreasing for each p ∈ Sk. Now, the
assertion follows from the implicit function theorem for continuous functions.

Example 3.7 (logarithmic utility) Let u : (0,∞)→R be given by u (x) =
lnx for x ∈ (0,∞). Then the relative u-entropy Hu (p ‖ q) is equal to the
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discrete Boltzmann-Shannon relative entropy (Kullback-Leibler di-
vergence)

H1 (p ‖ q) =





∑
i=1,...,k
qi 6=0

pi ln pi

qi
if p≪ q ,

∞ otherwise

for p, q ∈ Sk, and the discrete u-entropy hu(p) is equal to the discrete
Boltzmann-Shannon entropy

h1 (p) = −
k∑

i=1

pi ln pi

for p ∈ Sk.

Example 3.8 (isoelastic utility) Let u : (0,∞)→R be given by u (x) =
1
γ

(xγ − 1) for γ ∈ (−∞, 0) ∪ (0, 1) and x ∈ (0,∞). Then the discrete rela-

tive u-entropy Hu

(
p ‖ p(k)

)
is equal to the discrete Rényi relative entropy

(divergence) of order α = (1− γ)
−1 ∈ (0, 1) ∪ (1,∞)

hα (p ‖ q) =





1
α−1 ln

∑
i=1,...,k

pαi q
1−α
i if γ ∈ (−∞, 0) ,

1
α−1 ln

∑
i=1,...,k
qi 6=0

pαi q
1−α
i if γ ∈ (0, 1) and p≪ q ,

∞ otherwise

for p, q ∈ Sk, and the discrete u-entropy hu(p) is equal to the discrete Rényi
entropy of order α

hα (p) =
1

1− α
ln

k∑

i=1

pαi

for p ∈ Sk.

4 Relationships to other utility based concepts

of entropy

4.1 Friedman-Huang-Sandow U-entropy

In [FHS07] (see also [FHS05]) the authors defined two quantities, which they
called the U-entropy and U-relative entropy, noting their similarity to the u-
entropy defined (in a much more general setting) in [SZ04]. In fact the U -entropy
and U -relative entropy of Friedman, Huang and Sandow [FHS07], [FHS05] can
be reduced by a simple transformation to the relative u-entropy discussed in
the present paper, and so to the u-entropy defined in [SZ04]. As a result, the
properties of U -entropy and U -relative entropy claimed in [FHS05], [FHS07]
turn out to be immediate corollaries of the results of [SZ04], as shown below.

In the notation of the present paper the definitions in [FHS07] take the
following form.
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Definition 4.1 (Definition 5 from [FHS07]) Let u : (0,∞)→R be a utility
function and let p, q ∈ Sk. If p ≪ q, then the Friedman-Huang-Sandow U-
relative entropy of p with respect to q is defined by

Du (p ‖ q) := sup
w∈Sk

k∑

i=1

u

(
wi

qi

)
pi − u (1) .

Remark 4.2 By contrast to [FHS07], it is not assumed here that u(1) = 0.
To compensate, we subtract u(1) on the right-hand side of the formula defining
Du (p ‖ q). The same applies to the formula defining Hu(p) below. Moreover,

instead of w ∈ Sk it is only assumed in [FHS07] that
∑k

i=1 wi = 1, but presum-
ably there is also a silent assumption that wi/qi belongs to the domain of u for
each i. In our case this means that, additionally, w ≥ 0, so that w ∈ Sk. The
definitions and results easily extend to utility functions defined on an interval
(a, b) other than (0,∞). If p is not absolutely continuous with respect to q, then
Du (p ‖ q) is undefined.

Remark 4.3 The relative entropy defined in [FHS07] coincides with the deci-
sion maker’s optimal expected utility introduced in [JNW07, p.13].

Definition 4.4 (Definition 6 from [FHS07]) Let u : (0,∞)→R be a utility
function and let p ∈ Sk. Then the Friedman-Huang-Sandow U-entropy of p
is defined by

Hu (p) = u (k)− u (1)−Du

(
p ‖ p(k)

)
.

Proposition 4.5 Let u : (0,∞)→R be a utility function. Then the following

properties hold:

(1) For any p, q ∈ Sk such that p≪ q

Du (p ‖ q) = u
(
eHu(p‖q)

)
− u (1) .

(2) For any p ∈ Sk

Hu (p) = uk (1)− uk

(
e−huk

(p)
)

,

where uk is the rescaled utility function defined by (3.1).

Proof (1) If p≪ q, then wq ∈ Sk is equivalent to w ∈ A(p, q). Hence

Du (p ‖ q) = sup
w∈Sk

k∑

i=1

u (wi/qi) pi − u (1)

= sup
w∈A(p,q)

k∑

i=1

u (wi) pi − u (1) = Nu (p ‖ q)− u (1) .

The claim follows since Nu (p ‖ q) = u
(
eHu(p‖q)

)
.
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(2) This follows immediately from (1) and Proposition 3.3:

Hu (p) = u (k)− u (1)−Du

(
p ‖ p(k)

)
= u (k)− u

(
eHu(p‖p(k))

)

= u (k)− u
(
elnk−huk

(p)
)

= uk (1)− uk

(
e−huk

(p)
)

.

The U -relative entropy Du (p ‖ q) and the U -entropy Hu (p) of Friedman
Huang and Sandow [FHS07] are therefore related to the u-entropy of [SZ04] by

Du (p ‖ q) = u
(
eHu( dp

dq )
)
− u (1)

for each p, q ∈ Sk such that p≪ q, and by

Hu (p) = u (k)− u

(
e
Hu

„
dp

dp(k)

«)

for each p ∈ Sk. Because of this, the following results in [FHS07] are immediate
consequences of the corresponding earlier results in [SZ04]:

[SZ04] [FHS07]

Theorem 20 ⇒ Lemma 1
Propositions 8 and 10 ⇒ Corollary 1.(i)
Proposition 13 ⇒ Corollary 1.(ii), (iv)
Theorem 23 ⇒ Corollaries 3, 6 and 7

Remark 4.6 The results of [SZ04] are valid in a much more general situation
of arbitrary probability spaces, which requires the asymptotic elasticity assump-
tion

AE(u) := lim sup
xր∞

xu′(x)

u(x)
< 1

to hold. In the discrete case this assumption is unnecessary and all the argu-
ments in [SZ04] work without it.

4.2 Arimoto entropy

A similar construction of entropy was first proposed by Arimoto [Ari71] without
any explicit reference to the notion of utility.

Definition 4.7 (Arimoto [Ari71], see also [Tan07]) For a non-negative function
f : (0, 1] → R continuously differentiable on (0, 1] and such that f(1) = 0
Arimoto’s entropy is defined by

HA
f (p) := inf

w∈Sk

k∑

i=1

f (wi) pi

for p ∈ Sk.
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This was further generalized in [SS74] and also interpreted in [MPV96,
Example 6] in terms of prior Bayes risk, where f plays the role of an individual
uncertainty function. Arimoto’s entropy is related to the entropy Hu defined
in [FHS07] (see Definition 4.4 above) and to hu (Definition 3.1) as follows.

Proposition 4.8 Let u : (0,∞)→R be a utility function such that u (1) = 0,
and let p ∈ Sk. Then

HA
−u (p) = Hu1/k

(p) = −u
(
e−hu(p)

)
.

Proof This follows immediately from the definitions and Proposition 4.5 (2):

HA
−u (p) = inf

w∈Sk

k∑

i=1

[−u (wi)] pi = − sup
w∈Sk

k∑

i=1

u (wi) pi

= −nu(p) = −u
(
e−hu(p)

)
= Hu1/k

(p) .

Example 4.9 (logarithmic utility) Let u be the logarithmic utility. For
p, q ∈ Sk and p ≪ q we have Du (p ‖ q) = h

1
(p ‖ q) and Hu (p) = HA

−u (p) =
h

1
(p).

Example 4.10 (isoelastic utility) Let u be the isoelastic utility of order γ ∈

(−∞, 0) ∪ (0, 1) and let α = (1− γ)
−1

.

1. For p, q ∈ Sk with p≪ q

Du (p ‖ q) =
α

α− 1







∑

i=1,...,k

pαi q
1−α
i





1
α

− 1




is proportional to the Sharma-Mittal relative entropy of order α
and degree 2− 1/a ;

2. For p ∈ Sk

Hu (p) = k
α−1
α

α

1− α



(

k∑

i=1

pαi

) 1
α

− 1




= k
α−1
α HA

−u ,

where HA
−u is called the Arimoto entropy of kind 1/α.

Remark 4.11 The Sharma-Mittal relative entropy was introduced in [SM75].
In [JNW07] the Sharma-Mittal relative entropy of order α and degree 2 − 1/a
is called the pseudospherical divergence of order α. The Arimoto entropy
was introduced by Arimoto [Ari71] and further elaborated in [BvdL80], see
also [Tan07].
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4.3 Frittelli generalised distance

This notion of generalised distance in the set of probability measures was in-
troduced in [Fri00] as a tool for solving the convex dual problem to that of
computing the value of a financial security consistent with the no-arbitrage
principle in an incomplete market model in a utility maximisation framework.

Definition 4.12 (Definition 9 and formula (9) from [Fri00]) Let µ, ν ∈M1 be
such that µ≪ ν. Then put

∆u(µ, ν) := sup
Λ>0

(
Λ +

∫

Ω

u∗

(
Λ
dµ

dν

)
dν

)
,

where u∗ is the convex dual to the utility function u given by (2.1) and (2.2),
and define the Frittelli generalised distance by

δu(µ, ν) := u−1 (∆u(µ, ν))− 1 .

Remark 4.13 Note the different (but equivalent) conventions as compared
to [Fri00]. The differences lie in using the supremum rather than infimum
coupled with different signs of certain expressions in the definitions of u∗ and
∆u(µ, ν). The quantities ∆u(µ, ν) and δu(µ, ν) are denoted by ∆(µ, ν; 1) and
δ(µ, ν; 1) in [Fri00].

Proposition 4.14 For any µ, ν ∈M1 such that µ≪ ν

∆u(µ, ν) = u(∞)ν⊥(Ω) + ν≪(Ω)∆u

(
µ,

ν≪
ν≪(Ω)

)
,

where ν⊥ + ν≪ = ν is the Lebesgue decomposition of ν into the singular part ν⊥
and absolutely continuous part ν≪ with respect to µ.

Proof Because µ ≪ ν, it follows that dµ
dν

= 0 a.s. with respect to ν⊥ and
ν≪(Ω) > 0. We can assume that ν⊥(Ω) > 0, since otherwise the assertion is
obvious. Put ν̃≪ = ν≪

ν≪(Ω) . As a result,

∆u(µ, ν) = sup
Λ>0

(
Λ +

∫

Ω

u∗

(
Λ
dµ

dν

)
dν

)

= sup
Λ>0

(
Λ +

∫

Ω

u∗

(
Λ
dµ

dν

)
dν⊥ +

∫

Ω

u∗

(
Λ
dµ

dν

)
dν≪

)

= ν⊥(Ω)u∗ (0) + ν≪(Ω) sup
Λ>0

(
Λ

ν≪(Ω)
+

∫

Ω

u∗

(
Λ

ν≪(Ω)

dµ

dν̃≪

)
dν̃≪

)

= ν⊥(Ω)u (∞) + ν≪(Ω) sup
Λ>0

(
Λ +

∫

Ω

u∗

(
Λ

dµ

dν̃≪

)
dν̃≪

)

= ν⊥(Ω)u (∞) + ν≪(Ω)∆u(µ, ν̃≪) .
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Proposition 4.15 If u has reasonable asymptotic elasticity, then for any µ, ν ∈
M1 such that µ≪ ν

∆u(µ, ν) = Nu (ν ‖ µ) ,

δu (ν, µ) = eHu(ν‖µ) − 1 .

Proof First we shall prove the proposition in the case when µ, ν ∈ M1 are
equivalent measures. Let f = dν

dµ
. By Proposition 2.9 above and by Lemma 17

and Theorem 20.4 in [SZ04], we then have

Nu (ν ‖ µ) = Nu (f) = sup
Λ>0

(
Λ +

∫

Ω

u∗ (Λ/f) fdµ

)

= sup
Λ>0

(
Λ +

∫

Ω

u∗

(
Λ
dµ

dν

)
dν

)
= ∆u(µ, ν) .

Now for any µ, ν ∈ M1 such that µ ≪ ν we take the Lebesgue decomposition
ν = ν⊥ + ν≪ into the singular part ν⊥ and absolutely continuous part ν≪
with respect to µ. Then µ and ν≪ are equivalent measures. It follows by
Propositions 2.12 and 4.14 that

Nu (ν ‖ µ) = ν⊥ (Ω)u (∞) + ν≪ (Ω)Nu

(
ν≪

ν≪ (Ω)
‖ µ

)

= ν⊥ (Ω)u (∞) + ν≪ (Ω) ∆u

(
µ,

ν≪
ν≪ (Ω)

)
= ∆u (µ, ν) .

The equality δu (ν, µ) = eHu(ν‖µ) − 1 now follows immediately from the defini-
tions of δu (ν, µ) and Hu (ν ‖ µ).

5 Concluding remarks

The notion of u-entropy of a probability density, based on the concept of ex-
pected utility maximisation in finance, was first introduced in [SZ04] and linked
with the Second Law of thermodynamics. In this paper the definition of u-
entropy has been extended, on the one hand, to the case of relative u-entropy of
one probability measure with respect to another, and, on the other hand, in the
discrete case, to absolute u-entropy of a probability measure. Having established
the basic properties of these notions, we have studied the relationships with
other entropy-like quantities of a similar kind that can be found in the litera-
ture. In particular, although all these approaches yield the Boltzmann-Shannon
entropy when the logarithmic utility is used, it is only the relative u-entropy
introduced in Definition 2.7 that is consistent with the Rényi entropy for isoe-
lastic utility functions. The relationships between the various approaches are
summarized in the diagram below. In this context, relative u-entropy emerges as
the general unifying quantity among the various approaches related to expected
utility maximisation.
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general
case

Hu (f)
Thm.2.12−−−−−−→←−−−−−−
Prop.2.9

Hu (ν ‖ µ)
Prop.4.15
−−−−−−−−−→ δu (ν, µ)

y

Hu (p ‖ q)
Prop.4.5(1)
−−−−−−−−→ Du (p ‖ q)

discrete
case

Prop.3.3

y [FHS07]

y

HA
−u (p)

Prop.4.8
←−−−−− hu (p)

Prop.4.5(2)
−−−−−−−−→ Hu (p)

References

[AIS98] Jürgen Amendinger, Peter Imkeller, and Martin Schweizer, Additional
logarithmic utility of an insider, Stochastic Processes Appl. 75 (1998),
263–286.

[Ari71] Suguru Arimoto, Information-theoretic considerations on estimation

problems, Information and Control 19 (1971), 181–190.

[BF02] Fabio Bellini and Marco Frittelli, On the existence of minimax mar-

tingale measures, Math. Finance 12 (2002), 12–21.

[BvdL80] Dick E. Boekee and Jan C. A. van der Lubbe, The R-norm informa-

tion measure, Information and Control 45 (1980), 136–155.

[FB05] Marco Frittelli and Sara Biagni, Utility maximization in incomplete

markets for unbounded processes, Finance Stoch. 9 (2005), 493–517.

[FHS05] Craig Friedman, Jinggang Huang, and Sven Sandow, Some decision

theoretic generalizations of information measures, Preprint, available
at SSRN: http://ssrn.com/abstract=828984, December 2005.

[FHS07] , A utility-based approach to some information measures, En-
tropy 9 (2007), 1–26.

[Fri00] Marco Frittelli, Introduction to a theory of value coherent with the

no-arbitrage principle, Finance Stoch. 4 (2000), 275–297.
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