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Abstract. Since Fermions are based on anti-commutation relations, their entanglement
can not be studied in the usual way, such that the available theory has to be modified
appropriately. Recent publications consider in particular the structure of separable and of
maximally entangled states. In this talk we want to discuss local operations and entangle-
ment distillation from bipartite, Fermionic systems. To this end we apply an algebraic point
of view where algebras of local observables, rather than tensor product Hilbert spaces play
the central role. We apply our scheme in particular to Fermionic Gaussian states where the
whole discussion can be reduced to properties of the covariance matrix. Finally the results
are demonstrated with free Fermions on an infinite, one-dimensional lattice.

1. Introduction

Entanglement distillation is one of the most fundamental processes of
quantum information processing [1]. It is an integral part of many protocols
and devices like quantum repeaters and it provides important procedures to
measure the entanglement content of a given physical system. In the usual
setup it is assumed that two distant parties – Alice and Bob – share a large
number of (weakly) entangled pairs of particles, and the task is to generate
a (possibly small) amount of highly (or even maximally) entangled pairs by
means of local operations and classical communication. In this context it is
implicitly assumed that the particles shared by Alice and Bob are distinguish-
able: Firstly there is a clear distinction between particles controlled by Alice
and those controlled by Bob. Secondly many distillation protocols require
the selection of particular pairs by Alice and Bob (e.g. to perform filtering
operations). Hence even the local particles needs to be distinguishable.

At a first glance it therefore appears to be completely impossible to talk
about entanglement distillation with fermions, because the latter are by def-
inition undistinguishable. A second thought reveals, however, very quickly
that this is only an apparent difficulty. The only thing we have to drop is
the focus on particles. Instead we have to consider setups where Alice and
Bob control independent subsystems (usually distinguished by their position
in space) of a larger physical system. A typical example is a Fermi gas from
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which Alice and Bob want to distill entanglement by using only operations
(together with classical communication) which are localized in spatially sep-
arated regions (e.g. Alice’s and Bob’s laboratories).

Mathematically such a situation is most easily described in terms of op-
erator algebras. In other words, instead of using tensor products of Hilbert
spaces, we describe bipartite systems by specifying which local observables
are measurable by Alice and which by Bob. This approach is successfully
applied to the study of entanglement of infinite degrees of freedom systems
[11, 7] and for the analysis of separable [8, 5] and maximally entangled [9]
states of Fermionic systems (cf. also the references in [5] for more literature
on Fermionic entanglement).

The purpose of this paper is to study entanglement distillation in the same
framework. In this context we will show that distillation from Fermions can
be treated basically in the same way as ordinary distillation with only some
small changes which mainly arise from the emergence of super selection rules.
In addition we will present an explicit scheme which can be applied to any
quasi-free state and which allows explicit calculations (e.g. of distillation
rates) for fairly large systems, such as (subsystems of) infinite quasi-free
lattice models.

2. Entanglement distillation

Let us start with a short look on standard distillation techniques. Hence
assume that Alice and Bob share N d-level systems in the joint state ρ⊗N ,
where ρ denotes a density matrix on the Hilbert space H ⊗ H, H = C

d.
To generate maximally entangled qubit pairs from these resources they can
proceed as follows:

1. Look for (and drop) unentangled subsystems. Mathematically this
means to find a unitary U : H → H1 ⊗ K, H1 = C

d1 , and to apply
the transformation T1(ρ) = trK(UρU

∗). The final state ρ1 should con-
tain (almost) as much entanglement as the original ρ. In other words:
K and U has to be chosen appropriately.

2. Find a maximally entangled state ψ ∈ H1 ⊗H1 such that

〈ψ, ρ1ψ〉 > d−1
1 . (1)

The best choice would be to take the ψ which maximizes this fidelity.
To be successful here the first step is in many cases mandatory, be-
cause a state can be entangled without satisfying inequality (1) for any
maximally entangled ψ. This can be easily seen if we choose d = 2d̃
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and

ρ = |φ〉〈φ| ⊗ 1I

d̃2
φ = 2−1/2(|00〉 + |11〉) (2)

since we get supψ〈ψ, ρψ〉 = 1/d̃2, which can be arbitrarily small (if d̃ is
big enough) although ρ is distillable.

3. Consider the group

Gψ = {UA ⊗ UB |UA, UB ∈ U(d1), UA ⊗ UBψ = ψ}, (3)

and average over it. This leads to the twirl operation given by

T2(ρ1) =

∫

Gψ

UρU∗dU, (4)

where dU denotes the Haar measure on Gψ.

4. The output of the channel T2 is an isotropic state

ρ2 = T2ρ1 = ϑ|ψ〉〈ψ| + (1− ϑ)
1I

d21
(5)

with ϑ ∈ [−(d21 − 1)−1, 1] given in terms of the fidelity f = 〈ψ, ρψ〉 by

ϑ =
d21f − 1

d21 − 1
. (6)

From Equation (1) it follows immediately that ρ2 again satisfies the
inequality

〈ψ, ρ2ψ〉 > d−1
1 , (7)

and therefore it is distillable [6].

5. Now we can continue with standard techniques for isotropic states
which provide us with a number M of (almost) maximally entangled
qubit pairs; cf [12] and the references therein.

3. Bipartite Fermionic systems

To study entanglement of Fermionic systems the usual framework which
relies on tensor product Hilbert spaces is too narrow because indistinguisha-
bility and anti-commutation relations has to be taken into account. Instead,
it is more appropriate to describe the splitting of the overall system into two
subsystems in terms of observables algebras. This approach was successfully
applied in particular to infinite degrees of freedom systems [11, 7]. For our
purposes a simplified (finite dimensional) approach is sufficient.
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DEFINITION 1. A bipartite quantum system consists of a Hilbert space and
two C*-algebras A,B ⊂ B(H) which commute elementwise (i.e. [A,B] = 0
∀A ∈ A, ∀B ∈ B).

Selfadjoint elements of A and B describe the (projection valued) observ-
ables of the given system which can be locally measured by Alice and Bob
respectively. The default setup can be recovered if we have

A = B(HA)⊗ 1IB , B = 1IA ⊗ B(HB), M = B(HA ⊗HB) (8)

in terms of two Hilbert spaces HA,HB . Note, however, that we have neither
assumed that A and B together generate B(H) nor that B is the commutant
of A (in contrast to [7]). Therefore beside (8) other realizations of bipartite
systems are possible, even if H is finite dimensional. A particular example
arises, if HA/B decomposes into a direct sum HA/B = H+

A/B ⊕H−
A/B , and if

we define

A =
(

B(H+
A)⊕ B(H−

A)
)

⊗ 1IB , B = 1IB ⊗
(

B(H+
A)⊕ B(H−

A)
)

. (9)

This is – as we will see – exactly the situation we have to study for a system
consisting of a finite number of Fermions.

To explain the latter remark consider the Hilbert space K and the corre-
sponding antisymmetric Fockspace H = F−(K). For each h, f ∈ K we can
define the usual creation and annihilation operators c∗(h) and c(f) on H,
which satisfy the canonical anti-commutation relations ({ · , · } denotes the
anti-commutator)

{c(f), c(h)} = {c∗(f), c∗(h)} = 0, {c∗(h), c(f)} = 〈h, f〉1I. (10)

In some cases it is more convenient to combine c and c∗ in one operator (this
is called the self-dual formalism [2, 3]):

B(f, h) = c(f) + c∗(h), Γ(f, h) = (h, f), (11)

where ( · ) denotes complex conjugation in an appropriately chosen (and
fixed!) basis. Now we get from (10)

{B(F1), B(F2)} = 〈ΓF1, F2〉, B(F )∗ = B(ΓF ),∀F,F1, F2 ∈ K ⊕K. (12)

The set of operators {c(f) | f ∈ K} ⊂ B(H) generates a C*-algebra CAR(K) ⊂
B(H) which is called the algebra of canonical ani-commutation relations. It
can be regarded as the closure (in operator norm) of the algebra of polyno-
mials in the c(f) and c∗(h).
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Now consider the parity operator on H which is given in terms of the
number operator N by θ = (−1)N . It acts as the identity on the subspace
H+ ⊂ H of vectors with an even particle number and as minus the identity
on the complementary subspace H−. We write P± for the corresponding
projections and get

P± : H → H±, θ = P+ − P−. (13)

The elements of CAR(K) which commute with θ are called even elements
and they form the even subalgebra

CAR+(K) = {A ∈ CAR(K) | [A, θ] = 0} (14)

of CAR(K). It can be regarded as the (closure of) the algebra of even poly-
nomials in c(f) and c∗(h).

If K is finite dimensional CAR(K) coincides with B(H), i.e. it is a full
matrix algebra. The even subalgebra however is given by

CAR+(K) = B(H+)⊕ B(H−). (15)

This can be easily seen from the fact that a product of an even number of
creation and annihilation operators can change the particle number only by
a factor of 2.

The next step is to decompose K into an “Alice” and a “Bob” subspace,
i.e. K = KA ⊕ KB. Then we can associate to KA/B the corresponding
Fockspaces HA/B = F−(KA/B), and also the CAR-algebras CAR(KA/B) and
CAR+(KA/B). Obviously we have

H = F−(K) ∼= F−(KA)⊗F−(KB) = HA ⊗HB, (16)

and similarly CAR(K) is isomorphic to CAR(KA)⊗CAR(KB) if we consider
the spatial tensor product. The corresponding isomorphism satisfies

c(fA ⊕ 0) 7→ cA(fA)⊗ 1IB, c(0⊕ fB) 7→ θB ⊗ cB(FB), (17)

where the cA/B(fA/B) denote the annihilation operators and θA/B the parity
operators on HA/B . The latter are related to the global parity θ by

θ = θA ⊗ θB. (18)

Equation (17) shows that CAR(KA/B) can not both be embedded as tensor
factors into CAR(K) without violating the anti-commutation relations. The
construction given in (17) is therefore called the twisted tensor product of
CAR(KA) and CAR(KB).
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The discussion of the last paragraph has shown that two operators A ∈
CAR(KA), B ∈ CAR(KB) do not commute in general and therefore these
two algebras can not be chosen as the observable algebras A and B. If we
choose, however, A and B to be even elements we immediately get from (17)
that [A,B] = 0 holds. Hence

A = CAR+(KA), B = CAR+(KB) (19)

is an appropriate choice for the local observable algebras of Alice and Bob.
Together they define a bipartite Fermionic system in the sense of Definition
3. If KA and KB are finite dimensional we can insert Equation (15) for A and
B and we recover the example already given in (8). Note in addition that
A ⊂ B(HA) and B ⊂ B(HB) holds, while the full CAR algebras fail to have
this property – by virtue of Equation (17). Hence it is reasonable to consider
HA (HB) as Alice’s (Bob’s) Hilbert space.

4. Local operations

On top of the scheme described in the last section all basic notions of
entanglement theory can be reconstructed. This was done for separable states
in [8, 5] and for maximally entangled states in [9]. To discuss entanglement
distillation we need the concept of a local operation which can be defined as
follows (cf. [7]):

DEFINITION 2. Consider two bipartite systems Aj,Bj ⊂ B(Hj), j = 1, 2.
An operation (i.e. a completely positive map) T : B(H1) → B(H2) is called
local if

T (A1) ⊂ A2, T (B1) ⊂ B2 (20)

and
T (AB) = T (A)T (B) ∀A ∈ A1, ∀B ∈ B1 (21)

holds.

In the standard framework (8) with finite dimensional Hilbert spaces
HA,HB (or if we assume that the operation T is normal) this definition
coincides with the usual one. Note that the factorization condition (21) is
needed to make this statement true [7].

To generalize the distillation protocol from Section 2. only a few special
local operations are needed. They are summarized in the following list.

• Local unitaries. The easiest case is a local unitary transformation A 7→
U∗AU with U = UA⊗UB and UA (UB) unitary on HA (HB). It is easy
to see that U∗

AAUA = A is equivalent to UAH±
A = H±

A or UAH±
A = H∓

A.
A similar statement holds for UB .
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• Local Bogolubov transformations. A special case of the previous exam-
ple arises if UA and UB are related to unitaries uA, uB on KA ⊕ KA,
KB ⊕KB by

U∗B(F )U = B(uF ), with U = UA ⊗ UB , u = uA ⊕ uB, (22)

where B(F ) is the operator introduced in Equation (11). It is easy to
see that (22) is only possible if

ΓuΓ = u (23)

holds (cf. again (11)). The condition (23) is on the other hand sufficient
for the existence of a unitary U satisfying (22) for a given u.

• Discarding subsystems. Consider now decompositions KA/B = KA/B,1⊕
KA/B,2 of KA and KB. If we denote the Fockspaces of Kj = KA,j⊕KB,j,
j = 1, 2 by Hj we get a decomposition of H into a tensor product
H = H1 ⊗ H2. If we perform the partial trace over say H2 we get
the Fockspace H1 and the corresponding reduced observable algebras
A1,B1 ⊂ B(H1). In this way the partial trace becomes (the Schrödinger
picture version of) a local operation between two bipartite Fermionic
systems, which discards the modes belonging to K2.

• A joint parity measurement is described by the PVM

P jk = P jA ⊗ P kB , j, k = +,− (24)

and the corresponding von Neumann-Lüders instrument (P±
A/B denote

the projections to the even/odd subspaces of HA and HB ; cf. Section
3.). For a system in the state ρ the probability to get the outcome j, k
is pjk and the corresponding output state is ρjk:

pjk = tr(P jkρ), ρjk =
P jkρP jk

pjk
. (25)

The projections P jk commute with all A ∈ A and all B ∈ B. Therefore
parity measurements can be done without disturbing the system. This
implies immediately that the state ρ can not be distinguished from the
mixture

∑

jk p
jkρjk. Within a distillation scheme this instrument can

be used to perform local filtering operations; e.g. Alice and Bob can
decide to drop the whole system if their local parities are different and
to keep it otherwise. If we set

KA = KB = C
d ⇒ H+

A
∼= H−

A
∼= H+

B
∼= H−

B
∼= C

D, D = 2d−1, (26)



M. Keyl, Distilling entanglement from Fermions 8

and ignore the value of the parities (apart from j = k) we get a (non-
unital) local operation which transforms a bipartite Fermionic system
into a pair of D−level systems in the state

p++ρ++ + p−−ρ−−

p++ + p−−
. (27)

5. Distilling from Fermions

Let us now adopt the general distillation scheme sketched in Section 2.
to the Fermionic case. To this end we will use throughout this section the
assumptions made in Equation (26), which implies in particular that (9)
holds. In addition, consider two maximally entangled vectors ϕ+ ∈ H++,
ϕ− ∈ H−− and

ψ± =
1√
2
(ϕ+ ± ϕ−). (28)

For each A ∈ A⊗ B we have

tr(A|ψ±〉〈ψ±|) =
1

2
(tr(A|ϕ+〉〈ϕ+|) + tr(A|ϕ−〉〈ϕ−|)) . (29)

Using the terminology from Equations (45) and (57) this can be rewritten
as:

p++ = p−− =
1

2
, p+− = p−+ = 0, ρ++ = |ϕ+〉〈ϕ+|, ρ−− = |ϕ−〉〈ϕ−|. (30)

Hence Alice and Bob can not distinguish the vector states |ψ±〉〈ψ±| from
themselves and from the mixture of |ϕ+〉〈ϕ+| with |ϕ−〉〈ϕ−|. The latter is
according to [9] a Fermionic maximally entangled state (implying in partic-
ular that EOF is maximal).

The only step from the list in Section 2. we have to change is the twirling,
because averaging over the group Gψ+

(or Gψ
−

) breaks the superselection rule
and is therefore not an allowed local operation. Instead, we have to look at
the subgroup

Hψ+
= {UA ⊗ UB ∈ Gψ+

|UAAUA = A, UBBUB = B}. (31)

The structure of this group is given by the following Proposition

PROPOSITION 3. The group Hψ+
is generated by the subgroup

Hψ+,0 = {UA ⊗ UB ∈ Gψ+
| [UA, θA] = 0, [UB , θB] = 0} (32)

and V = VA ⊗ VB given by

VAe
+
A,j = e−A,j, VBe

+
B,j = e−B,j (33)
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where e±A/B,j , j = 1, . . . ,D, D = 2d−1 are given in terms of the Schmidt
decomposition of ϕ±, i.e.

ϕ+ =
1√
D

D
∑

j=1

e+A,j ⊗ e+B,j , ϕ− =
1√
D

D
∑

j=1

e−A,j ⊗ e−B,j. (34)

Proof. Obviously Hψ+,0 ⊂ Hψ+
and VA ⊗ VB ∈ Hψ+

. To show the other
inclusion recall from the discussion of local unitaries in the last section that
UAAU∗

B = A is equivalent to UAH±
A = H±

A (i.e. [UA, θA] = 0) or UAH±
A =

H∓
A, and that a similar statement holds for UB . The assumption UA⊗UBψ+ =

ψ+ implies in addition that [UA, θA] = 0 ⇔ [UB , θB] = 0 holds. Hence
U ∈ Hψ+

is either in Hψ+,0 or it can be written as U = ŨV with a Ũ ∈ Hψ+,0,
which concludes the proof. ✷

Averaging over the group Hψ+
leads to states which are Hψ+

invariant.
Their structure is given by the following proposition.

PROPOSITION 4. Each Hψ+
-invariant state σ can be written as

σ = λ+|ψ+〉〈ψ+|+ λ−|ψ−〉〈ψ−|+ µ+(P
++ + P−−) + µ−(P

+− + P−+) (35)

with

p++ = p−− =
λ+ + λ−

2
+ µ+D

2, p−+ = p+− = µ−D
2, (36)

〈ψ±, σψ±〉 = λ± + µ+. (37)

Proof. We have to determine the commutant H ′
ψ+

of Hψ+
. To this end

note first that Hψ+,0 ⊂ Hψ+
implies H ′

ψ+
⊂ H ′

ψ+,0
. Hence consider the latter

commutant first. By definition we have for each unitary U on HA ⊗HB

U ∈ Hψ+,0 ⇔ [U, |ψ+〉〈ψ+|] = 0, [U, θA ⊗ 1I] = 0, [U, 1I⊗ θB] = 0, (38)

where we have used the fact that the factorization U = UA ⊗ UB is a conse-
quence of [U,ψ+] = 0; cf. [13]. Therefore H ′

ψ+,0
is the von Neumann algebra

generated by |ψ+〉〈ψ+|, θA ⊗ 1I and 1I⊗ θB , i.e.

H ′
ψ+,0 = {|ψ+〉〈ψ+|, θA ⊗ 1I, 1I⊗ θB}′′. (39)

By calculating all possible products of the generators this leads to

H ′
ψ+,0 = span{|ψ+〉〈ψ+|, |ψ−〉〈ψ−|, |ψ+〉〈ψ−|, |ψ−〉〈ψ+|,

P++, P−−, P+−, P−+}. (40)
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The group Hψ+
is generated by Hψ+,0 and V = VA ⊗ VB ; cf. Proposition

5. Hence A ∈ H′
ψ+,0

is in H′
ψ+

iff it commutes V . Since VA and VB just
exchanges the even with the odd subspace we easily conclude that

H ′
ψ+

= span{|ψ+〉〈ψ+|, |ψ−〉〈ψ−|, P++ + P−−, P+− + P−+} (41)

holds, which implies equation (35). Equations (36) and (37) follow immedi-
ately from the definition of the pjk in (45) and from taking traces. ✷

If we decompose the Hψ+
-invariant state σ according to Equation (57)

we get

σ±± =
λ+ + λ−
2p±±

|ϕ±〉〈ϕ±|+
µ+
p±±

P±± σ±∓ =
P±∓

D2
. (42)

Hence if Alice and Bob perform θA, θB measurements – which they can do
without disturbing the systems – they get either with probability

p = p++ + p−− (43)

one of the (basically equivalent) isotropic states σ++ or σ−−, or they get with
probability 1− p the totally chaotic state σ+− or σ−+. In case they get σ±±

it is distillable iff

〈ϕ±, σ
±±ϕ±〉 >

1

D
(44)

holds. A straightforward calculation using Equations (36), (37), (42) and
(44) leads to the following proposition

PROPOSITION 5. Consider a state Hψ+
invariant state σ. The fidelity

f = 〈ϕ±, σ
±±ϕ±〉 of the isotropic state σ±± from Equation (42) is given by

f =
〈ψ+, σψ+〉+ 〈ψ−, σψ−〉

p
. (45)

Hence σ±± is distillable iff

〈ψ+, σψ+〉+ 〈ψ−, σψ−〉 >
p

D
(46)

holds.

Let us start with a general state ρ and twirl over Hψ+
, i.e.

σ =

∫

Hψ+

UρU∗dU. (47)
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Then σ is Hψ+
invariant and Equation (46) is equivalent to

〈ψ+, ρψ+〉+ 〈ψ−, ρψ−〉 >
p

D
(48)

To get a general distillation protocol for Fermionic systems we can therefore
modify the distillation presented in Section 2. as follows:

1. Start with N distinguishable copies of the same Fermionic system, each
prepared in the same state (e.g. N metallic wires containing an electron
gas).

2. Drop unentangled subsystems. This leads to N bipartite Fermionic
systems in the joint state ρ⊗N . Here ρ is a density operator onHA⊗HB ,
which should be interpreted, however, as a state of the algebra A⊗B.

3. Find maximally entangled states ψ± as in Equation (28) such that (48)
holds.

4. Average over the group Hψ+
. This leads to the Hψ+

-invariant state σ.

5. Make θA, θB measurement. If the outcome is ++ or −− (which happens
with probability p) this leads to the isotropic state σ++ or σ−−. It can
be treated with standard distillation techniques.

6. Otherwise (+−, −+) we get a chaotic state which is useless for distil-
lation.

To find a maximally entangled state ψ+ such that (48) is satisfied usually
requires an optimization over all possible ψ+. In general this is very difficult.
In the next section, however, we will discuss a special class of states where
this problem is more feasible and which provide at the same time a systematic
way of dropping unentangled modes.

6. Quasifree states

Let us apply the general scheme developed in the last section to quasifree
states. Recall that a density matrix ρ describes a quasifree state of the CAR
algebra CAR(K) if there is a bounded operator S ∈ B(K) such that

tr(ρB(f1) · · ·B(f2n+1)) = 0 (49)

tr(ρB(f1) · · ·B(f2n)) =
∑

sign(p)

n
∏

j=1

〈Γfp(2j−1), Sfp(2j)〉, (50)

holds for all n ∈ N and fk ∈ K ⊕ K. The sum in (50) is taken over all
permutations p satisfying

p(1) < p(3) < ... < p(2n − 1), p(2j − 1) < p(2j) (51)
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and sign(p) is the signature of p. The covariance operator S is selfadjoint
and satisfies

ΓSΓ = 1− S, 0 ≤ S ≤ 1I. (52)

We can express the right hand side of Equation (50) as the Pfaffian Pf(S̃)
of the antisymmetric matrix S̃ with matrix elements S̃jk = 〈fj , Sfk〉 k > j.
Note also that this definition works as well in infinite dimensions, although we
will restrict our discussion in this chapter again to the case KA = KB = C

d,
K = KA ⊕KB . In KA/B ⊕KA/B we will use the bases (k = 1, . . . , 2d)

e
(k)
A/B =

{

e
(k)
A/B,1 = 2−1/2(|k〉+ |k + d〉) if k ≤ d

e
(k−d)
A/B,2 = 2−1/2i(|k − d〉 − |k〉) if k > d

(53)

where |k〉, k = 1, . . . 2d denotes the canonical basis in C
2d. If the decom-

position into Alice- and Bob-subsystems is not important we can also use
relabeled version

e(k) =

{

e
(k)
A for k ≤ 2d

e
(2d−k)
B for k > 2d

(54)

where k ranges now from 1 to 4d. The advantage of this basis is its Γ
invariance. We can therefore write

Skj = 〈e(k), Se(j)〉 = 〈Γe(k), Se(j)〉, (55)

with k, j = 1, . . . , 4d. In the following we will identify with slight abuse of
notation the operator S with the matrix (Sjk)j,k and write

S =

(

SAA SAB
SBA SBB

)

=
1

2

(

1IA + iX iY
−iY T 1IB + iZ

)

. (56)

These expressions should be interpreted as block matrices with respect to the

Alice/Bob split, e.g. SAB contains all matrix elements of the form 〈e(j)A , Se
(k)
B 〉,

etc. Using Equation (52) it is easy to see thatX,Y,Z are real 2d×2dmatrices,
and that Y,Z are antisymmetric.

For quasifree states the expressions and constructions from the last two
sections can be given quite explicitly in terms of covariance matrices. The
following list summarizes the most important examples (cf. [10] for more
details, in particular for proofs)

• The probability p to get equal parities during a joint θA, θB measurement
(cf. Equation (43) is given by

p =
1 + (−4)d Pf(S − 1I/2)

2
. (57)
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• A quasifree state with covariance matrix P is maximally entangled, iff
P has (in the basis from Equation (53)) the form

P =
1

2

(

1IA iR
−iRT 1IB

)

, (58)

with a real orthogonal matrix R. The quasifree state thus given can be
represented by a state vector ψP ∈ H with

ψP =
1√
2
(ϕ+ + ϕ−) (59)

with maximally entangled vectors ϕ± ∈ H±
A ⊗H±

B . In other words ψP
is always of the form ψ+ assumed in Equation (28).

• The fidelity between a quasifree state ρS and a maximally entangled
quasifree state ψP is given by

〈ψP , ρψP 〉 = Pf(1I− S − P ). (60)

• The quasifree state ρS can be transformed by a local Bogolubov trans-
formation u into a normal form ρS̃ (which is again quasifree) such

that the off diagonal blocks −iS̃AB and iS̃BA of the covariance matrix
S̃ = uSu∗ become diagonal with positive eigenvalues. To see this con-
sider the singular value decomposition Y = uAΣY u

∗
B of Y and choose

u = uA ⊕ uB .

The general distillation scheme described in the last section comprises
the search for a ψ+ such that Equation (48) holds. Since we can always
choose ψ+ = ψP for some P satisfying (58) a good strategy is optimize the
expression in (60) over all such P . The following theorem treats an important
special case (cf. [10] for a proof).

THEOREM 6. Consider a quasifree state ρS with covariance matrix S from
Equation (56). Assume that X = 0 or Z = 0 holds, and that Y is diagonal
with non-negative eigenvalues (the latter can be done without loss of general-
ity). The maximal fidelity of ρS with a quasifree, maximally entangled state
ψP arises if the basis projection P is given by

P =
1

2

(

1IA i1I
−i1I 1IB

)

, (61)

and its value is

〈ψP , ρψP 〉 =
n
∏

j=1

(

1 + λj
2

)mj

(62)

where λj , j = 1, . . . , n denote the eigenvalues values of Z and mj the corre-
sponding multiplicities.



M. Keyl, Distilling entanglement from Fermions 14

If the condition X = 0 or Z = 0 is not satisfied the optimality statement
is in general not true. For states, however, which are already close to a
maximally entangled, quasi free state X and Z have to be at least small
(otherwise the condition 0 ≤ S ≤ 1I is not satisfied). Hence in this case the
choice ψP with P from (61) should be close to the optimum (provided Y is
diagonalized). Therefore the following specialization of the procedure from
the last section should provide a reasonably good scheme for distillation from
quasi free, Fermionic states.

1. Consider N bipartite Fermionic systems, each of which in the same
quasi free state ρS .

2. Choose bases for KA⊕KA and KB⊕KB such that the block-offdiagonal
part Y of S becomes diagonal (and with real positive entries). As
already pointed out above this can be done locally by Alice and Bob
without any communication (if S is known to them).

3. Drop all modes except those belonging to the n highest singular values
of Y . The number nmust be chosen such that Equation (48) holds with
ψ+ = ψP where the basis projection P is (in basis which diagonalizes
Y ) of the form (61). The maximally entangled state ψ− is then quasi
free as well, i.e. ψ− = ψQ with basis projection

Q =
1

2

(

1IA −i1I
i1I 1IB

)

(63)

(please check yourself). Hence the two fidelities 〈ψ±ρS , ψ±〉 in Equa-
tion (48) can be calculated with (61). If the probability p is unknown
Equation (48) should be used with the conservative choice p = 1.

4. Average (twirl) over the group Hψ+
, make a θA, θB measurement and

proceed as described in Section 5.

Let us demonstrate this scheme with free fermions (without spin) hopping
on a one-dimensional regular lattice Z (lets call it a “wire”). They can
be described by the CAR algebra CAR(l2(Z)) and the dynamics is given
formally1 by the Hamiltonian

H =
∑

j∈Z

(

c∗jcj+1 + c∗j+1cj
)

. (64)

1
H is not well defined as an element of CAR(l2(Z)), because the sum does not converge

in norm. It gives rise, however, to a well define derivation and therefore the notion of
ground state is well defined too.
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It admits a unique quasifree ground state ϕ0 with covariance operator S given
by

S = F−1

(

E 0
0 1− E

)

F (65)

where

l2(Z)⊗ C
2 ∋ F 7→ F(F ) ∈ L2(S1)⊗ C

2, F(F )(x) =
∞
∑

j=−∞

einxFn (66)

is the Fourier transform and E ∈ B(L2(S1)) the projection to the upper
half-circle [2, 4].

50 100 150 200
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0.00075
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0.00125

0.0015

d

R(d)/d

Fig. 1: Distillation rate R(d)/d for free Fermions on a one-dimensional lattice,
if only two adjacent regions of length d are accessed.

Now assume that Alice and Bob can control only two blocks of the form
ΛA = [0, d) and ΛB = [d, 2d) (or any joint spatial translate of them). The
restriction to the corresponding subsystem leads exactly to the bipartite
Fermionic system just studied. The reduced density matrix ρΛ arising from
the ground state ϕ0 is quasifree and its covariance matrix in the basis (54)
can be easily derived from (65).

Now we can apply the distillation protocol given above. If we choose
to keep in step 3 only the four highest singular values of Y we get at the
end with probability p from (57) a qubit pair in an isotropic state σ =
f |φ〉〈φ|+(1− f)(1I− |φ〉〈φ|)/3, with fidelity f from Equation (45). If a large
number of systems is available (where system refers here to a whole wire not
to a single Fermion) and if the fidelity f is big enough we can use the Hashing
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protocol to distill maximally entangled qubit pairs. The distillation rate, i.e.
the number of maximally entangled pairs we get asymptotically per wire is
[12]

R = p
(

1−S(σ)
)

= p
(

1+f log2(f)+(1−f) log2(1−f)−(1−f) log2(3)
)

. (67)

Maybe more interesting is the rate R/d of pairs we get per lattice site used.
The result is plotted in Figure 1. The small zigzag noise on the graph arises
from a slightly different behavior of the protocol for even and odd values
for d. This is an indication that the scheme is indeed not optimal if the
assumptions from Theorem 6. (i.e. X = 0 or Z = 0) are not satisfied.
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5. M.-C. Bañuls, J. I. Cirac and M. M. Wolf. Entanglement in fermionic systems. Phys.
Rev. A 76, 022311 (2007).

6. M. Horodecki and P. Horodecki. Reduction criterion of separability and limits for a
class of distillation protocols. Phys. Rev. A 59, no. 6, 4206–4216 (1999).

7. M. Keyl, T. Matsui, D. Schlingemann and R. F. Werner. Entanglement, Haag-duality
and type properties of infinite quantum spin chains. Rev. Math. Phys. 18, no. 9,
935–970 (2006).

8. H. Moriya. On separable states for composite systems of distingushable fermions. J.
Phys. A 39, 3753–3762 (2006).

9. D. Schlingemann, M. Cozzini, M. Keyl and L. Campos Venuti. Maximally entangled
fermions. Phys. Rev. A 78, 032301 (2008).

10. L. Campos Venuti, Z. Kadar, M. Keyl and D. Schlingemann. Entanglement distillation
with quasifree fermions. in preparation.

11. R. Verch and R. F. Werner. Distillability and positivity of partial transposes in general
quantum field systems. Rev. Math. Phys. 17, no. 5, 545–576 (2005).

12. K. G. Vollbrecht and M. M. Wolf. Efficient distillation beyond qubits. Phys. Rev. A
67, 012303 (2003).

13. K. G. H. Vollbrecht and R. F. Werner. Entanglement measures under symmetry. Phys.
Rev. A 64, 062307 (2001).


	Introduction
	Entanglement distillation
	Bipartite Fermionic systems
	Local operations
	Distilling from Fermions
	Quasifree states

