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ON DESCRIPTION OF BISTOCHASTIC KADISON-SCHWARZ

OPERATORS ON M2(C)

FARRUKH MUKHAMEDOV AND ABDUAZIZ ABDUGANIEV

Abstract. In this paper we describe bistochastic Kadison-Schawrz operators onM2(C). Such a
description allows us to find positive, but not Kadison-Schwarz operators. Moreover, by means
of that characterization we construct Kadison-Schawrz operators, which are not completely
positive.
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1. Introduction

It is known that the theory of quantum dynamical systems provides a convenient mathematical
description of irreversible dynamics of an open quantum system (see[2]) investigation of various
properties of such dynamical systems have had a considerable growth. In a quantum setting,
the matter is more complicated than in the classical case. Some differences between classical
and quantum situations are pointed out in [10]. This motivates an interest to study dynamics
of quantum systems (see[10]). One of the main objects of this theory is mapping (or channel)
defined on matrix algebras. One of the main constraints to such a mapping is positivity and
complete positivity. There are many papers devoted to this problem (see for example [3, 7, 14,
15]). In the literature the most tractable maps, the completely positive ones, have proved to be
of great importance in the structure theory of C∗-algebras. However, general positive (order-
preserving) linear maps are very intractable[7, 8, 9]. It is therefore of interest to study conditions
stronger than positivity, but weaker than complete positivity. Such a condition is called Kadison-
Schwarz (KS) property, i.e a map φ satisfies the KS property if φ(a)∗φ(a) ≤ φ(a∗a) holds for
every a. Note that every unital completely positive map satisfies this inequality, and a famous
result of Kadison states that any positive unital map satisfies the inequality for self-adjoint
elements a. But KS-operators no need to be completely positive. In [13] relations between
n-positivity of a map φ and the KS property of certain map is established. Some nice properties
of the Kadison-Schwarz maps were investigated in [6, 12].

In this paper we are going to describe KS-operators which are unital, trace preserving linear
mappings (i.e. bistochastic operators) defined on the algebra of 2 by 2 matrices M2(C). In
Section 2 we show that the set of KS-operators forms a convex set. In section 3, we characterize
bistochastic KS-operators on M2(C). Such a description allows us to find positive, but not
Kadison-Schwarz operators. Moreover, by means of that characterization one can construct KS-
operators, which are not completely positive. Note that trace-preserving maps arise naturally
in quantum information theory [4, 5, 10, 11] and other situations in which one wishes to restrict
attention to a quantum system that should properly be considered a subsystem of a larger system
with which it interacts.

2. Preliminaries

Let A and B be unital C∗-algebras with identity 1I. Recall that a linear mapping Φ : A → B

is called
1
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(i) positive if Φ(x) ≥ 0 whenever x ≥ 0;
(ii) unital if Φ(1I) = 1I;
(iii) n-positive if the mapping Φn : Mn(A) → Mn(B) defined by Φn(aij) = (Φ(aij)) is positive.

Here Mn(A) denotes the algebra of n× n matrices with A-valued entries;
(iv) completely positive if it is n-positive for all n ∈ N;
(v) Kadison-Schwarz operator (KS-operator), if one has

Φ(x)∗Φ(x) ≤ Φ(x∗x) for all x ∈ A.(2.1)

It is clear that any KS-operator is positive. Note that every 2- positive map is KS-map, and
a famous result of Kadison states that any positive unital map satisfies the inequality (2.1) for
all self-adjoint elements x ∈ A.

By KS(A,B) we denote the set of all KS-operators mapping from A to B.

Theorem 2.1. The following assertions hold true:

(i) Let Φ,Ψ ∈ KS(A,B), then for any λ ∈ [0, 1] the mapping Γ = λΦ+ (1− λ)Ψ belongs to
KS(A1, A2). This means KS(A,B) is convex;

(ii) Let U, V be unitaries in A and B, respectively, then for any Φ ∈ KS(A,B) the mapping
ΨU,V (x) = UΦ(V xV ∗)U∗ belongs to KS(A,B).

Proof. (i). Let us show that Γλ satisfies (2.1). Let x ∈ A, then one can see that

Γλ(x
∗x) = λΦ(x∗x) + (1− λ)Ψ(x∗x)

≥ λΦ(x)∗Φ(x) + (1− λ)Ψ(x)∗Ψ(x)(2.2)

and

Γλ(x)
∗Γλ(x) = λ2Φ(x)∗Φ(x) + λ(1− λ)Φ(x)∗Ψ(x)

+ λ(1− λ)Ψ(x)∗Φ(x) + (1− λ)2Ψ(x)∗Ψ(x)(2.3)

Hence, from (2.2) - (2.3) one gets

Γλ(x
∗x)− Γλ(x)

∗Γλ(x) ≥ λ(1− λ)
(

Φ(x)−Ψ(x)
)

∗

(Φ(x)−Ψ(x)) ≥ 0,

which proves the assertion.

(ii) For any x ∈ A one has

ΨU,V (x
∗x) = UΦ

(

(V xV ∗)∗V xV ∗
)

U∗

≥ UΦ(V xV ∗)∗Φ(V xV ∗
)

U∗

= UΦ(V xV ∗)∗U∗UΦ(V xV ∗
)

U∗

= ΨU,V (x)
∗ΨU,V (x),

this completes the proof. �

Let us consider the set of 2 by 2 matrices M2(C) over C. In the sequel by 1I we mean an
identity matrix. By Tr we mean trace on M2(C). In what follows by τ we denote a normalized
trace, i.e. τ = 1

2 Tr.
A linear mapping Φ : M2(C) → M2(C) is called bistochastic if it is positive, unital and trace

preserving, i.e. τ(Φ(x)) = τ(x) for all x ∈ M2(C)). Note that this terminology for maps that
are both unital and stochastic was introduced in [1].

In the paper we are going to consider bistochastic KS-operators on M2(C). Therefore, by
KS(M2(C)) we denote the set of all bistochastic KS-operators defined on M2(C). According to
Theorem 2.1 the set KS(M2(C)) is convex.
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3. Kadison-Schwarz operators on M2(C)

It is known (see [2, 4]) that the identity and the Pauli matrices {1I, σ1, σ2, σ3} form a basis
for M2(C), where

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i

i 0

)

σ3 =

(

1 0
0 −1

)

.

Every matrix a ∈ M2(C) can be written in this basis as a = w01I +w · σ with w0 ∈ C,w =
(w1, w2, w3) ∈ C

3, here by w · σ we mean the following

w · σ = w1σ1 + w2σ2 + w3σ3.

The following facts holds (see [11]):

(a) a matrix a ∈ M2(C) is self-adjoint if and only if w0 and w are real;
(b) a matrix a ∈ M2(C) is positive if and only if ‖w‖ ≤ w0, where

‖w‖ =
√

|w1|2 + |w2|2 + |w3|2 ;

(c) a matrix a ∈ M2(C) is normal if and only if [w,w] = [w,w]
for every w ∈ C

3, where [·, ·] stands for the cross product of vectors in C
3.

Every Φ : M2(C) → M2(C) linear mapping can also be represented in this basis by a unique

4 × 4 matrix F. It is trace preserving if and only if F =

(

1 0
t T

)

where T is a 3 × 3 matrix

and 0 and t are row and column vectors respectively so that

(3.1) Φ(w01I +w · σ) = w01I + (w0t+ Tw) · σ.

When Φ is also positive then it maps the subspace of self-adjoint matrices of M2(C) into itself,
which implies that T is real. A linear mapping Φ is unital if and only if t = 0. So, in this case
we have

(3.2) Φ(w01I +w · σ) = w01I + (Tw) · σ.

Hence, any bistochastic mapping Φ : M2(C) → M2(C) has a form (3.2). Now we are going to
give a characterization bistochastic KS-maps.

Theorem 3.1. Any bistochastic mapping Φ : M2(C) → M2(C) is KS-operator if and only if
one has

‖Tw‖ ≤ ‖w‖, Tw = Tw(3.3)
∥

∥

∥

∥

T [w,w]−
[

Tw, Tw
]

∥

∥

∥

∥

≤ ‖w‖2 − ‖Tw‖2(3.4)

for all w ∈ C
3.

Proof. ’if’ part. Let x ∈ M2(C) be an arbitrary element, i.e. x = w01I + w · σ. Then x∗ =
w01I +w · σ. Therefore

x∗x =
(

|w0|2 + ‖w‖2
)

1I +
(

w0w + w0w − i
[

w,w
])

· σ

Consequently, we have

Φ(x) = w01I + (Tw) · σ, Φ(x∗) = w01I +
(

Tw
)

· σ(3.5)

Φ(x∗x) =
(

|w0|2 + ‖w‖2
)

1I +
(

w0Tw + w0Tw − iT
[

w,w
])

· σ(3.6)

Φ(x)∗Φ(x) =
(

|w0|2 + ‖Tw‖2
)

1I +
(

w0Tw+ w0Tw − i
[

Tw, Tw
])

· σ(3.7)
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From (3.6)-(3.7) one gets

Φ(x∗x)− Φ(x)∗Φ(x) =
(

|w0|2 − ‖Tw‖2
)

1I

+

(

w0

(

Tw − Tw
)

− i
(

T
[

w,w
]

−
[

Tw, Tw
])

)

· σ ≥ 0

Hence, due to (b) we conclude thatΦ should be positive, which means T is real, therefore one
gets Tw = Tw. consequently, the last inequality yields

(

|w0|2 − ‖Tw‖2
)

1I− i
(

T
[

w,w
]

−
[

Tw, Tw
])

· σ ≥ 0(3.8)

which again with (b) implies the assertion.
’only if’ part. Let (3.3)-(3.4) be satisfied. Then we have (3.8), which with (3.4) and (3.6)-(3.7)

yields (2.1). This completes the proof. �

Let Φ be a bistochastic KS-operator on M2(C), then it can be represented by (3.2). Following
[4] let us decompose the matrix T as follows T = RS, here R is a rotation and S is a self-adjoint
matrix (see [4]). Define a mapping ΦS as follows

(3.9) ΦS(w01I +w · σ) = w01I + (Sw) · σ.
Every rotation is implemented by a unitary matrix in M2(C), therefore there is a unitary U ∈
M2(C) such that

(3.10) Φ(x) = UΦS(x)U
∗, x ∈ M2(C).

On the other hand, every self-adjoint operator S can be diagonalized by some unitary operator,
i.e. there is a unitary V ∈ M2(C) such that S = V Dλ1,λ2,λ3

V ∗, where

Dλ1,λ2,λ3
=





λ1 0 0
0 λ2 0
0 0 λ3



 ,(3.11)

where λ1, λ2, λ3 ∈ R.
Consequently, the mapping Φ can be represented by

(3.12) Φ(x) = ŨΦDλ1,λ2,λ3
(x)Ũ∗, x ∈ M2(C)

for some unitary Ũ . Due to Theorem 2.1 the mapping ΦDλ1,λ2,λ3
is also KS-operator. Hence,

all bistochastic KS-operators can be characterized by ΦDλ1,λ2,λ3
and unitaries. In what follows,

for the sake of shortness by Φ(λ1,λ2,λ3) we denote the mapping ΦDλ1,λ2,λ3
. It is clear to observe

from (3.3) that |λk| ≤ 1, k = 1, 2, 3. It is easy to see that the mapping ΦD 7→ UΦDU
∗ is

affine, therefore, if ΦD is an extreme point of KS(M2(C)) then UΦDU
∗ is an extreme point of

KS(M2(C) as well. Denote

(3.13) ∆ =
{

(λ1, λ2, λ3) ∈ R
3 : Φ(λ1,λ2,λ3) ∈ KS(M2(C))

}

.

According to Theorem 2.1 the set ∆ is convex. Now taking into account that the mapping
(λ1, λ2, λ3) 7→ Φ(λ1,λ2,λ3) is affine, we infer that if (λ1, λ2, λ3) is an extreme point of ∆, then
Φ(λ1,λ2,λ3) is also extreme point of KS(M2(C)).

Example 1. Let us consider a famous example of non completely positive operator defined
by transposition, i.e. Φ(x) = xT , where for x ∈ M2(C) by xT we denote its transposition. This
mapping can be written in terms of Φ(λ1,λ2,λ3) as follows Φ = Φ(1,−1,1). First observe that by
taking w = (1, 1, i) in (3.4) one finds

2
√

(λ1 − λ2λ3)2 + (λ2 − λ1λ3)2 ≤ 2− λ2
1 − λ2

2 + 1− λ2
3.

Putting λ3 = 1, then the last one can be written as follows

2
√
2|λ1 − λ2| ≤ 2− λ2

1 − λ2
2.(3.14)
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It is clear that at λ1 = 1, λ2 = −1, the inequality (3.14) is not satisfied, hence (3.4) as well.
This means that Φ(1,−1,1) is positive, but not KS-map.

In [11] it has been given a characterization of completely positivity of Φ(λ1,λ2,λ3). Namely, the
following result holds.

Theorem 3.2. A map Φ(λ1,λ2,λ3) is complete positive if and only if the followings inequalities
are satisfied

(λ1 + λ2)
2 ≤ (1 + λ3)

2(3.15)

(λ1 − λ2)
2 ≤ (1− λ3)

2(3.16)

(1− (λ2
1 + λ2

2 + λ2
3))

2 ≥ 4(λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3 − 2λ1λ2λ3)(3.17)

Let us characterize KS operators of the form Φ(λ1,λ2,λ3).
Using simple calculation from (3.4) with T = Dλ1,λ2,λ3

we obtain the following

A|w2w3 − w3w2|2 + B|w1w3 − w3w1|2

+C|w1w2 − w2w1|2 ≤
(

α|w1|2 + β|w2|2 + γ|w3|2
)2
,(3.18)

where w = (w1, w2, w3) ∈ C
3 and

α = |1− λ2
1|, β = |1− λ2

2|, γ = |1− λ2
3|(3.19)

A = |λ1 − λ2λ3|2, B = |λ2 − λ1λ3|2, C = |λ3 − λ1λ2|2.(3.20)

Due to the inequality |2ℜ(uv)| ≤ |u|2 + |v|2, we have

|wiwj − wjwi|2 = |2ℜ(wiwj)|2 ≤ |wi|4 + 2|wi|2|wj |2 + |wj |4 (i 6= j)

hence, we estimate LHS of (3.18) by

A(|w2|4 + 2|w2|2|w3|2 + |w3|4) +B(|w1|4 + 2|w1|2|w3|2 + |w3|4)− C(|w1|4 + 2|w1|2|w2|2 + |w2|4)
Consequently, from (3.18) we derive the following one

|w1|4(α2 −B − C) + |w2|4(β2 −A−C) + |w3|4(γ2 −A−B)

+2|w1|2|w2|2(αβ −C) + 2|w1|2|w3|2(αγ −B) + 2|w2|2|w3|2(βγ −A) ≥ 0(3.21)

It is easy to see that (3.21) is satisfied if one has

α2 ≥ B + C, β2 ≥ A+ C, γ2 ≥ A+B,

αβ ≥ C, αγ ≥ B, βγ ≥ A.

Substituting above denotations (3.19),(3.20) to the last inequalities, and doing simple calcu-
lation one derives

(1 + λ2
1)(3 + λ2

2 + λ2
3 − λ2

1) ≤ 4(1 + λ1λ2λ3);(3.22)

(1 + λ2
2)(3 + λ2

1 + λ2
3 − λ2

2) ≤ 4(1 + λ1λ2λ3);(3.23)

(1 + λ2
3)(3 + λ2

1 + λ2
2 − λ2

3) ≤ 4(1 + λ1λ2λ3);(3.24)

λ2
1 + λ2

2 + λ2
3 ≤ 1 + 2λ1λ2λ3.(3.25)

Hence, we have the following

Theorem 3.3. If (3.22),(3.23),(3.24) and (3.25) are satisfied, then a map Φ(λ1,λ2,λ3) is a KS-
operator.
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The last theorem allows us to construct lots of KS-operators, which are not completely positive
(see Example 2).

Let us consider mappings Φ(λ,λ,µ), and for the check the conditions of Theorems 3.2 and 3.3.
Calculating (3.15), (3.16), (3.17), (3.22),(3.23),(3.24) and (3.25) we obtain the following

λ2 ≤ (1 + µ)2

4
; λ2 ≤ 1 + µ

3− µ
; λ2 ≤ (1 + µ)2

2
; λ2 ≤ 1 + µ

2
.

The graphics of above inequalities are the following

Figure 1. Blue color indicates KS operators, which are not CP. Red color indi-
cated CP maps.

From the graphic we see that class of KS-operators are much larger that the class of completely
positive ones.

Example 2. Now we are going to construct KS-operators, which is not complete positive.
Consider mappings of the form Φ(λ,λ,λ). Let us first check conditions of Theorem 3.2, here as
above |λ| ≤ 1. From (3.15) we obtain the following inequality

4λ2 ≤ (1 + λ)2

Solving the last inequality one has

(λ− 1)(λ+
1

3
) ≤ 0

If we take λ such that −1 ≤ λ < −1
3 , then (3.15) is not satisfied. This means that Φ(λ,λ,λ) is

not complete positive.
Next we are going to check conditions of Theorem 3.3 From (3.22),(3.23),(3.24) and (3.25)

one finds
(1 + λ2)(3 + λ2) ≤ 4(1 + λ3).

Calculating the last one we obtain

(λ− 1)2(λ− 1−
√
2)(λ− 1 +

√
2) ≤ 0.

If 1−
√
2 ≤ λ ≤ 1 then Φ(λ,λ,λ) is KS-operator.

So, taking into account above we conclude that if 1 −
√
2 ≤ λ < −1

3 , then Φ(λ,λ,λ) is KS-
operator, but not complete positive one.
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