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ON PURE QUASI QUANTUM QUADRATIC OPERATORS OF M2(C)

FARRUKH MUKHAMEDOV AND ABDUAZIZ ABDUGANIEV

Abstract. In the present paper we study quasi quantum quadratic operators (q.q.o) acting
on the algebra of 2 × 2 matrices M2(C). It is known that a channel is called pure if it sends
pure states to pure ones. In this papers, we introduce a weaker condition, called q-purity,
than purity of the channel. To study q-pure channels, we concentrate ourselves to quasi q.q.o.
acting on M2(C). We describe all trace-preserving quasi q.q.o. on M2(C), which allowed us to
prove that if a trace-preserving symmetric quasi q.q.o. such that the corresponding quadratic
operator is linear, then its q-purity implies its positivity. If a symmetric quasi q.q.o. has a
Haar state τ , then its corresponding quadratic operator is nonlinear, and it is proved that such
q-pure symmetric quasi q.q.o. cannot be positive. We think that such a result will allow to
check whether a given mapping from M2(C) to M2(C) ⊗M2(C) is pure or not. On the other
hand, our study is related to construction of pure quantum nonlinear channels. Moreover, it
is also considered that nonlinear dynamics associated with quasi pure q.q.o. may have differen
kind of dynamics, i.e. it may behave chaotically or trivially, respectively.

Mathematics Subject Classification: 46L35, 46L55, 46A37. 60J99.
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1. Introduction

It is known that entanglement is one of the essential features of quantum physics and is
fundamental in modern quantum technologies [26]. One of the central problems in the entan-
glement theory is the discrimination between separable and entangled states. There are several
tools which can be used for this purpose. The most general consists in applying the theory
of linear positive maps [29]. In these studies one of the goal is to construct a map from the
state space of a system to the state space of another system. In the literature on quantum
information and communication systems, such a map is called a channel [26]. Note that the
concept of state in a physical system is a powerful weapon to study the dynamical behavior
of that system. One of the important class of channels is so-called pure ones, which map pure
states to pure ones (see [1, 2]). For example, important examples of such kind of maps are
conjugation of automorphisms of given algebra. But, if a channel acts from algebra to another
one, then the description of pure channels is a tricky job. Therefore, it would be interesting
characterize such kind of maps (or channels). Note that quantum mutual entropy of such kind
of maps can be calculated easier way than others [27, 28].

In the present paper we are going to describe pure quasi quantum quadratic operators (see
also [25]). On the other hand, such kind of operators define quadratic operators. We should
stress that quadratic dynamical systems have been proved to be a rich source of analysis for the
investigation of dynamical properties and modeling in different domains, such as population
dynamics [5, 10, 12], physics [30, 34], economy [7], mathematics [13, 16, 35, 36]. The problem
of studying the behavior of trajectories of quadratic stochastic operators was stated in [35].
The limit behavior and ergodic properties of trajectories of such operators were studied in
[15, 16, 17, 19, 36]. However, such kind of operators do not cover the case of quantum systems.
Therefore, in [8, 9] quantum quadratic operators acting on a von Neumann algebra were defined
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and studied. Certain ergodic properties of such operators were studied in [21, 22]. In those
papers basically dynamics of quadratic operators were defined according to some recurrent rule
(an analog of Kolmogorov-Chapman equation) which makes a possibility to study asymptotic
behaviors of such operators. However, with a given quadratic operator one can define also
a non-linear operator whose dynamics (in non-commutative setting) is not well studied yet.
Some class of such kind of operators defined on M2(C) has been studied in [24, 25]. Note
that in [18] another construction of nonlinear quantum maps were suggested and some physical
explanations of such nonlinear quantum dynamics were discussed. In all these investigations,
the said quantum quadratic operators by definition are positive. But, in general, to study the
nonlinear dynamics the positivity of the operator is strong condition. Therefore, in the present
paper we are going to introduce a weaker than the positivity, and corresponding operators
are called quasi quantum quadratic. In the paper we concentrate ourselves to trace-preserving
operators acting on M2(C). Each such kind of operator defines a quadratic operator acting
on state space of M2(C). It is known that a mapping is called pure if it sends pure states to
pure ones. In this papers, we introduce a weaker condition, called q-purity, than purity of the
mapping. To study q-pure channels, we concentrate ourselves to quasi q.q.o. acting on M2(C).
We call such an operator q-pure, if its corresponding quadratic operator maps pure state to pure
ones. We first describe all trace-preserving quasi q.q.o. on M2(C), which allowed us to describe
all q-pure quadratic operators. Then we prove that if a trace-preserving symmetric quasi q.q.o.
such that the corresponding quadratic operator is linear, then its q-purity implies its positivity.
Moreover, if a symmetric quasi q.q.o. has a Haar state τ , then its corresponding quadratic
operator is nonlinear, and it is proved that such q-pure symmetric quasi q.q.o. cannot be
positive. We think that such a result will allow to check whether a given mapping from M2(C)
toM2(C)⊗M2(C) is pure or not. On the other hand, our study is related to construction of pure
quantum nonlinear channels. Besides, it is also considered that nonlinear dynamics associated
with quasi pure q.q.o. may have differen kind of dynamics, i.e. it may behave chaotically or
trivially, respectively.

2. Preliminaries

Let B(H) be the set of linear bounded operators from a complex Hilbert space H to itself.
By B(H)⊗B(H) we mean tensor product of B(H) into itself. In the sequel 1I means an identity
matrix. By B(H)∗ it is usually denoted the conjugate space of B(H). We recall that a linear
functional ϕ ∈ B(H)∗ is called positive if ϕ(x) ≥ 0 whenever x ≥ 0. The set of all positive
linear functionals is denoted by B(H)∗+. A positive functional ϕ is called state if ϕ(1I) = 1. By
S(B(H)) we denote the set of all states defined on B(H).

Let ∆ : B(H) → B(H)⊗ B(H) be a linear operator. Then ∆ defines a conjugate operator
∆∗ : (B(H)⊗B(H))∗ → B(H)∗ by

∆∗(f)(x) = f(∆x), f ∈ (B(H)⊗ B(H))∗, x ∈ B(H).

One can define an operator V∆ by

V∆(ϕ) = ∆∗(ϕ⊗ ϕ), ϕ ∈ B(H)∗.

Let U : B(H)⊗B(H) → B(H)⊗B(H) be a linear operator such that U(x⊗ y) = y ⊗ x for
all x, y ∈ M2(C).

Definition 2.1. A linear operator ∆ : B(H) → B(H)⊗ B(H) is said to be
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(a) – a quasi quantum quadratic operator (quasi q.q.o) if it is unital (i.e. ∆1I = 1I ⊗ 1I),
*-preserving (i.e. ∆(x∗) = ∆(x)∗, ∀x ∈ B(H)) and

V∆(ϕ) ∈ B(H)∗+ whenever ϕ ∈ B(H)∗+;

(b) – a quantum quadratic operator (q.q.o.) if it is unital (i.e. ∆1I = 1I⊗ 1I) and positive (
i.e. ∆x ≥ 0 whenever x ≥ 0);

(c) – a quantum convolution if it is a q.q.o. and satisfies coassociativity condition:

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

where id is the identity operator of M2(C);
(d) – a symmetric if one has U∆ = ∆.

One can see that if ∆ is q.q.o. then it is a quasi q.q.o. A state h ∈ S(B(H)) is called a Haar
state for a quasi q.q.o. ∆ if for every x ∈ B(H) one has

(2.1) (h⊗ id) ◦∆(x) = (id ⊗ h) ◦∆(x) = h(x)1I.

Remark 2.2. Note that if a quantum convolution ∆ on B(H) becomes a ∗-homomorphic map
with a condition

Lin((1I⊗ B(H))∆(B(H))) = Lin((B(H)⊗ 1I)∆(B(H))) = B(H)⊗ B(H)

then a pair (B(H),∆) is called a compact quantum group [37, 32]. It is known [37] that for
given any compact quantum group there exists a unique Haar state w.r.t. ∆.

Remark 2.3. In [21] it has been studied symmetric q.q.o., which was called quantum quadratic
stochastic operator.

Remark 2.4. We note that there is another approach to nonlinear quantum operators on C∗-
algebras (see [18]).

Note that from unitality of ∆ we conclude that for any quasi q.q.o. V∆ maps S(B(H))
into itself. In some literature operator V∆ is called quadratic convolution (see for example
[11]). In [25] certain dynamical properties of V∆ associated with q.q.o. defined on M2(C) are
investigated. In [24] Kadison-Schwarz property of q.q.o. has been studied.

In quantum information, pure channels play important role, which can be defined as follows:
a channel (i.e. positive and unital mapping) T : B(H1) → B(H2) is called pure if for any pure
state ϕ ∈ S(B(H1)) the state T

∗ϕ is also pure (see [2]). It is essential to describe such channels.
Of course, if H1 = H2 then one can see that automorphisms of B(H1) are examples of pure
channels. But, in general, the description of pure channels is a tricky job.

Now let us assume that ∆ be a pure q.q.o. Then for any pure states ϕ, ψ ∈ S(B(H)) one
concludes that ∆∗(ϕ ⊗ ψ) is also pure. In particularly, for any pure ϕ ∈ S(B(H) we have
∆∗(ϕ⊗ϕ) is also pure. Note that the reverse is not true. Therefore, in this paper we are going
to define more weaker notion than purity for quasi q.q.o.

Definition 2.5. A quasi q.q.o. ∆ is called q-pure if for any pure state ϕ the state V∆(ϕ) is
also pure.

From this definition one can immediately see that purity of quasi q.q.o. implies its q-purity.
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3. Quasi quantum quadratic operators on M2(C)

By M2(C) be an algebra of 2× 2 matrices over complex field C. In this section we are going
to describe quantum quadratic operators on M2(C) as well as find necessary conditions for such
operators to satisfy the Kadison-Schwarz property.

Recall [6] that the identity and Pauli matrices {1I, σ1, σ2, σ3} form a basis for M2(C), where

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

.

In this basis every matrix x ∈ M2(C) can be written as x = w01I + wσ with w0 ∈ C,
w = (w1, w2, w3) ∈ C3, here wσ = w1σ1 + w2σ2 + w3σ3. In what follows, we frequently use
notation w = (w1, w2, w3).

Lemma 3.1. [31] The following assertions hold true:

(a) x is self-adjoint iff w0,w are reals;
(b) Tr(x) = 1 iff w0 = 0.5, here Tr is the trace of a matrix x;

(c) x > 0 iff ‖w‖ ≤ w0, where ‖w‖ =
√

|w1|2 + |w2|2 + |w3|2;
(d) A linear functional ϕ on M2(C) is a state iff it can be represented by

(3.1) ϕ(w01I +wσ) = w0 + 〈w, f〉,
where f = (f1, f2, f3) ∈ R3 such that ‖f‖ ≤ 1. Here as before 〈·, ·〉 stands for the scalar
product in C3.

(e) A state ϕ is a pure if and only if ‖f‖ = 1. So pure states can be seen as the elements of
unit sphere in R3.

In the sequel we shall identify a state with a vector f ∈ R3. By τ we denote a normalized
trace, i.e. τ(x) = 1

2
Tr(x), x ∈ M2(C).

Let ∆ : M2(C) → M2(C)⊗M2(C) be a quasi q.q.o. Then we write the operator ∆ in terms
of a basis in M2(C)⊗M2(C) formed by the Pauli matrices. Namely,

∆1I = 1I⊗ 1I;

∆(σi) = bi(1I⊗ 1I) +

3
∑

j=1

b
(1)
ji (1I⊗ σj) +

3
∑

j=1

b
(2)
ji (σj ⊗ 1I) +

3
∑

m,l=1

bml,i(σm ⊗ σl),(3.2)

where i = 1, 2, 3.
In general, a description of positive operators is one of the main problems of quantum in-

formation. In the literature most tractable maps are positive and trace-preserving ones, since
such maps arise naturally in quantum information theory (see [26]). Therefore, in the sequel
we shall restrict ourselves to trace-preserving quasi q.q.o., i.e. τ ⊗ τ ◦∆ = τ . So, we would like
to describe all such kind of maps.

Proposition 3.2. Let ∆ : M2(C) → M2(C) ⊗M2(C) be a trace-preserving quasi q.q.o., then

in (3.2) one has bj = 0, and b
(1)
ij , b

(2)
ij , bij,k are real for every i, j, k ∈ {1, 2, 3}. Moreover, ∆ has

the following form:

(3.3) ∆(x) = w01I⊗ 1I + 1I⊗B(1)w · σ +B(2)w · σ ⊗ 1I +
3

∑

m,l=1

〈bml,w〉σm ⊗ σl,

where x = w01I +wσ, bml = (bml,1, bml,2, bml,3), and B(k) = (b
(k)
ij )3i,j=1, k = 1, 2. Here as before

〈·, ·〉 stands for the standard scalar product in C3.
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Proof. From the *-preserving condition we get

∆(σ∗
i ) = bi(1I⊗ 1I) +

3
∑

j=1

b
(1)
ji (1I⊗ σj) +

3
∑

j=1

b
(2)
ji (σj ⊗ 1I) +

3
∑

m,l=1

bml,i(σm ⊗ σl).

This yields that bi = bi, b
(k)
ji = b

(k)
ji (k = 1, 2) and bml,i = bml,i, i.e. all coefficients are real

numbers.
Using the trace-preserving condition one finds

τ ⊗ τ(∆(σi)) = bi = τ(σi).

Therefore, bi = 0, i = 1, 2, 3. Hence, ∆ has the following form

(3.4) ∆(σi) =
3

∑

j=1

b
(1)
ji (1I⊗ σj) +

3
∑

j=1

b
(2)
ji (σj ⊗ 1I) +

3
∑

m,l=1

bml,i(σm ⊗ σl), i = 1, 2, 3.

Denoting

(3.5) B(k) = (b
(k)
ij )3i,j=1, k = 1, 2, bml = (bml,1, bml,2, bml,3)

and taking any x = w01I +wσ ∈ M2(C), from (3.4) we immediately find (3.3). This completes
the proof. �

One can rewrite (3.3) as follows

(3.6) ∆(x) = λ∆1(x) + (1− λ)∆2(x),

where

∆1(x) = w01I⊗ 1I +
1

λ

3
∑

m,l=1

〈bml,w〉σm ⊗ σl,(3.7)

∆2(x) = w01I⊗ 1I +
1

1− λ

(

B(2)w · σ ⊗ 1I + 1I⊗B(1)w · σ
)

.(3.8)

Now assume that bij,k = 0 for all i, j, k ∈ {1, 2, 3} and ∆ is q-pure symmetric quasi q.q.o. In
this case, ∆ has the following form

∆(w01I +wσ) = w01I⊗ 1I +Bw · σ ⊗ 1I + 1I⊗Bw · σ.(3.9)

Let us take any ϕ ∈ S(M2(C)) and f ∈ R
3 be the corresponding vector. Then we find

ϕ⊗ ϕ(∆(w01I +wσ)) = w0 + 2〈Bw, f〉 = w0 + 〈w, 2B∗f〉
Hence, if ϕ is pure, then ‖f‖ = 1. Denoting U = 2B∗ and the q-purity of ∆ yields that
‖Uf‖ = 1 for all f with ‖f‖ = 1. This means that U is isometry, so ‖U‖ = 1, i.e. ‖B‖ = 1/2.
Consequently, one concludes that ∆ is q-pure if and only if 2B is isometry.

Now we are interested, whether q-pure symmetric quasi q.q.o. is positive. To answer to this
question we need some auxiliary facts.

Lemma 3.3. Let x = w01I⊗ 1I +w ·σ⊗1I + 1I⊗ r · σ. Then the following statements hold true:

(i) x is self-adjoint if and only if w0 ∈ R and w, r ∈ R
3;

(ii) x is positive if and only if w0 > 0 and ‖w‖+ ‖r‖ ≤ w0.
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Proof. (i). One can see that

x∗ = w01I⊗ 1I +w · σ ⊗ 1I + 1I⊗ r · σ
So, self adjointness x implies w0 = w0, w = w, r = r.

(ii). Let x be self-adjoint. Then from the definition of Pauli matrices one finds

x =









w0 + w3 + r3 w1 − iw2 r1 − ir2 0
w1 + iw2 w0 − w3 + r3 0 r1 − ir2
r1 + ir2 0 w0 + w3 − r3 w1 − iw2

0 r1 + ir2 w1 + iw2 w0 − w3 − r3









It is easy to calculate that eigenvalues of last matrix are the followings

λ1 = w0 − ‖r‖+ ‖w‖, λ2 = w0 − ‖r‖ − ‖w‖,

λ3 = w0 + ‖r‖+ ‖w‖, λ4 = w0 + ‖r‖ − ‖w‖
So, we can conclude that x is positive if and only if the smallest eigenvalue is positive. This

means w0 − ‖r‖ − ‖w‖ ≥ 0, which completes the proof. �

Proposition 3.4. The mapping ∆ given by (3.9) is positive if and only if ‖B‖ ≤ 1/2.

Proof. Let x = w01I +w · σ be positive, i.e. w0 > 0, ‖w‖ ≤ w0. Without lost of generality we
may assume w0 = 1. Now Lemma 3.3 yields that ∆(x) is positive if and only if 2‖Bw‖ ≤ 1.
This competes the proof. �

From this Proposition and above made conclusions we immediately get the following

Theorem 3.5. Let ∆ be given by (3.9). Then the following statements hold true:

(i) ∆ is quasi q.q.o. if and only if ∆ is positive, i.e. ‖B‖ ≤ 1/2;
(ii) ∆ is q-pure if and only if 2B is isometry. Moreover, ∆ is positive.

Note that using the methods of [23] one may study Kadison-Schwarz property of mappings
given by (3.9). Now the question is what about the case when bij,k 6= 0. Therefore, the next
section is devoted to this this question.

4. Q-pure symmetric quasi quantum quadratic operators on M2(C)

In this section we are going to describe trace-preserving q-pure symmetric quasi q.q.o.
Denote

D = {p = (p1, p2, p3) ∈ R : p21 + p22 + p23 ≤ 1},
S = {p = (p1, p2, p3) ∈ R : p21 + p22 + p23 = 1}.

Let ∆ be a trace-preserving symmetric quasi q.q.o. on M2(C). Then due to Lemma 3.1 (d)
and Proposition 3.2 the functional ∆∗(ϕ⊗ ψ) is a state if and only if the vector

f∆∗(ϕ,ψ) =

( 3
∑

j=1

bj1
(

pj+fj
)

+
3

∑

i,j=1

bij,1fipj,
3

∑

j=1

bj2
(

pj+fj
)

+
3

∑

i,j=1

bij,2fipj ,
3

∑

j=1

bj3
(

pj+fj
)

+
3

∑

i,j=1

bij,3fipj

)

.

satisfies ‖f∆∗(ϕ,ψ)‖ ≤ 1.
Let us consider the quadratic operator, which is defined by V∆(ϕ) = ∆∗(ϕ ⊗ ϕ), ϕ ∈

S(M2(C)). From the last expression we find that

V∆(ϕ)(σk) =

3
∑

j=1

2bjkfj +

3
∑

i,j=1

bij,kfifj , f ∈ D.
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This suggests us the consideration of a nonlinear operator V : D → D defined by

(4.1) V (f)k =

3
∑

j=1

2bjkfj +

3
∑

i,j=1

bij,kfifj, k = 1, 2, 3.

where f = (f1, f2, f3) ∈ D.
From the definition and Lemma 3.1 (e) we conclude that the ∆ is q-pure if and only if

V (S) ⊂ S.
Example. Let us consider an example of pure symmetric quasi q.q.o. Let

∆0(x) = w01I⊗ 1I + w1σ1 ⊗ σ2 + w1σ2 ⊗ σ1 + w2σ1 ⊗ σ1

−w2σ2 ⊗ σ2 − w2σ3 ⊗ σ3 + w3σ1 ⊗ σ3 + w3σ3 ⊗ σ1

Then the corresponding quadratic operator has the following form

V0(f) =







2f1f2
f 2
1 − f 2

2 − f 2
3

2f1f3

(4.2)

Let us show V0 maps S to S. Indeed, let f = (f1, f2, f3) ∈ S, i.e. f 2
1 + f 2

2 + f 2
3 = 1. Then we

have

(2f1f2)
2 + (f 2

1 − f 2
2 − f 2

3 )
2 + (2f1f3)

2 = 4f 2
1 f

2
2 + (2f 2

1 − 1)2 + 4f 2
1 f

2
3

= 4f 2
1 (1− f 2

1 − f 2
3 ) + 4f 4

1 − 4f 2
1 + 1 + 4f 2

1 f
2
3

= 1

This shows that ∆0 is q-pure.

Now let us rewrite the quadratic operator V (see (4.1)) as follows

V (f) =











a1f
2
1 + b1f

2
2 + c1f

2
3 + α1f1f2 + β1f2f3 + γ1f1f3 + d1f1 + e1f2 + g1f3

a2f
2
1 + b2f

2
2 + c2f

2
3 + α2f1f2 + β2f2f3 + γ2f1f3 + d2f1 + e2f2 + g2f3

a3f
2
1 + b3f

2
2 + c3f

2
3 + α3f1f2 + β3f2f3 + γ3f1f3 + d3f1 + e3f2 + g3f3

(4.3)

where f ∈ D.

Theorem 4.1. The operator V given by (4.3) maps S into itself if and only if the followings
hold true

(i) ‖a‖2 + ‖d‖2 = 1, ‖b‖2 + ‖e‖2 = 1, ‖c‖2 + ‖g‖2 = 1;
(ii) ‖A‖ = ‖a− b‖, ‖Γ‖ = ‖a− c‖, ‖B‖ = ‖b− c‖;
(iii) 〈a,d〉 = 0, 〈b, e〉 = 0, 〈c, g〉 = 0;
(iv) 〈a,Γ〉 = 〈c,Γ〉, 〈b, B〉 = 〈c, B〉, 〈a, A〉 = 〈b, A〉;
(v) 〈c,Γ〉+ 〈d, g〉 = 0, 〈c, B〉+ 〈e, g〉 = 0, 〈c,d〉+ 〈Γ, g〉 = 0,

〈c, e〉+ 〈B, g〉 = 0, 〈b,d〉+ 〈A, e〉 = 0, 〈b, A〉+ 〈d, e〉 = 0,
〈b, g〉+ 〈B, e〉 = 0, 〈a, e〉+ 〈A,d〉 = 0, 〈a, g〉+ 〈Γ,d〉 = 0;

(vi) 〈a, B〉 − 〈c, B〉+ 〈A,Γ〉 = 0, 〈b,Γ〉 − 〈c,Γ〉+ 〈A,B〉 = 0,
〈A, g〉+ 〈B,d〉+ 〈Γ, e〉 = 0, 〈c, A〉+ 〈d, e〉+ 〈B,Γ〉 = 0,

where a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3), d = (d1, d2, d3), e = (e1, e2, e3), g =
(g1, g2, g3), Γ = (γ1, γ2, γ3), A = (α1, α2, α3), B = (β1, β2, β3).
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Proof. ”only if” part. It is enough to show
(

V (f)1
)2

+
(

V (f)2
)2

+
(

V (f)3
)2

= 1(4.4)

for any f = (f1, f2, f3) with f
2
1 + f 2

2 + f 2
3 = 1.

Let us rewrite (4.3) as follows

V (f) =















(a1 − c1)f
2
1 + (b1 − c1)f

2
2 + c1 + α1f1f2 + β1f2f3 + γ1f1f3 + d1f1 + e1f2 + g1f3

(a2 − c2)f
2
1 + (b2 − c2)f

2
2 + c2 + α2f1f2 + β2f2f3 + γ2f1f3 + d2f1 + e2f2 + g2f3

(a3 − c3)f
2
1 + (b3 − c3)f

2
2 + c3 + α3f1f2 + β3f2f3 + γ3f1f3 + d3f1 + e3f2 + g3f3

(4.5)

From (4.4), (4.5) we derive
(

(a1 − c1)f
2
1 + (b1 − c1)f

2
2 + c1 + α1f1f2 + β1f2f3 + γ1f1f3 + d1f1 + e1f2 + g1f3

)2

+
(

(a2 − c2)f
2
1 + (b2 − c2)f

2
2 + c2 + α2f1f2 + β2f2f3 + γ2f1f3 + d2f1 + e2f2 + g2f3

)2

+
(

(a3 − c3)f
2
1 + (b3 − c3)f

2
2 + c3 + α3f1f2 + β3f2f3 + γ3f1f3 + d3f1 + e3f2 + g3f3

)2
= 1

After some calculations we obtain the following
(

‖a‖2 + ‖c‖2 − ‖Γ‖2 − 2〈a, c〉
)

f 4
1 +

(

‖b‖2 + ‖c‖2 − ‖B‖2 − 2〈b, c〉
)

f 4
2

+
(

2〈a, A〉 − 2〈B,Γ〉 − 2〈c, A〉
)

f 3
1 f2 +

(

2〈a,Γ〉 − 2〈c,Γ〉
)

f 3
1 f3

+
(

2〈a,d〉 − 2〈c,d〉 − 2〈Γ, g〉
)

f 3
1 +

(

2〈b, A〉 − 2〈B,Γ〉 − 2〈c, A〉
)

f1f
3
2

+
(

2〈b, B〉 − 2〈c, B〉
)

f 3
2 f3 +

(

2〈b, e〉 − 2〈c, e〉 − 2〈B, g〉
)

f 3
2

+
(

2‖c‖2 + ‖A‖2 − ‖B‖2 − ‖Γ‖2 + 2〈a,b〉 − 2〈b, c〉 − 2〈a, c〉
)

f 2
1 f

2
2

+
(

2〈a, B〉+ 2〈A,Γ〉 − 2〈c, B〉
)

f 2
1 f2f3 +

(

2〈a, e〉+ 2〈A,d〉 − 2〈c, e〉 − 2〈B, g〉
)

f 2
1 f2

+
(

2〈a, g〉+ 2〈Γ,d〉 − 2〈c, g〉
)

f 2
1 f3 +

(

‖Γ‖2 + ‖d‖2 − 2‖c‖2 − ‖g‖2 + 2〈a, c〉
)

f 2
1

+
(

2〈b,Γ〉+ 2〈A,B〉 − 2〈c,Γ〉
)

f1f
2
2 f3 +

(

2〈b,d〉+ 2〈A, e〉 − 2〈c,d〉 − 2〈Γ, g〉
)

f1f
2
2

+
(

2〈b, g〉+ 2〈B, e〉 − 2〈c, g〉
)

f 2
2 f3 +

(

‖B‖2 + ‖e‖2 − 2‖c‖2 − ‖g‖2 + 2〈b, c〉
)

f 2
2

+
(

2〈A, g〉+ 2〈B,d〉+ 2〈Γ, e〉
)

f1f2f3 +
(

2〈c, A〉+ 2〈B,Γ〉+ 2〈d, e〉
)

f1f2

+
(

2〈c,Γ〉+ 2〈d, g〉
)

f1f3 +
(

2〈c, B〉+ 2〈e, g〉
)

f2f3 +
(

2〈c,d〉+ 2〈Γ, g〉
)

f1

+
(

2〈c, e〉+ 2〈B, g〉
)

f2 + 2〈c, g〉f3 + ‖c‖2 + ‖g‖2 − 1 = 0

which is satisfied (i)–(vi).
”if” part is obvious. This completes the proof. �

In what follows, we are interested in the case when ∆2 = 0 in (3.6). This means that ∆ has
a Haar state τ . Indeed, using the equality (2.1) with h = τ one gets

(id⊗ τ)(∆(σi)) =

3
∑

j=1

bjiσj = τ(σi)1I = 0, i = 1, 2, 3.
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Therefore, bji = 0 for all i, j ∈ {1, 2, 3}. Hence, ∆ has the following form

(4.6) ∆(w01I +wσ) = w01I⊗ 1I +

3
∑

m,l=1

〈bml,w〉σm ⊗ σl,

Then the corresponding quadratic operator V has the form (4.3) with constrains d = e = g = 0.
From Theorem 4.1 one immediately gets

Corollary 4.2. Let the operator V given by (4.3) with d = e = g = 0. Then V (S) ⊂ S if and
only if the followings hold true

(i) ‖a‖ = 1, ‖b‖ = 1, ‖c‖ = 1;
(ii) ‖A‖ = ‖a− b‖, ‖Γ‖ = ‖a− c‖, ‖B‖ = ‖b− c‖;
(iii) 〈a, B〉+ 〈A,Γ〉 = 0, 〈b,Γ〉+ 〈A,B〉 = 0, 〈c, A〉+ 〈B,Γ〉 = 0;
(iv) 〈a, A〉 = 0, 〈a,Γ〉 = 0, 〈b, A〉 = 0, 〈b, B〉 = 0, 〈c,Γ〉 = 0, 〈c, B〉 = 0

where the vectors a,b, c, A, B,Γ are given in Theorem 4.1.

Let us consider a symmetric quasi q.q.o. ∆ with Haar state τ , corresponding to (4.3). Then
according to (4.6) the operator ∆ has the following form

∆(x) = w01I⊗ 1I + a1w1σ1 ⊗ σ1 +
α1

2
w1σ1 ⊗ σ2 +

γ1
2
w1σ1 ⊗ σ3

+
α1

2
w1σ2 ⊗ σ1 + b1w1σ2 ⊗ σ2 +

β1
2
w1σ2 ⊗ σ3

+
γ1
2
w1σ3 ⊗ σ1 +

β1
2
w1σ3 ⊗ σ2 + c1w1σ3 ⊗ σ3

+ a2w2σ1 ⊗ σ1 +
α2

2
w2σ1 ⊗ σ2 +

γ2
2
w2σ1 ⊗ σ3

+
α2

2
w2σ2 ⊗ σ1 + b2w2σ2 ⊗ σ2 +

β2
2
w2σ2 ⊗ σ3

+
γ2
2
w2σ3 ⊗ σ1 +

β2
2
w2σ3 ⊗ σ2 + c2w2σ3 ⊗ σ3

+ a3w3σ1 ⊗ σ1 +
α3

2
w3σ1 ⊗ σ2 +

γ3
2
w3σ1 ⊗ σ3

+
α3

2
w3σ2 ⊗ σ1 + b3w3σ2 ⊗ σ2 +

β3
2
w3σ2 ⊗ σ3

+
γ3
2
w3σ3 ⊗ σ1 +

β3
2
w3σ3 ⊗ σ2 + c3w3σ3 ⊗ σ3

Calculating the last one, we obtain

∆(x) =









w0 +R N − iP N − iP L− 2iM − O
N + iP w0 − R L+O −N + iP
N + iP L+O w0 − R −N + iP

L+ 2iM − O −N − iP −N − iP w0 +R









(4.7)

where

L = 〈a,w〉, M =
1

2
〈A,w〉, N =

1

2
〈Γ,w〉,

O = 〈b,w〉, P =
1

2
〈B,w〉, R = 〈c,w〉.
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Theorem 4.3. Let ∆ : M2(C) → M2(C) ⊗ M2(C) be a q-pure symmetric quasi q.q.o. with
Haar state τ . Then ∆ is not positive.

Proof. Let us prove from the contrary. Assume that ∆ is positive. This means that the
matrix given by (4.7) should be positive, whenever x is positive. The positivity of x yields that
w0, w1, w2, w3 are real numbers. In what follows, without loss of generality, we may assume that
w0 = 1, and therefore ‖w‖ ≤ 1. It is known that the positivity of the matrix ∆(x) is equivalent
to the positivity of its eigenvalues, and it should be positive for any values of ‖w‖ ≤ 1.

We note that the q-purity of ∆ implies that the conditions (i)-(iv) of Corollary 4.2 are
satisfied.

Let us take x = 1I + aσ, then from (4.7) one gets

∆(x) =









1 + 〈c, a〉 − i
2
〈B, a〉 − i

2
〈B, a〉 1− 〈b, a〉

i
2
〈B, a〉 1− 〈c, a〉 1 + 〈b, a〉 i

2
〈B, a〉

i
2
〈B, a〉 1 + 〈b, a〉 1− 〈c, a〉 i

2
〈B, a〉

1− 〈b, a〉 − i
2
〈B, a〉 − i

2
〈B, a〉 1 + 〈c, a〉









.

A simple algebra shows us that all eigenvalues of ∆(x) can be written as follows

λ1 = −〈c, a〉 − 〈b, a〉
λ2 = 〈c, a〉+ 〈b, a〉
λ3 = 2 +

√

〈b, a〉2 − 2〈c, a〉〈b, a〉+ 〈c, a〉2 + 〈B, a〉2

λ4 = 2−
√

〈b, a〉2 − 2〈c, a〉〈b, a〉+ 〈c, a〉2 + 〈B, a〉2.

Now using (ii) of Corollary 4.2 we rewrite λ1, λ2, λ3, λ4 as follows

λ1 = −2 +
‖Γ‖2
2

+
‖A‖2
2

λ2 = 2− ‖Γ‖2
2

− ‖A‖2
2

λ3 = 2 +
1

2

√

‖A‖4 − 2‖Γ‖2‖A‖2 + ‖Γ‖4 + 〈B, a〉2

λ4 = 2− 1

2

√

‖A‖4 − 2‖Γ‖2‖A‖2 + ‖Γ‖4 + 〈B, a〉2.

Knowing λ1 ≥ 0, λ2 ≥ 0 we have

‖A‖2 + ‖Γ‖2 = 4.

By considering elements x = 1I+bσ, x = 1I+cσ, respectively, and using the similar argument
one finds

‖B‖2 + ‖A‖2 = 4 ‖Γ‖2 + ‖B‖2 = 4

Therefore, we conclude that

‖A‖2 = 2, ‖B‖2 = 2, ‖Γ‖2 = 2.

Hence, again taking into account (ii) of Corollary 4.2 we find that

〈a,b〉 = 0, 〈a, c〉 = 0, 〈b, c〉 = 0.
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This means that the vectors a,b, c are linearly independent. Therefore, one can write

A = η1a+ µ1b+ τ1c

B = η2a+ µ2b+ τ2c

Γ = η3a+ µ3b+ τ3c

where η2i + µ2
i + τ 2i = 2, i = 1, 3.

From (iv) of Corollary 4.2 we find that

η1 = 0, η3 = 0, µ1 = 0, µ2 = 0, τ2 = 0, τ3 = 0.

This implies that

A = τ1c, B = η2a, Γ = µ3b.

Hence, from (iii) of Corollary 4.2 we have

〈A,B〉+ 〈b,Γ〉 = 0 ⇒ µ3 = 0

which contradicts to µ3 6= 0. This completes the proof. �

This theorem implies that q-pure symmetric quasi q.q.o. with Haar state can not be q.q.o.
Moreover, if one has pure quasi q.q.o., then it cannot be positive. As we have seen in the
previous section a quasi q.q.o. with only ”linear” term can be positive. But the last theorem
shows the difference between Theorem 3.5. Namely, if one considers a quadratic operator V
which is linear (this corresponds to the case of Theorem 3.5), then q-pure quasi q.q.o. is positive.
But Theorem 4.3 implies a different kind of statement, i.e. if V contains a nonlinear term, i.e.
quadratic term, then the q-purity of ∆ does not imply its positivity.

5. On dynamics of q-pure quasi quantum quadratic operator.

In this section we are going to make some remarks on dynamics of q-pure quasi q.q.o.
Let ∆ be a q-pure quasi q.q.o. By V we denote the corresponding quadratic operator. Now

we want to study the dynamics of V .

Proposition 5.1. Let V be a quadratic operator corresponding to q-pure quasi q.q.o. with Haar
state τ . Then for any f ∈ D \ S one has

lim
n→∞

V n(f) = 0.

Proof. Let f ∈ D \ S then one can see ‖f‖ < 1. Denote g = f

‖f‖
then g ∈ S. Therefore using

purity of ∆ we conclude V (g) ∈ S. This means

1 =

∥

∥

∥

∥

V

(

f

‖f‖

)∥

∥

∥

∥

=
1

‖f‖2‖V (f)‖.

So

‖V (f)‖ = ‖f‖2.
Hence, we find

‖V n(f)‖ = ‖f‖2n

which implies V n(f) → 0 as n→ ∞. �

Corollary 5.2. Let V be as in Proposition 5.1, then any nonzero fixed point (if it exists) belongs
to S. Moreover, (0, 0, 0) is unique fixed point in D \ S
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Now to investigate dynamics of V it remains to study it on S. Next examples show how the
dynamics could be unpredictable on S.

1. Let us study the dynamics of the given operator V0 given by (4.2). We consider several
cases.

Now assume f ∈ S. Suppose that f1 = 0. Then we have

V0(f) = (0,−1, 0).

Hence, V n
0 (f) = (0,−1, 0), for every n ∈ N.

Suppose that f2 = 0. Then

V0(f1, 0, f3) = (0, f 2
1 − f 2

3 , 2f1f3).

So we have V k
0 (f) → (0,−1, 0) as n→ ∞.

Suppose that f3 = 0. Then

V0(f1, f2, 0) = (2f1f2, f
2
1 − f 2

2 , 0) =

(

± 2f1

√

1− f 2
1 , 2f

2
1 − 1, 0

)

.

To investigate the dynamics of V0, let us consider the following function

g(x) = 2x
√
1− x2, |x| ≤ 1.

For us it is enough to study the dynamics of g(x). It is clear that

g[0, 1] ⊂ [0, 1], g[−1, 0] ⊂ [−1, 0].

Since the function is odd it is sufficient to study the dynamics of g on [0, 1]. Denote h(x) =
√
x.

One can see that

h−1
(

g
(

h(x)
))

= 4x(1− x).

This means g(x) and ℓ(x) = 4x(1−x) are conjugate on [0,1]. It is known that the function ℓ(x)
is the logistic function which is chaotic. Hence, g(x) is also chaotic. From this we conclude that
the behavior of V0 on S with f3 = 0 is chaotic. Note that similar kind of dynamical system has
been investigated in [3, 20, 33].

2. Let

∆1(x) = w01I⊗ 1I + 〈t,w〉(σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3),

then the corresponding quadratic operator has the following form

V1(f1, f2, f3) =







t1
(

f 2
1 + f 2

2 + f 2
3

)

t2
(

f 2
1 + f 2

2 + f 2
3

)

t3
(

f 2
1 + f 2

2 + f 2
3

)

where ‖t‖ = 1, t = (t1, t2, t3).
One can see V1 has only two fixed points which are (0, 0, 0), (t1, t2, t3). It is easy to see that

V (S) = {t}, so ∆1 is q-pure quasi q.q.o. Therefore, we conclude that

lim
n→∞

V n
1 (f) =

{

t, f ∈ S

0, f ∈ D \ S.
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6. Conclusion

In the present paper we studied quasi quantum quadratic operators (q.q.o) acting on the
algebra of 2× 2 matrices M2(C). We have introduced a weaker condition, called q-purity, than
purity of the channel. To study q-pure channels, we have described all trace-preserving quasi
q.q.o. acting on M2(C), which allowed us to describe all q-pure quadratic operators. Then we
prove that if a trace-preserving symmetric quasi q.q.o. such that the corresponding quadratic
operator is linear, then its q-purity implies its positivity. Moreover, if a symmetric quasi q.q.o.
has a Haar state τ , then its corresponding quadratic operator is nonlinear, and it is proved that
such q-pure symmetric quasi q.q.o. cannot be positive. Note that there are nontrivial q.q.o.
such that their corresponding quadratic operators are nonlinear [24]. We think that such a
result will allow to check whether a given mapping from M2(C) to M2(C)⊗M2(C) is pure or
not. On the other hand, our study is related to construction of pure quantm nonlinear channels.
We should stress that nonlinear channels appear in many branches of quantum information (see
for example [4, 14, 28]). Moreover, one also established that nonlinear dynamics associated with
quasi pure q.q.o. may have differen kind of dynamics, i.e. it may behave chaotically or trivially,
respectively.
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