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ENTROPY OF A QUANTUM ERROR CORRECTION CODE

DAVID W. KRIBS1, ARON PASIEKA2, AND KAROL ŻYCZKOWSKI3

Abstract. We define and investigate a notion of entropy for quantum error
correcting codes. The entropy of a code for a given quantum channel has a
number of equivalent realisations, such as through the coefficients associated
with the Knill-Laflamme conditions and the entropy exchange computed with
respect to any initial state supported on the code. In general the entropy of
a code can be viewed as a measure of how close it is to the minimal entropy
case, which is given by unitarily correctable codes (including decoherence-free
subspaces), or the maximal entropy case, which from dynamical Choi matrix
considerations corresponds to non-degenerate codes. We consider several ex-
amples, including a detailed analysis in the case of binary unitary channels, and

we discuss an extension of the entropy to operator quantum error correcting
subsystem codes.

1. Introduction

Quantum error correcting codes are a central weapon in the battle to overcome
the effects of environmental noise associated with attempts to control quantum
mechanical systems as they evolve in time [1, 2]. It is thus important to develop
techniques that assist in determining whether one code is better than another for a
given noise model. In this paper we make a contribution to this study by introducing
a notion of entropy for quantum error correcting codes.

No single quantity can be expected to hold all information on a code, its entropy
included. Nevertheless, the entropy of a code is one way in which the amount of
effort required to recover a code can be quantified. In the extremal case, a code has
zero entropy if and only if it can be recovered with a single unitary operation. This
is the simplest of all correction operations in that a measurement is not required
as part of the correction process. These codes have been recently coined unitarily
correctable [3, 4, 5], and include decoherence-free subspaces [6, 7, 8, 9, 10] in the case
that recovery is the trivial identity operation. Thus more generally the entropy can
be regarded as a measure of how close a code is to being unitarily correctable, or
decoherence-free in some cases.

In the next section we introduce the entropy of a code, along with required
nomenclature. We also consider an example motivated by the stabilizer formalism
[11] and discuss an extension of code entropy to operator quantum error correcting
subsystem codes [12, 13, 14, 15]. We then consider in detail an illustrative class of
quantum operations for which the code structure has recently been characterised,
the class of binary unitary channels [16, 17, 18, 19, 20, 21, 22].

2. Entropy of a Quantum Error Correction Code

Let ρ denote a quantum state: a Hermitian, positive operator, satisfying the
trace normalisation condition Trρ = 1. A linear quantum operation (or channel) Φ,
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which sends a density operator ρ of size N into its image ρ′ of the same size may
be described in the Choi-Kraus form [23, 24]

(1) ρ′ = Φ(ρ) =

M
∑

i=1

EiρE
†
i .

The Kraus operators Ei can be chosen to be orthogonal 〈Ei|Ej〉 = TrE†
iEj = diδij ,

so that the non-negative weights di become eigenvalues of the dynamical (Choi)
matrix, DΦ = (〈Ei|Ej〉). We refer to the rank of the Choi matrix as the Choi rank
of Φ. Observe that the Choi rank of Φ is equal to the minimal number of Kraus
operators required to describe Φ as in (1).

Hence in the canonical form the number M of non-zero Kraus operators does
not exceed N2. Due to the theorem of Choi the map Φ is completely positive (CP)
if and only if the corresponding dynamical matrix is positive if and only if Φ has
a form as in (1). The map Φ is trace preserving, Trρ′ = Trρ = 1, if and only if
∑N2

i=1 E
†
iEi = 1 where we assume some Ei are zero ifM is less than N2. The family

of operators Ei is not unique. However, if {Fj} is another family of operators that
determine Φ as in (1), then there is a scalar unitary matrix U = (uij) such that
Ei =

∑

j uijFj for all i. We refer to this as the unitary invariance of Choi-Kraus
decompositions.

2.1. Entropy Exchange and Lindblad Theorem. To characterise the informa-
tion missing in a quantum state one uses its von Neumann entropy,

(2) S(ρ) = −Trρ log ρ.

We will use the convention that log refers to logarithm base two as this provides a
cleaner operational qubit definition in the context of quantum information.

In order to describe the action of a CP map Φ, represented in the canonical
Choi-Kraus form (1), for an initial state ρ we may compare its entropy with the
entropy of the image S(ρ′) = S(Φ(ρ)). To obtain a bound for such an entropy
change we can define an operator σ = σ(Φ, ρ) acting on an extended Hilbert space
HN2 ,

(3) σij = TrρE†
iEj , i, j = 1, . . . , N2 .

If the map Φ is stochastic, the operator σ is positive definite and normalised so
it represents a density operator in its own right, σ ∈ MN2 (specifically, it is an
initially pure environment evolved by the unitary dilation of Φ). Observe that for
any unitary map, ΦU (ρ) = UρU †, the form (1) consists of a single term only. Hence
in this case the operator σ reduces to a single number equal to unity and its entropy
vanishes, S

(

σ(ΦU , ρ)
)

= 0.
The auxiliary state σ acting in an extended Hilbert space was used by Lindblad

to derive bounds for the entropy of an image ρ′ = Φ(ρ) of any initial state. The
bounds of Lindblad [25],

(4) 0 ≤ |S(ρ′)− S(σ)| ≤ S(ρ) ≤ S(σ) + S(ρ′) ,

are obtained by defining another density matrix in the composite Hilbert space
HN ⊗HM ,

(5) ω =

M
∑

i=1

M
∑

j=1

EjρE
†
i ⊗ |i〉〈j| ,
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where M = N2 and |i〉 forms an orthonormal basis in HM . Thus, ω is simply
the system and an initially pure environment evolved by the unitary dilation of Φ.
Computing partial traces one finds that TrNω = σ and TrMω = ρ′. It is possible
to verify that S(ω) = S(ρ), so making use of the subadditivity of entropy and the
triangle inequality [26] one arrives at (4).

If the initial state is pure, that is if S(ρ) = 0, we find from (4) that the final state
ρ′ has entropy S(σ). For this reason S(σ) was called the entropy exchange of the
operation by Shumacher [27]. In that work an alternative formula for the entropy
exchange was proven,

(6) S
(

σ(Φ, ρ)) = S
(

(Φ⊗ 1)|ψ〉〈ψ|
)

,

where |ψ〉 is an arbitrary purification of the mixed state, TrB|ψ〉〈ψ| = ρ. Thus, the
entropy exchange is invariant under purification of the initial state and remains a
function only of the initial density operator ρ and the map Φ.

2.2. Quantum Error Correcting Codes. A quantum operation Φ allows for an
error correction scheme in the standard framework for quantum error correction
[11, 28, 29, 30, 31] if there exists a subspace C such that for some set of complex
scalars Λ = (λij) the corresponding projection operator PC satisfies

PCE
†
iEjPC = λijPC for all i, j = 1, . . . , N2.(7)

Specifically, this is equivalent to the existence of a quantum recovery operation Ψ
such that

(8) Ψ ◦ Φ ◦ PC = PC ,

where PC is the map PC(ρ) = PCρPC . The subspace related to PC determines a
quantum error correcting code (QECC) for the map Φ. A special class of codes are
the unitarily correctable codes (UCC), which are characterised by the existence of
a unitary recovery operation Ψ(ρ) = UρU †. These codes include decoherence-free
subspaces (DFS) in the case that Ψ is the identity map, Ψ(ρ) = ρ.

It can be shown that the matrix Λ = (λij) is Hermitian and positive, and is
in fact a density matrix, so it can be considered as an auxiliary state acting in an
extended Hilbert space of size at most N2. It is easy to obtain a more refined global
upper bound on the rank of Λ in terms of the map Φ.

Lemma 1. Let Λ be the matrix determined by a code C for a quantum map Φ.
Then the rank of Λ is bounded above by the Choi rank of Φ.

Proof. Without loss of generality assume the Choi matrix DΦ is diagonal. We
have for all i,

(9) λii dim C = Tr(λiiPC) = Tr(PCE
†
iEiPC) ≤ Tr(E†

iEi) = 〈Ei|Ei〉,
and the result follows from the positivity of DΦ and Λ.

Unitarily correctable codes are typically highly degenerate codes, as the map Φ
collapses to a single unitary operation when restricted to the code subspace. In par-
ticular, the unitary invariance of Choi-Kraus representations implies the restricted
operators EiPC are all scalar multiples of a single unitary. More generally, one can
see that a code C is degenerate for Φ precisely when the Choi rank of Φ is strictly
greater than the rank of Λ. Indeed, the Choi rank counts the minimal number of
Kraus operators required to implement Φ via (2.1), and satisfaction of this strict
inequality means there is redundancy in the description of Φ ◦ PC by the operators
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EiPC . Thus, for these reasons we shall refer to codes as non-degenerate if the Choi
rank of Φ coincides with the rank of Λ and if the spectrum of Λ is equally balanced
– that is to say that non-degenerate codes correspond to the maximally degenerate
error correction matrix, Λ proportional to the identity matrix

2.3. Entropy of a Code. Assume now that an error correcting code C exists and
all conditions (7) are satisfied. If a quantum state ρ is supported on the code then
PCρPC = ρ and calculation of the entropy exchange (3) simplifies,

(10) σij = TrρE†
iEj = TrPCρPCE

†
iEj = TrρPCE

†
iEjPC = TrρλijPC = λij .

In this way we have shown that the error correction matrix Λ is equal to the auxiliary
matrix σ of Lindblad, provided the initial state belongs to the code subspace.

From another direction, given an error correcting code C for a map Φ, in [4, 32]
it was shown that there is a quantum state τ and an isometry V such that for all
ρ = PCρPC ,

(11) Φ(ρ) = V (τ ⊗ ρ)V †.

The result, which can be seen as a consequence of the decoupling condition of [33],
gives an explicit way to “see” a code at the output stage of a quantum process
for which the code is correctable. The result (and its subsystem generalization –
see below) may also be viewed as a formalisation of the subsystem principle for
preserving quantum information [7]. From the proof of this result one can see
directly that the entropy of τ satisfies S(τ) = S(Λ). This equality follows also from
the fact that τ and Λ can be interpreted as the states obtained by partial trace of
an initially pure state with respect to two different subsystems.

Thus, from multiple perspectives we find motivation for the following:

Definition 2. Given a quantum operation Φ with Kraus operators {Ei} and a code
C with matrix Λ given by (7), we call the von Neumann entropy S(Φ, C) := S(Λ)
the entropy of C relative to Φ.

The entropy of a code depends only on the map and the subspace defined by PC ,
not on any particular state in the code subspace. Thus, the entropy exchange will
be the same for all initial states supported on the code subspace and is therefore a
property of the code itself.

In the following result we determine what possible values the code entropy can
take, and we derive a characterisation of the extremal cases in terms of both the
code and the map.

Theorem 3. Let Φ be a quantum operation and let C be a code with matrix Λ given
by (7). Then S(Φ, C) belongs to the closed interval [0, logD], where D is the Choi
rank of Φ. Furthermore, the extremal cases are characterised as follows:

(i) S(Φ, C) = 0 if and only if C is a unitarily correctable code for Φ.
(ii) S(Φ, C) = logD if and only if C is a non-degenerate code for Φ.

Proof. By Lemma 1 and the subsequent discussion, the maximal entropy case
occurs when the rank of Λ and DΦ coincide and the spectrum of Λ is equally
balanced; that is, the code is non-degenerate. This occurs (by a standard spectral
majorization argument) precisely when the code entropy satisfies S(Φ, C) = logD.

For the minimal entropy case, first suppose that C is a UCC for Φ. Then by (8)
there is a unitary operation U(ρ) = UρU † such that Φ ◦ PC = U ◦ PC . Thus by the
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unitary invariance of Choi-Kraus decompositions, it follows that EiPC = αiUPC for
some scalars αi. Hence we have Λ = (αiαj) = |ψ〉〈ψ|, where |ψ〉 is the vector state
with coordinates αi, and so S(Φ, C) = S(Λ) = 0.

On the other hand, suppose Λ = |ψ〉〈ψ| is rank one. Let V be a scalar unitary
that diagonalises Λ. It follows that V induces a unitary change of representation
for Φ via (7) from {Ei} to {Fj}. But since V ΛV † is diagonal, only one Fj , say F ,
is non-zero, and hence by unitary invariance we have FPC = UPC for some unitary
U . Thus Φ ◦ PC = U ◦ PC , and the result follows.

From an operational perspective, the numerical value of the entropy of a code
allows us to quantify the number of ancilla qubits needed to perform a recovery
operation. Specifically, the Choi rank, D, of a map Φ gives the minimum num-
ber of Kraus operators necessary to describe the map or, by Stinespring’s dilation
theorem [34], the dimension of the ancilla required to implement Φ as a unitary.
The rank of Λ then gives the number of Kraus operators necessary to describe the
action of the map restricted to C and thus the number of Kraus operators, M ,
necessary for a recovery operation in the usual measurement cum reversal picture
of recovery. Again by Stinespring’s dilation theorem we need an M -dimensional
ancilla to implement the recovery as a unitary, and thus this requires logM qubits.

Hence the entropy is equal to zero for a unitarily correctable code, in which the
action of the noise is unitary and thus requires no ancilla to implement the recovery
operation. If the code entropy is positive, then any state of the code can potentially
evolve to any one of multiple locations in the system Hilbert space under the action
of the noise Φ. This fact has to be compensated by the recovery operation Ψ. The
maximal entropy case for a particular Φ is characterised by evolution to each of
these locations (M = D by Lemma 1) with equal probability (by Theorem 3). Here
the entropy and thus the number of qubits in the ancilla will be logD.

2.4. Stabilizer Example. As an example from the stabilizer formalism, consider a
three-qubit system with the usual notationXi, Zi, i = 1, 2, 3, for Pauli operators [1].
The single-qubit stabilizer code with generators {Z1Z2, Z2Z3}, is spanned by |0L〉 =
|000〉 and |1L〉 = |111〉. The set of operators {1, X1, X2, X3} form a correctable
set of errors for this stabilizer thus we can consider a channel, a three-qubit bit-
flip channel, comprised of these operators – for example, the channel with Kraus

operators E1 =
√

1
3 (3− p− q − r)1, E2 =

√

1
3pX1, E3 =

√

1
3qX2 and E4 =

√

1
3rX3. Using PC = |000〉〈000|+ |111〉〈111|, (7) tells us that the error correction

matrix is

Λ =









1
3 (3 − p− q − r) 0 0 0

0 1
3p 0 0

0 0 1
3q 0

0 0 0 1
3r









.

The entropy of this code is therefore

S(Λ) = −1

3
(3− p− q − r) log

1

3
(3− p− q − r)

− 1

3
p log

1

3
p− 1

3
q log

1

3
q − 1

3
r log

1

3
r.

As we would expect, the minimum entropy is achieved when p = q = r = 0.
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The maximum entropy occurs when p = q = r = 3
4 , which we might also expect

since this puts the auxiliary density matrix Λ into the maximally mixed state. Here,
the Choi rank of our map is 4 as is the rank of Λ, and the spectrum of Λ is equally
balanced. So C is non-degenerate for Φ. Further, as we expect from Theorem 3, the
entropy is log 4 = 2. Since the rank of Λ is the number of Kraus operators required
for a recovery operation we find that in order to dilate the recovery operation to a
unitary process, we need a 4-dimensional space, or equivalently a 2-qubit ancilla,
which matches the value of the entropy.

We next consider a variant of this noise model, in which the third qubit undergoes
no error and the first and second qubits are flipped with probability equal to that
of no error. Thus the map Φ has noise operators {I,X1, X2}, each weighted by 1√

3
.

The entropies for a trio of correctable codes for Φ are given in Table 1 (vectors are
assumed to be normalised). The first code is non-degenerate, and thus yields the
maximal entropy for this noise model. The second code has positive entropy less
than the maximum since it is partially degenerate for Φ. Indeed, one can check that
X1 (and I) act trivially on the code, whereas X2 maps the code to an orthogonal
subspace. The final code shows zero entropy since it is fully degenerate for Φ. In
fact, as can be directly verified it is a decoherence-free subspace for Φ.

Table 1. Codes for the noise model Φ = 1√
3
{I,X1, X2}.

Qubit Code C = {|0L〉, |1L〉} Entropy S(Φ, C)
{|000〉, |111〉} log 3

{|000〉+ |100〉, |011〉+ |111〉} log 3− 2
3

{|000〉+ |100〉+ |010〉+ |110〉, 0
|011〉+ |111〉+ |001〉+ |101〉}

2.5. Entropy of a Subsystem Code. We next consider an extension of code
entropy to the case of operator quantum error correcting subsystem codes. We
shall only introduce this notion here and leave a potential further investigation
for elsewhere. Subsystem codes were formally introduced under the umbrella of
operator quantum error correction [3, 12], a framework that unifies the active and
passive approaches to quantum error correction. These codes now play a central
role in fault tolerant quantum computing.

Let H be a Hilbert space of finite dimension N . Any decomposition H = (A ⊗
B)⊕K determines subsystems A and B of H. Given a quantum operation Φ acting
on H, we say that a subsystem B of H is correctable for Φ if there exists maps Ψ
on H and τA on A such that

(12) Ψ ◦ Φ ◦ PAB = (τA ⊗ idB) ◦ PAB,

where PAB(ρ) = PABρPAB and PAB is the projection onto the subspace A⊗B.
Subsystem codes generalize standard (subspace) codes (8) in the sense that sub-

spaces may be regarded as subsystems with trivial ancilla (dimA = 1). Thus, it is
natural to suggest that a notion of entropy for subsystem codes should generalize
the subspace definition. We find motivation for such a notion through the main
result of [4] alluded to above. To every correctable subsystem for Φ, there are sub-
systems C and B′ ∼= B, a map τC|A from A to C and a unitary map VB′|B from B
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to B′ such that

(13) Φ ◦ PAB = (τC|A ⊗ VB′|B) ◦ PAB,

Recall that the maximal output entropy of a channel Ψ is given by S(Ψ) :=
maxρ S(Ψ(ρ)). This motivates the following.

Definition 4. Let Φ be a quantum operation with correctable subsystem B that
satisfies (12). Then we define the entropy of B relative to Φ as the maximal output
entropy of the associated ancilla channel, S(τC|A) from (13).

Observe that this generalizes Definition 2, since a density operator may be re-
garded as a channel from a one-dimensional input space. The minimal entropy
case is characterized by the ancilla channel τC|A having range supported on a one-
dimensional subspace. Such codes are unitarily correctable, in fact as subspaces,
but the converse is not true. Instead, in the more general subsystem setting, the
minimal entropy case is described by the associated ancilla subsystem A undergo-
ing “cooling” to a fixed state. In principle one should be able to conduct a deeper
analysis of subsystem code entropy. We leave this as an open investigation for
elsewhere.

3. Entropy of a Code for Binary Unitary Channels

A binary unitary channel has the form

(14) ρ′ = Φ(ρ) = (1− p)W1ρW
†
1 + pW2ρW

†
2

where W1 and W2 denote two arbitrary unitary operators and the probability p

belongs to [0, 1].
It is clear that the problem of finding an error correcting code subspace C for

the above map is equivalent to the case

(15) ρ′′ = ΦU (ρ) = (1− p)ρ+ pUρU †

where U = W
†
1W2. The number M of Kraus operators is equal to 2, with E1 =√

1− p1 and E2 =
√
pU . Thus the error correction matrix Λ is of size two and

reads

(16) Λ =

(

1− p
√

p(1− p)λ
√

p(1− p)λ∗ p

)

where λ is a solution of the compression problem for U

(17) PCUPC = λPC .

The set of solutions to this problem can be phrased in terms of the higher-rank
numerical range of the matrix U . The rank-k numerical range of U is defined as

(18) Ωk(U) = {λ ∈ C |PUP = λP for some rank-k projection P} .
Given a dimension-k that defines the size of the desired correctable code, each λ

in Ωk(U) corresponds to a particular correctable code defined by the associated
projection P that solves (17). The following is a straightforward application of (7).

Proposition 5. Given a binary unitary channel Φ, there exists a rank-k correctable
code for Φ if and only if the rank-k numerical range of U is non-empty.
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Figure 1. Higher rank numerical range Ωk for unitary matrices
U describing a bi-unitary channel: two qubit system, a) example
2 with λ = 0, b) case with r = |λ| >> 0 for which code entropy is
smaller, c) two qutrit case with λ ∈ Ω3(U) chosen to maximize its
modulus r and to minimize the code entropy S(Λ).

Thus, the problem of finding the correctable codes for a given binary unitary
channel can be reduced to the problem of finding the higher-rank numerical range
of U . This problem has recently been solved in its entirety [16, 17, 18, 19, 20, 21, 22].
Most succinctly, in terms of the eigenvalues σ(U) of U , the kth numerical range of
U is the convex subset of the unit disk given by

(19) Ωk(U) =
⋂

Γ⊆σ(U); |Γ|=N−k+1

conv (Γ),

where conv {λ1, . . . , λm} is the set of linear combinations λ = t1λ1 + . . . + tmλm
such that

∑m
j=1 tj = 1 and tj ≥ 0. Figures 1.a and 1.b depict the case of a generic

two-qubit unitary (N = 4) with k = 2, while Figure 1.c shows the case of a generic
two-qutrit unitary noise (N = 3× 3 = 9) with k = 3.

With a particular λ in-hand, straightforward algebra provides us with the spec-
trum of the matrix (16),

(20) Λ± =
1

2

(

1±
√

1− 4p(1− p)(1− |λ|2)
)

,

which allows us to calculate the entropy of the code,

(21) S(Φ, C) = S(Λ) = −Λ+ log Λ+ − Λ− log Λ−.

We are then led to the following:

Theorem 6. A minimum entropy rank-k code for a binary unitary channel Φ(ρ) =
(1−p)ρ+pUρU † corresponds to any code for which the magnitude |λ| of the compres-
sion values λ ∈ Ωk(U) is closest to unity, while the maximum entropy corresponds
to |λ| closest to zero. Moreover, a code with minimal entropy can be constructively
obtained.

Proof. The first statement follows directly from an application of first and second
derivative tests on (21), constrained to the unit disk. A minimal entropy code
can be explicitly constructed based on the analysis of higher-rank numerical ranges
[16, 17, 18, 19, 20, 21, 22].

Example 7. As an illustration of the code construction in the simplest possible
case (N = 4, k = 2), let U be the unitary with spectrum depicted in Figure 1.a,
σ(U) = {zk = exp(k π

4 ) : k = 1, 3, 5, 7}. Let |ψk〉 be the associated eigenstates,
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U |ψk〉 = zk|ψk〉. In this case we have Ω2(U) = {0} so λ = 0, and one can check
directly that a single qubit correctable code for Φ is given by C = span {|φ1〉, |φ2〉},
where

{

|φ1〉 = 1√
2
(|ψ1〉+ |ψ3〉)

|φ2〉 = 1√
2
(|ψ2〉+ |ψ4〉) .

For a concrete example, in the case that p = 0.01, (21) yields a code entropy of
S(Φ, C) = 0.081.

The general case requires a more delicate construction, nevertheless it can be
done. The “eigenstate grouping” procedure used above can be applied whenever k
divides N . For instance, in the generic N = 9 and k = 3 case depicted in Figure 1.c,
a single qutrit code can be constructed for all λ in the region Ω3(U). The states
|φi〉, i = 1, 2, 3, can be constructed in an analogous manner by grouping the nine
eigenstates for U into three groups of three, and writing λ in three different ways
as a linear combination of the associated unimodular eigenvalues zj, j = 1, . . . , 9.

However, without going into the details of this construction we can still analyze
the corresponding code entropies. For simplicity assume the nine eigenvalues are
distributed evenly around the unit circle with z1 = 0. By Theorem 6 we know
that the entropy will be minimized for any λ that gives the minimum distance from
Ω3(U) to the unit circle. An elementary calculation shows that one such λ, given
by the intersection of the lines through the first and seventh, and sixth and ninth
eigenvalues (counting counterclockwise) is approximately λ0 = 0.092−0.524 i. With
the probability p = 0.01, the corresponding error correction matrix Λ has spectrum
{0.007, 0.993}. Thus, (20) and (21) yield the minimal qutrit code entropy for this
channel as

min
dim C=3

S(Φ, C) = min
λ∈Ω3(U)

S(Λ) = S(Λλ=λ0
) = 0.060.

On the other hand, as λ = 0 belongs to Ω3(U), by Theorem 6 and (16) we also see
the maximal entropy for p = 0.01 occurs for any code with λ = 0. In such cases we
have Λ spectrum {0.01, 0.99}, and hence the maximal entropy is S(Λλ=0) = 0.081.

Changing focus briefly, if we fix an arbitrary unitary U , then we could consider
the family of channels determined by varying the probability p. It follows from (21)
that the channel with the correctable codes of maximal entropy corresponds to the
p = 1

2 channel, and the channels whose correctable codes possess minimal entropy
correspond to p = 0 and p = 1. Indeed, the value of λ depends on U but not p, thus
a given λ will solve (17) for any p and so λ can be chosen independently using the
above theorem. The result once again follows from application of first and second
derivative tests with p between 0 and 1.

The following results show that the entropy of a code for a binary unitary channel
can be regarded as a measure of how close the code is to a decoherence-free subspace.

Lemma 8. If Φ is a binary unitary channel, then the sets of unitarily correctable
subspaces and decoherence-free subspaces coincide.

Proof. As proved in [4], for a bistochastic (unital) map Φ, a condition satisfied
by every binary unitary channel, the unitarily correctable codes (respectively the
decoherence-free subspaces) for Φ are imbedded in the fixed point algebra for the
map Φ† ◦ Φ (respectively Φ), where Φ† is the Hilbert-Schmidt dual map of Φ.
In particular, it follows from this fact that the former set is given by the set of
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operators that commute with U and U †, whereas the latter is the set of operators
that commute with U . By the Spectral Theorem these two sets coincide.

Theorem 9. Let Φ be a binary unitary channel. Then there is a rank-k code C of
zero entropy, S(Φ, C) = 0, for Φ if and only if there is a k-dimensional decoherence-
free subspace for Φ if and only if there exists λ ∈ Ωk(U) ∩ σ(U).

Proof. A k-dimensional decoherence-free subspace for Φ corresponds to an eigen-
value λ of U with multiplicity at least k (see [4] and the references therein); that
is, λ ∈ Ωk(U) ∩ σ(U). The rest follows from the lemma and previous theorem.

In order to further illustrate these results, consider again the case of an arbitrary
two-qubit system (N = 4). The correctable codes with largest entropy are those
with p = 1

2 and so the spectrum of Λ reads

(22) Λ± =
1

2

(

1± |λ|
)

.

In the two-qubit case, the complex number λ is given by the point inside the unit
circle at which two diagonals of the quadrangle formed by the spectrum of U cross
(see Figures 1.a and 1.b). Consider a special case of the problem where U has a
doubly degenerated eigenvalue, so that |λ| = 1. For example, U could be any (non-
identity) element of the two-qubit Pauli group. Then the spectrum of Λ consists of
{1, 0} which implies S(Λ) = 0 (despite p having been chosen for the largest entropy
correctable codes). Hence Λ is pure and there exists a decoherence free subspace –
the one spanned by the degenerated eigenvalues of U .

In general, for binary unitary channels one may use the entropy (21) as a measure
quantifying to what extend a given error correction code is close to a decoherence-
free subspace. For instance, any channel (15) acting on a two qubit system and

described by unitary matrix U =W
†
1W2 of size 4 may be characterized by the radius

r = |λ| of the point in which two diagonals of the quadrangle of the spectrum cross.
The larger r, the smaller entropy S(Φ, C), and the closer the error correction code
is to a decoherence-free space.

The code entropy can be also used to classify codes designed for a binary unitary
channel acting on larger systems. For instance in the case of two qutrits, N = 3×3 =
9, one can find a subspace supported on k = 3 dimensional subspace. The solution
is by far not unique and can be parametrized by complex numbers λ belonging to
an intersection of 3 triangles, which forms a convex set of a positive measure. From
this set one can thus select a concrete solution providing a code C, such that r = |λ|
is the largest, which implies that the code entropy, S(Φ, C), is the smallest – see
Figure 1.c. Such an error correction code is distinguished by being as close to a
decoherence-free subspace as possible.

4. Conclusions

We have investigated a notion of entropy for quantum error correcting codes
and quantum operations. The entropy has multiple natural realisations through
fundamental results in the theory of quantum error correction. We showed how the
extremal cases are characterised by unitarily correctable codes and decoherence-
free subspaces on the one hand, and the non-degenerate case determined by the
Choi matrix of the map on the other. We considered examples from the stabilizer
formalism, and conducted a detailed analysis in the illustrative case of binary uni-
tary channels. Recently developed techniques on higher-rank numerical ranges were
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used to give a complete geometrical description of code entropies for binary unitary
channels; in particular, the structure of these subsets of the complex plane can
be used to visually determine how close a code is to a decoherence-free subspace.
We also introduced an extension of code entropy to subsystem codes, and left a
deeper investigation of this notion for elsewhere. It could be interesting to explore
further applications of the code entropy in quantum error correction. For instance,
although quantum error correction codes were originally designed for models of
discrete time evolution in the form of a quantum operation, generalizations to the
case of continuous evolution in time [35, 36, 37] have been investigated. Further, we
have investigated perfect correction codes only, for which the error recovery opera-
tion brings the quantum state corrupted by the noise back to the initial state with
fidelity equal one. Such perfect correction codes may be treated as a special case
of more general approximate error correction codes [33, 38, 39]. Another recent
investigation [40] includes analysis that suggests the measurement component of
recovery may prove to be problematic in quantum error correction, and hence may
motivate further investigation of unitarily correctable codes.
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Ontario Graduate Scholarship. K.Ż. acknowledges support of an European research
project SCALA and the special grant number DFG-SFB/38/2007 of Polish Ministry
of Science.

References

[1] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge, New York, 2000.

[2] D. Gottesman. Quantum error correction and fault tolerance. In J.-P. Francoise, G.L. Naber,
and S.T. Tsou, editors, Encyclopedia of Mathematical Physics, volume 4, page 196. Oxford,
Elsevier, 2006, quant-ph/0507174.

[3] D. W. Kribs, R. Laflamme, D. Poulin, and M. Lesosky. Operator quantum error correction.
Quantum Inf. Comput., 6(4&5):382, 2006, quant-ph/0504189.

[4] D. W. Kribs and R. W. Spekkens. Quantum error-correcting subsystems are unitarily recov-
erable subsystems. Phys. Rev. A, 74:042329, 2006, quant-ph/0608045.

[5] R. Blume-Kohout, H.K. Ng, D. Poulin, and L. Viola. The structure of preserved information
in quantum processes. Phys. Rev. Lett., 100:030501, 2008, 0705.4282.

[6] L.-M. Duan and G.-C. Guo. Preserving coherence in quantum computation by pairing quan-
tum bits. Phys. Rev. Lett., 79:1953, 1997.

[7] E. Knill, R. Laflamme, and L. Viola. Theory of quantum error correction for general noise.
Phys. Rev. Lett., 84:2525, 2000.

[8] D.A. Lidar, I.L. Chuang, and K.B. Whaley. Decoherence free subspaces for quantum compu-
tation. Phys. Rev. Lett., 81:2594, 1998, quant-ph/9807004.

[9] P. Zanardi. Stabilizing quantum information. Phys. Rev. A, 63:12301, 2001,
quant-ph/9910016.

[10] P. Zanardi and M. Rasetti. Noiseless quantum codes. Phys. Rev. Lett., 79:3306, 1997,
quant-ph/9705044.

[11] D. Gottesman. A class of quantum error-correcting codes saturating the quantum hamming
bound. Phys. Rev. A, 54:1862, 1996, quant-ph/9604038.

[12] D. Kribs, R. Laflamme, and D. Poulin. A unified and generalized approach to quantum error
correction. Phys. Rev. Lett., 94:180501, 2005, quant-ph/0412076.

http://arxiv.org/abs/quant-ph/0507174
http://arxiv.org/abs/quant-ph/0504189
http://arxiv.org/abs/quant-ph/0608045
http://arxiv.org/abs/quant-ph/9807004
http://arxiv.org/abs/quant-ph/9910016
http://arxiv.org/abs/quant-ph/9705044
http://arxiv.org/abs/quant-ph/9604038
http://arxiv.org/abs/quant-ph/0412076


12 DAVID W. KRIBS, ARON PASIEKA, AND KAROL ŻYCZKOWSKI
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