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Abstract. We present a basic introduction to the dynamics of open quantum systems
based on local-in-time master equations. We characterize the properties of time-local gen-
erators giving rise to legitimate completely positive trace preserving quantum evolutions.
The analysis of Markovian and non-Markovian quantum dynamics is presented as well.
The whole discussion is illustrated by the family of many instructive examples.

1. Introduction

The dynamics of open quantum systems attracts nowadays considerable
attention. It is relevant not only for a better understanding of quantum
theory but it is fundamental in various modern applications of quantum me-
chanics such as quantum communication, cryptography, computation and
quantum metrology. Any realistic quantum system is an open system since
it always interacts with its environment or “rest of the world”. The proper
descriptions of such systems is therefore of fundamental importance. There
are several excellent books [1, 2, 3, 4, 5, 6] and review articles [7, 8] devoted
to this subject. In this paper we provide an introduction to the dynamics
of open quantum systems based on local-in-time master equation. There are
several approaches to the dynamics of open quantum systems. It is clear
that each description presents a departure from the standard von Neumann
equation

iρ̇t = [H, ρt] , (1)

which governs the evolution of the closed system fully characterized by the
system Hamiltonian H (by ρt we denote the density operator (density ma-
trix) at time t – see the next section for the notation) and ~ = 1 throughout
the paper. Introducing a linear map acting on the space of density operators
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(sometimes called a superoperator) L(ρ) = −i[H, ρ] the von Neumann equa-
tion may be rewritten in a more compact way as ρ̇t = L(ρt). L is called a
generator of the evolution. A natural way to depart from the world of closed
systems is to change the corresponding equation of motion by changing the
generator. The aim of this paper is to provide basic introduction to so called
time-local master equation

ρ̇t = Lt(ρt) , (2)

which is fully characterized by the time-dependent generator Lt. Clearly, von
Neumann equation is a special case of this general scheme.

There is an alternative approach (see e.g. [1]) which is based on the
following non-local equation

ρ̇t =

∫ t

0
Kt−τ (ρτ ) dτ , (3)

fully characterized by the so called memory kernel Kt. Usually, the non-local
character of (3) is attributed to the presence of quantum memory effects:
this simply means that the rate of change of the state ρt at time t depends
on its history (starting at t = 0). Note that time-local master equation (2)
with constant generator L is reobtained when Kt = 2δ(t)L.

One of the fundamental problems in the theory of open quantum systems
is to find conditions on Lt and Kt that ensure that solutions to (2) and (3)
are physically legitimate. In the present paper we deal with conditions for
time-local generator Lt only. Surprisingly, it turns out that the problem of
necessary and sufficient conditions for Lt is open. Our aim is to show why this
problem is difficult, what is already known and what are the perspectives.

The paper is organized as follows: in the next Section we introduce basic
notation and recall basic notions we use in this paper like states, linear posi-
tive maps, quantum channels and all that. Section 3. provides the description
of quantum evolution in terms of time-local master equation. Sections 4., 5.
and 6. characterize classes of local generators for which the corresponding
conditions for Lt may be easily formulated. We analyze time independent
generators characterizing Markovian semigroups in Section 4., so called com-
mutative dynamics in Section 5., and Markovian evolution in Section 6..
Section 7. provides a discussion on the general structure of time-local gener-
ator: we analyze a simple qubit dynamics to show an intricate structure of
the corresponding local generator. Final conclusions are collected in the last
section.

2. Preliminaries: quantum states and quantum channels

We begin by introducing basic notation and terminology.
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2.1. The structure of quantum states

In this paper we consider a quantum system living in finite-dimensional
Hilbert space H isomorphic to C

n. Fixing an orthonormal basis {e1, . . . , en}
in H any linear operator inH may be identified with an n×n complex matrix,
i.e. an element fromMn(C). A mixed state of such system is represented by a
density matrix, i.e. a matrix ρ from Mn(C) such that ρ ≥ 0 and Tr ρ = 1. A
space of states Sn of n-level quantum system defines an (n2−1)-dimensional
convex set. Pure states correspond to rank-1 projectors |ψ〉〈ψ| and define
extremal elements of Sn. Any density matrix may be therefore decomposed
as follows

ρ =
∑

k

wk|ψk〉〈ψk| , (4)

with wk > 0 and
∑

k wk = 1, i.e. wk provides a probability distribution. It
should be stressed that the above decomposition is highly non-unique.

To illustrate a concept of density operators let us consider the following

Example 1 A 2-level system (qubit) living in C
2. Any hermitian operator

ρ may be decomposed as follows

ρ =
1

2
(I2 +

3∑

k=1

xkσk) , (5)

where x = (x1, x2, x3) ∈ R
3 and {σ1, σ2, σ3} are Pauli matrices. As usual

In denotes a unit matrix in Mn(C). It is, therefore, clear that ρ is entirely
characterized by the Bloch vector x. This representation already guaranties
that Tr ρ = 1. Hence, ρ represents density operator if and only if the corre-
sponding eigenvalues {λ−, λ+} are non-negative. One easily finds

λ− =
1

2
(1− |x|) , λ+ =

1

2
(1 + |x|) , (6)

and hence ρ ≥ 0 if and only if |x| =
√
x21 + x22 + x23 ≤ 1. This condition

defines a unit ball in R
3 known as a Bloch ball. A state is pure if ρ defines

rank-1 projector, i.e. λ− = 0 and λ+ = 1. It shows that pure states belong to
Bloch sphere corresponding to |x| = 1. Unfortunately, this simple geometric
picture is much more complicated if n > 2.

For any A ∈ Mn(C) we denote by ||A||1 := Tr|A| = Tr
√
AA† the trace-

norm of A. If λ1, . . . λn are (necessarily nonnegative) eigenvalues of AA†,
then

||A||1 =
√
λ1 + . . .+

√
λn .
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The space of states Sn is equipped with a natural metric structure: given
two states ρ, σ ∈ Sn one defines the corresponding distance

D[ρ, σ] =
1

2
||ρ− σ||1 . (7)

This quantity measurers distinguishability between ρ and σ. It is clear that
D[ρ, σ] = 0, i.e. ρ and σ are indistinguishable, if and only if ρ = σ. Note,
that if ρ and σ are orthogonally supported, then

D[ρ, σ] =
1

2
(||ρ||1 + ||σ||1) = 1 ,

since ||ρ||1 = 1 for any density matrix ρ. In this case ρ and σ are perfectly
distinguishable. Hence

0 ≤ D[ρ, σ] ≤ 1 . (8)

In particular, if ρ and σ are two states of a qubit and x and y are corre-
sponding Bloch vectors then

D[ρ, σ] =
1

2
|x− y| , (9)

reproduces standard Euclidean distance in R
3. For more information about

the structure of quantum states see [9, 10].

2.2. Positive and completely positive maps [11, 12, 13]

Consider now a linear map Φ :Mn(C) → Mn(C) and let M+
n (C) = {A ∈

Mn(C) |A ≥ 0} ⊂ Mn(C) be a convex subset of positive matrices. One calls
a linear map Φ

• Hermicity-preserving iff Φ(A†) = [Φ(A)]†,

• positive iff Φ(M+
n (C)) ⊂M+

n (C),

• trace-preserving iff trΦ(A) = trA,

• unital iff Φ(In) = In.

It is easy to show that positive map is necessarily Hermicity-preserving.
Moreover, observing that Sn = {A ∈ M+

n (C) | trA = 1} it is clear that if Φ
is positive and trace preserving than it maps density matrices into density
matrices, i.e. Φ(Sn) ⊂ Sn. If Φ is a linear map then one defines a dual map
Φ∗ :Mn(C) → Mn(C) by

Tr[AΦ∗(B)] = Tr[Φ(A)B] , (10)

for all A,B ∈Mn(C). Φ is trace-preserving iff Φ∗ is unital.
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Example 2 Consider a transposition Tn : Mn(C) → Mn(C), i.e. Tn(ρ) =
ρT . Since transposition does not affect the spectrum of A it clear that AT ≥ 0
whenever A ≥ 0. Note that Tn is trace-preserving and unital. As another
example consider Rn :Mn(C) → Mn(C) defined by

Rn(A) =
1

n− 1
(In TrA−A) . (11)

One calls Rn a reduction map. Let |x〉 ∈ C
n and Px := |x〉〈x| be the corre-

sponding rank-1 projector (we assume that 〈x|x〉 = 1). One finds Rn(Px) =
1

n−1P
⊥
x , where P⊥

x is a projector complementary to Px, i.e. Px + P⊥
x = In.

Since any A ≥ 0 is a convex combination of rank-1 projectors it proves the
positivity of Rn. Moreover, Rn is trace-preserving and unital.

Remark 1 Note that fixing an orthonormal basis {ek} in H and defining
Pk = |ek〉〈ek| one easily shows that if Φ is a positive trace-preserving map,
then the following n× n matrix

Tij = Tr(PiΦ(Pj)) , (12)

is stochastic. Recall, that A ∈ Mn(R) is a stochastic matrix iff Aij ≥ 0 and∑n
i=1Aij = 1 for all j = 1, . . . , n. Indeed, Tij ≥ 0 and

n∑

i=1

Tij = Tr
([ n∑

i=1

Pi

]
Φ(Pj)

)
= Tr [Φ(Pj)] = 1 , (13)

for all j = 1, . . . , n. It is clear, that if Φ is also unital, then Tij is doubly
stochastic.

Positive trace-preserving maps possess the following fundamental property

Proposition 1 ([11, 12, 13]) If Φ is positive and trace-preserving, then

||Φ(X)||1 ≤ ||X||1 , (14)

for all X ∈Mn(C), that is, Φ is a contraction in trace-norm. Hence

D[Φ(ρ),Φ(σ)] ≤ D[ρ, σ] , (15)

which means that distinguishability of ρ and σ never increases under the
action of positive and trace-preserving map.

It turns out that positivity property is not sufficient for quantum physics. It
is connected with the notion of composed systems. Composing two systems
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living inH1 andH2, respectively, one obtains a system living inH = H1 ⊗H2.
Let dimH1 = n, dimH2 = m and consider two linear maps

Φ1 :Mn(C) → Mn(C) , Φ2 :Mm(C) → Mm(C) .

Recalling that Mn×m(C) =Mn(C)⊗Mn(C) one defines a tensor product

Φ1 ⊗Φ2 :Mn×m(C) → Mn×m(C) ,

as follows: for a fixed orthonormal basis {e1, . . . , en} in H1 let us define eij :=
|ei〉〈ej | ∈ Mn(C). Elements {eij} for i, j = 1, . . . , n define an orthonormal
basis inMn(C) with respect to the standard inner product (A,B) = tr(A†B).
Now, any matrix A ∈ Mn×m(C) may be represented in the following block
form

A =

n∑

i,j=1

eij ⊗Aij , (16)

with Aij ∈Mm(C). For example if n = 2 one has

A =

2∑

i,j=1

eij ⊗Aij =

(
A11 A12

A21 A22

)
. (17)

Hence the action of Φ1 ⊗Φ2 is given by

[Φ1 ⊗Φ2](A) :=

n∑

i,j=1

Φ1(eij)⊗Φ2(Aij) . (18)

In particular if n = 2 and Φ1 = 1l2, where 1ln :Mn(C) → Mn(C) denotes an
identity map defined by 1ln(X) = X, then

[1l2 ⊗Φ](A) =

2∑

i,j=1

eij ⊗Φ(Aij) =

(
Φ(A11) Φ(A12)

Φ(A21) Φ(A22)

)
. (19)

Now comes a surprise: even if Φ1 and Φ2 are positive Φ1⊗Φ2 needs not be
a positive map.

Example 3 Interestingly, both maps considered in Example 2 loose their
positivity when tensoring with other positive maps. This map is evidently
positive and trace-preserving. Consider 1l2 ⊗T2 and 1l2 ⊗R2. It turns out
that these maps are not positive in M4(C). Indeed, let

P+
2 =

1

2

2∑

i,j=1

eij ⊗ eij =
1

2




1 0 0 1
0 0 0 0

0 0 0 0
1 0 0 1


 , (20)
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be a state in C
2⊗C

2. Note that P+
2 = |ψ+

2 〉〈ψ+
2 | with ψ+

2 = (e1 ⊗ e1 +
e2 ⊗ e2)/

√
2 being one of the well-known Bell states of two qubits. One finds

[1l2⊗T2](P
+
2 ) =

1

2

2∑

i,j=1

eij ⊗ eji =
1

2




1 0 0 0
0 0 1 0

0 1 0 0
0 0 0 1


 , (21)

and

[1l2⊗R2](P
+
2 ) =

1

2

2∑

i,j=1

eij ⊗R2(eij) =
1

2




0 0 0 −1
0 1 0 0

0 0 1 0
−1 0 0 0


 . (22)

Note that both matrices [1l2⊗T2](P
+
2 ) and [1l2 ⊗R2](P

+
2 ) have one negative

eigenvalue and hence neither 1l2⊗T2 nor 1l2 ⊗R2 is a positive map.

This example proves that quantum physics of composed systems needs a
more refined notion of positivity. Consider again a linear map Φ :Mn(C) →
Mn(C). One calls Φ k-positive if

1lk ⊗Φ :Mk(C)⊗Mn(C) → Mk(C)⊗Mn(C) , (23)

is positive. Clearly 1-positive is just positive and k-positivity implies ℓ-
positivity for ℓ < k. Finally, Φ is called completely positive (CP) if it is
k-positive for k = 1, 2, . . .. Interestingly, one has the following characteriza-
tion

Proposition 2 (Choi [14]) If dimH = n, then Φ is CP if and only if Φ is
n-positive.

Denoting by Pk a convex set of k-positive maps one has the following chain
of inclusions

CP ≡ Pn ⊂ . . . ⊂ P2 ⊂ P1 ≡ Positive maps .

Let {e1, . . . , en} be a fixed orthonormal basis in H and let

|ψ+
n 〉 =

1√
n

n∑

k=1

ek ⊗ ek , (24)

denote a maximally entangled state in H⊗H. Moreover, let P+
n = |ψ+

n 〉〈ψ+
n |

denote the corresponding rank-1 projector.
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Proposition 3 (Choi [14]) Φ is CP if and only if [1ln⊗Φ](P+
n ) ≥ 0.

This beautiful result states that in order to prove that Φ is CP, or equiva-
lently that 1ln⊗Φ is positive, it is enough to check wether 1ln⊗Φ is positive
on one particular projector P+

n . Positivity of [1ln⊗Φ](P+
n ) guaranties that

[1ln⊗Φ](X) ≥ 0 for all positive X ∈Mn(C)⊗Mn(C).

Corollary 1 If Φ1 and Φ2 are CP maps, then Φ1 ⊗Φ2 is always CP as well.

This analysis shows that the motivation to use CP maps is deeply rooted
in physics and it is not just mathematical trick! It is the very presence of
quantum entangled states enforces us to deal with maps which are completely
positive. The following result provides the most important characterization
of CP maps.

Theorem 1 ([11, 12, 14, 15]) A map Φ : Mn(C) → Mn(C) is CP if and
only if

Φ(X) =
∑

α

KαXK†
α , (25)

for X ∈Mn(C).

Formula (25) is usually called Kraus or Operator Sum Representation of Φ
and Kα are called Kraus operators. Actually, the above formula appeared
already in the Sudarshan et. al. paper [16]. It should be stressed that
the Kraus representation is highly non unique. Completely positive trace
preserving map (CPTP) is called a quantum channel. A CP map possessing
Kraus representation is trace-preserving iff

∑

α

K†
αKα = In . (26)

The following result shows what is the origin of a genuine quantum channel.

Theorem 2 (Unitary dilation) Any quantum channel Φ may be constructed
as follows

Φ(ρ) = trE
[
U(ρ⊗ω)U †

]
, (27)

where U is a unitary operator in H⊗HE and ω is a density operator in HE,
and TrE denotes partial trace over HE.

One usually interprets HE as a Hilbert space of the environment and ω as
its fixed state. Let

ω|Ek〉 = λk|Ek〉 ,



[Author and title] 9

with λk ≥ 0. Moreover, let U =
∑

k,l Ukl ⊗ |Ek〉〈El|. Formula (27) implies

Φ(ρ) =
∑

m,n

∑

i,j

∑

k

λk TrE
[
(Uij ⊗ |Ei〉〈Ej |)(ρ⊗ |Ek〉〈Ek|)(U †

mn ⊗ |En〉〈Em|)
]

=
∑

m,n

∑

i,j

∑

k

λk Tr[|Ei〉〈Ej |Ek〉〈Ek|En〉〈Em|]UijρU
†
mn .

Using Tr[|Ei〉〈Ej |Ek〉〈Ek|En〉〈Em|] = δimδjkδkn and introducingKα := Kmn =√
λn Umn one arrives at the Kraus representation Φ(ρ) =

∑
α KαρK

†
α which

proves that Φ defined via formula (27) is completely positive. One easily
proves that Φ is also trace preserving and hence defines a quantum channel.

3. How to describe quantum evolution

If ρ is an initial state of n-level quantum system, then by its evolution
we mean a trajectory ρt for t ≥ 0 starting at ρ. The simplest example of
quantum evolution is provided by the von Neumann equation

iρ̇t = [H, ρt] , (28)

with the corresponding solution

ρt = Ut(ρ) , (29)

where the map Ut :Mn(C) → Mn(C) is defined by

Ut(ρ) := UtρU
†
t , (30)

with Ut = e−iHt. Note that (30) defines a family of quantum channels. Let us
observe that 1-parameter unitary group Ut implies the following composition
law

Ut Us = Ut+s , (31)

for all t, s ∈ R. Hence Ut defines 1-parameter group of CP maps. Equation
(28) may be transformed into the following equation for Ut

U̇t = LUt , U0 = 1l , (32)

where the generator L :Mn(C) → Mn(C) is defined by

L(X) = −i[H,X] , (33)

for any X ∈Mn(C). Now come natural questions:

1. how to generalize the unitary evolution defined by (30), and
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2. how to generalize the corresponding equation of motion (32)?

Definition 1 By a general quantum evolution we mean a dynamical map,
i.e. a family of quantum channels Λt :Mn(C) → Mn(C) for t ≥ 0 such that
Λ0 = 1ln.

A dynamical map Λt maps an initial state ρ into a current state ρt := Λt(ρ)
and hence provides natural generalization of the unitary evolution ρt = Ut(ρ).
Assuming that ρt satisfies a linear equation and that the initial state ρ pro-
vides all necessary information to uniquely determine ρt we expect that ρt
satisfies the following equation

ρ̇t = Lt(ρt) , (34)

or equivalently
Λ̇t = LtΛt , Λ0 = 1ln , (35)

where Lt : Mn(C) → Mn(C) denotes time-dependent generator. This equa-
tion provides a natural generalization of (32). The formal solution of (35)
may be written as follows

Λt = Texp

(∫ t

0
Lτ dτ

)
, (36)

where T denotes the chronological product. The above formula is defined by
the following Dyson series

Λt = 1ln +

∫ t

0
dt1 Lt1 +

∫ t

0
dt1

∫ t1

0
dt2 Lt1 Lt2 + . . . , (37)

provided that it converges. In this paper we address the following

Problem 1 What are the properties of local time-dependent generator Lt

which guarantee that Λt defined by T-product exponential formula (36) defines
a legitimate dynamical map?

The formulation of our problem is pretty simple, however, in general the
answer is not known. Let us observe that if we knew a dynamical map Λt

which was invertible, i.e. there exists Λ−1
t : Mn(C) → Mn(C) such that

Λ−1
t Λt = ΛtΛ

−1
t = 1ln, then

Λ̇t = Λ̇tΛ
−1
t Λt = Lt Λt , (38)

where we defined
Lt := Λ̇tΛ

−1
t . (39)

It should be stressed that the inverse of Λt needs not be CP. One may prove
that if Λt is CP then Λ−1

t is CP if and only if Λt(ρ) = UtρU
†
t with unitary

Ut.
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Example 4 Consider a unitary dynamical map Ut defined in (30). It is clear
that Ut is invertible and U−1

t = U−t is CP. One finds for the corresponding
generator

Lt(ρ) = [U̇tU−t](ρ) = U̇t(U
†
t ρUt)U

†
t + Ut(U

†
t ρUt)U̇

†
t , (40)

and hence recalling that Ut satisfies Schrödinger equation U̇t = −iHUt, one
obtains Lt(ρ) = −i[H, ρ].

In this paper instead of analyzing this problem in full generality we restrict
ourselves to study special classes of dynamical maps and corresponding local
generators. In what follows we analyze 3 important classes of generators

• C1 — a class of time independent generators giving rise to Markovian
semigroup,

• C2 — a class of time dependent generators giving rise to commutative
dynamics

• C3 — a class of time dependent generators giving rise to the so-called
divisible dynamical maps.

Our analysis proves the following relations between these classes: C1 ⊂
C2 ∩ C3.

4. Markovian semigroups

In this section we recall the celebrated result derived independently by
Gorini, Kossakowski and Sudarshan [18] and Lindblad [19]. Consider the
simplest case of a time independent generator L

Λ̇t = LΛt , Λ0 = 1ln . (41)

The formal solution is given by Λt = etL for t ≥ 0 and hence satisfies the
following composition law

Λt Λs = Λt+s , (42)

for t, s ≥ 0. It proves that Λt provides a semigroup of linear maps (it is a
semigroup since the inverse Λ−1

t needs not be CP). The properties of L are
summarized in the following

Theorem 3 ([18, 19]) A linear map L :Mn(C) → Mn(C) generates legit-
imate dynamical semigroup if and only if

L(ρ) = −i[H, ρ] + Φ(ρ)− 1

2
{Φ∗(In), ρ} , (43)

where Φ :Mn(C) → Mn(C) is CP, Φ
∗ denotes the dual map, and H = H† ∈

Mn(C).
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In what follows we call L satisfying (43) a GKSL generator.

Remark 2 If Φ is only a positive map, then L generate a semigroup of
positive maps Λt which needs not be CP.

Let
Φ(ρ) =

∑

k

VkρV
†
k , (44)

be a Kraus representation of Φ. Its dual is represented by Φ∗(X) =
∑

k V
†
kXVk.

Corollary 2 A generator of a dynamical semigroup can be written in the
following form

L(ρ) = −i[H, ρ] +
∑

k

(
VkρV

†
k − 1

2
{V †

k Vk, ρ}
)
, (45)

or equivalently

L(ρ) = −i[H, ρ] + 1

2

∑

k

(
[Vk, ρV

†
k ] + [Vkρ, V

†
k ]
)
. (46)

Remark 3 Note, that if Φ is CP and trace preserving (i.e. a quantum chan-
nel), then Φ∗(In) = In and hence the formula (43) simplifies to

L(ρ) = −i[H, ρ] + Φ(ρ)− ρ . (47)

Note that the dual map L∗ defines the generator of quantum evolution in the
Heisenberg picture

L∗(X) = i[H,X] + Φ∗(X)− 1

2
{Φ∗(In),X} , (48)

or using Kraus representation (44)

L∗(X) = i[H,X] +
1

2

∑

k

(
[V †

k ,XVk] + [V †
kX,Vk]

)
. (49)

Let us consider simple examples of Markovian semigroups Λt and corre-
sponding generators L.

Example 5 Suppose that Φ : Mn(C) → Mn(C) is a quantum channel such
that Φ is a CP projector, i.e. Φ2 = Φ, and consider

L = γ(Φ − 1ln) , (50)
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where γ > 0 and we assumed H = 0. One finds the corresponding solution

Λt = etL = e−γteγtΦ = e−γt

(
1ln + γtΦ+

1

2
(γt)2Φ+ . . .

)

= e−γt1ln + (1− e−γt)Φ , (51)

that is, Λt is a convex combination of two quantum channels: 1ln and Φ. A
typical example of a completely positive projector is given by

Φ(ρ) =

n∑

k=1

PkρPk , (52)

where Pk = |k〉〈k|, i.e. Φ projects ρ onto the diagonal: Φ(ρ) =
∑

k ρkkPk.
Hence

ρt = e−γtρ+ (1− e−γt)
n∑

k=1

PkρPk , (53)

which shows that diagonal elements ρkk remain invariant and off-diagonal
ρkl are multiplied by the damping factor e−γt. It is, therefore, clear that this
dynamics describes pure decoherence with respect to an orthonormal basis
{|1〉, . . . , |n〉}.

Example 6 Suppose that Φ : Mn(C) → Mn(C) is a quantum channel such
that Φ2 = 1ln and consider L defined by (50). One finds the corresponding
solution

Λt = etL = e−γteγtΦ = e−γt

(
1ln + γtΦ+

1

2
(γt)21ln +

1

3!
(γt)3Φ+ . . .

)

= e−γt
[
cosh(γt)1ln + sinh(γt)Φ

]
, (54)

or equivalently

Λt =
1

2
(1 + e−2γt)1ln +

1

2
(1− e−2γt)Φ , (55)

which is another convex combination of 1ln and Φ. To illustrate this class
consider n = 2 and let Φ(ρ) = σzρσz which gives rise to the following gener-
ator

L(ρ) = γ(σzρσz − ρ) . (56)

One finds Φ2(ρ) = σz(σzρσz)σz = ρ and hence the corresponding evolution
is given by

ρt = Λt(ρ) =
1

2
(1 + e−2γt) ρ+

1

2
(1− e−2γt)σzρσz . (57)

Again this corresponds to a pure decoherence: ρ12 → e−2γtρ12 while the
diagonal elements ρ11 and ρ22 remain invariant.
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Example 7 Let us consider a qubit generator defined by H = ω
2 σz and the

following CP map

Φ(ρ) = γ1σ+ρ σ
†
+ + γ2σ−ρ σ

†
− + γσzρ σz , (58)

where σ+ = |2〉〈1| and σ− = |1〉〈2| = σ†+ are standard qubit raising and
lowering operators. The corresponding generator reads L(ρ) = −i[H, ρ] +
LD(ρ) with the dissipative part

LD =
γ1
2
L1 +

γ2
2
L2 +

γ

2
Lz , (59)

where

L1(ρ) = [σ+, ρσ−] + [σ+ρ, σ−] ,

L2(ρ) = [σ−, ρσ+] + [σ−ρ, σ+] , (60)

L3(ρ) = σzρσz − ρ .

L1 corresponds to pumping (heating) process, L2 corresponds to relaxation
(cooling), and L3 is responsible for pure decoherence. To solve the master
equation ρ̇t = Lρt let us parameterize ρt as follows

ρt = p1(t)P1 + p2(t)P2 + α(t)σ+ + α(t)σ− , (61)

with Pk = |k〉〈k|. Using the following relations

L(P1) = γ1(P2 − P1) = −γ1 σ3 ,
L(P2) = γ2(P1 − P2) = γ2 σ3 ,

L(σ+) = (iω − η)σ+ ,

L(σ−) = (−iω − η)σ− ,

where η = γ1+γ2
2 + γ, one finds the following Pauli master equations for the

probability distribution (p1(t), p2(t))

ṗ1(t) = −γ1 p1(t) + γ2 p2(t) , (62)

ṗ2(t) = γ1 p1(t)− γ2 p2(t) , (63)

together with α(t) = e(iω−η)tα(0). The corresponding solution reads

p1(t) = p1(0) e
−(γ1+γ2)t + p∗1

[
1− e−(γ1+γ1)t

]
, (64)

p2(t) = p2(0) e
−(γ1+γ2)t + p∗2

[
1− e−(γ2+γ2)t

]
, (65)
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where we introduced

p∗1 =
γ1

γ1 + γ2
, p∗2 =

γ2
γ1 + γ2

. (66)

Hence, we have purely classical evolution of probability vector (p1(t), p2(t)) on
the diagonal of ρt and very simple evolution of the off-diagonal element α(t).
Note, that asymptotically one obtains completely decohered density operator

ρt −→
(
p∗1 0
0 p∗2

)
.

In particular if γ1 = γ2 a state ρt relaxes to the maximally mixed state (a
state becomes completely depolarized).

5. Commutative dynamics

We call a dynamical map Λt commutative if [Λt,Λu] = 0 for all t, u ≥ 0.
It means that for each A ∈Mn(C) one has

Λt(Λu(A)) = Λu(Λt(A)) . (67)

It is easy to show that commutativity of Λt is equivalent to commutativity
of the local generator

[Lt, Lu] = 0 , (68)

for any t, u ≥ 0. Note that in this case the formula (37) considerably sim-
plifies: the ‘T’ product drops out and the solution is fully controlled by the
integral

∫ t
0 Ludu:

Λt = exp

(∫ t

0
Ludu

)
= 1ln +

∫ t

0
Ludu+

1

2

(∫ t

0
Ludu

)2

+ . . . . (69)

Now, it follows from Theorem 3 that if Λ = eM , then Λ is a quantum channel
if M is GKSL generator. Therefore, one has the following

Theorem 4 If Lt satisfies (68), then Lt is a legitimate generator if
∫ t
0 Lτdτ

is a GKSL generator for all t ≥ 0.

Note, that if Lt = L is time independent, then
∫ t
0 Ludu = tL and the above

theorem reproduces Theorem 3. It is clear that if L is a legitimate GKSL
generator and f : R+ → R an arbitrary function, then Lt = f(t)L generates
a commutative dynamical map Λt iff

∫ t
0 f(u)du ≥ 0 for all t ≥ 0. A typical

example of commutative dynamics is provided by

Lt = ω(t)L0 + a1(t)L1 + . . .+ aN (t)LN , (70)
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where [Lα, Lβ] = 0 with L0(ρ) = −i[H, ρ], and for α > 0 the generators Lα

are purely dissipative, that is, Lα(ρ) = Φα(ρ)− 1
2{Φ∗

α(I), ρ}. One has for the
corresponding dynamical map

Λt = eΩ(t)L0 · eA1(t)L1 · . . . · eAN (t)LN , (71)

with

Ω(t) =

∫ t

0
ω(u)du ; Aα(t) =

∫ t

0
aα(u)du .

It is clear that Λt is CP iff Aα(t) ≥ 0 for all α = 1, . . . , N .

Example 8 Consider qubit generator L0(ρ) = −i[σ3, ρ] together with L1, L2, L3

defined in (60). One easily proves

[L0, Lα] = [L3, Lα] = 0 ; α = 1, 2, 3 , (72)

and
[L1, L2] = L1 − L2 . (73)

Define the time-dependent commutative generator

Lt =
ω(t)

2
L0 +

δ(t)

2
(µ1L1 + µ2L2) +

γ(t)

2
Lz , (74)

with µ1, µ2 ≥ 0 and µ1 + µ2 = 1. Defining

Ω(t) =

∫ t

0
ω(u)du ; ∆(t) =

∫ t

0
δ(u)du ; Γ(t) =

∫ t

0
γ(u)du , (75)

one finds that Lt is a legitimate generator iff ∆(t) ≥ 0 and Γ(t) ≥ 0. The
following evolution of ρ has the following form: the off-diagonal elements
evolve according to

ρ12 → eΩ(t)+ 1

2
∆(t)+Γ(t)ρ12 ,

and diagonal elements

ρ11 → ρ11 e
−∆(t) + µ1

[
1− e−∆(t)

]
,

ρ22 → ρ22 e
−∆(t) + µ2

[
1− e−∆(t)

]
.

If ∆(t) → ∞ for t → ∞, then dynamics possesses an equilibrium state

ρt −→
(
µ1 0
0 µ2

)
.
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Example 9 (Random unitary qubit dynamics) Consider the following
time-dependent generator

Lt(ρ) =
1

2

3∑

k=1

γk(t)(σkρ σk − ρ) , (76)

where {σ1, σ2, σ3} are Pauli matrices. It is easy to prove that [Lt, Lu] = 0
and hence Lt generates a legitimate dynamical map iff

Γ1(t) ≥ 0 ; Γ2(t) ≥ 0 ; Γ3(t) ≥ 0 ,

where Γk(t) =
∫ t
0 γk(u)du. One finds [21] that the corresponding dynamical

map Λt is given by

Λt(ρ) =

3∑

α=0

pα(t)σαρ σα , (77)

where σ0 = I2 and

p0(t) =
1

4
[1 + λ3(t) + λ2(t) + λ1(t)] ,

p1(t) =
1

4
[1− λ3(t)− λ2(t) + λ1(t)] ,

p2(t) =
1

4
[1− λ3(t) + λ2(t)− λ1(t)] ,

p3(t) =
1

4
[1 + λ3(t)− λ2(t)− λ1(t)] ,

with
λ1(t) = e−Γ2(t)−Γ3(t) ,

and similarly for λ2(t) and λ3(t). Interestingly Λt(σk) = λk(t)σk. The for-
mula (77) defines so-called random unitary dynamics. Note that

p0(t) + p1(t) + p2(t) + p3(t) = 1 .

Moreover, pα(t) ≥ 0 for α = 0, 1, 2, 3 iff Γk(t) ≥ 0 for k = 1, 2, 3. Note
that Λt is unital. Actually, in the case of qubit any unital dynamical map is
random unitary, i.e.

Λt(ρ) =
∑

k

pk(t)Uk(t)ρU
†
k(t) , (78)

where pk(t) defines time-dependent probability distribution and Uk(t) is a
family of time-dependent unitary matrices. It is no longer true for n-level
systems with n > 2.
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6. Markovian evolution — divisible dynamical maps

We call a dynamical map Λt divisible if for any t ≥ s ≥ 0 one has the
following decomposition

Λt = Vt,s Λs , (79)

with a completely positive propagator Vt,s. Note, that if Λt is invertible then

Vt,s = Λt Λ
−1
s , (80)

and hence Vt,s satisfies an inhomogeneous composition law

Vt,sVs,u = Vt,u , (81)

for any t ≥ s ≥ u. The above formula provides a generalization of the semi-
group composition low (42). In this paper we accept the following defini-
tion of Markovian evolution: a dynamical map Λt corresponds to Markovian
evolution if and only if it is divisible. Interestingly, the property of being
Markovian (or divisible) is fully characterized in terms of the local generator
Lt. Note, that if Λt satisfies (35) then Vt,s satisfies

d

dt
Vt,s = LtVt,s , Vs,s = 1l , (82)

and the corresponding solution reads

Vt,s = T exp

(∫ t

s
Ludu

)
. (83)

It is clear that Λt = Vt,0 which shows that divisibility puts very strong re-
quirements upon the dynamical map Λt. One proves [4] the following

Theorem 5 The map Λt is divisible if and only if Lt is a GKSL generator
for all t, that is,

Lt(ρ) = −i[H(t), ρ] +
1

2

∑

k

(
[Vk(t), ρV

†
k (t)] + [Vk(t)ρ, V

†
k (t)]

)
, (84)

with time-dependent Hamiltonian H(t) and noise operators Vk(t).

Remark 4 If

Lt = ω(t)L0 + a1(t)L1 + . . .+ aN (t)LN , (85)

where L0(ρ) = −i[H, ρ], and for α > 0 the generators Lα are purely dissipa-
tive and linearly independent, then Lt generates Markovian evolution if and
only if a1(t), . . . , aN (t) ≥ 0.
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Example 10 Consider a qubit generator

Lt = −i[H(t), · ] + γ1(t)

2
L1 +

γ2(t)

2
L2 +

γ(t)

2
L3 , (86)

where {L1, L2, L3} are defined in (60). Lt gives rise to Markovian evolution if
and only if γ1(t), γ2(t), γ(t) ≥ 0. We stress that due to the non-commutativity
of Lt it is not easy to find the corresponding solution defined in terms of the
T -product formula (37) (cf. Section 7.). In particular if we consider the
special case corresponding to

Lt(ρ) =
1

2
γ(t)L3(ρ) =

1

2
γ(t)(σzρσz − ρ) , (87)

and introduce Γ(t) =
∫ t
0 γ(τ)dτ , then it is clear that

Λt(ρ) =
1

2

[
1 + e−Γ(t)

]
ρ+

1

2

[
1− e−Γ(t)

]
σzρσz , (88)

and hence

1. Lt is a legitimate generator iff Γ(t) ≥ 0,

2. Lt generates Markovian evolution iff γ(t) ≥ 0,

3. Lt generates Markovian semigroup iff γ(t) = const. > 0.

Divisible maps possess several important properties [23]. Note that Proposi-
tion 1 implies the following

Proposition 4 If Λt :Mn(C) → Mn(C) is a dynamical map, then

d

dt
||[1ln⊗Λt](X)||1 ≤ 0 , (89)

for any Hermitian operator X ∈Mn(C)⊗Mn(C).

Proof: one has

d

dt
||[1ln⊗Λt](X)||1 = lim

ǫ→0+

1

ǫ

[
||[1ln⊗Λt+ǫ](X)||1 − ||[1ln ⊗Λt](X)||1

]

= lim
ǫ→0+

1

ǫ

[
||[1ln⊗Vt+ǫ,tΛt](X)||1 − ||[1ln⊗Λt](X)||1

]

≤ lim
ǫ→0+

1

ǫ

[
||[1ln⊗Λt](X)||1 − ||[1ln⊗Λt](X)||1

]
= 0 ,

where we have used the divisibility property Λt+ǫ = Vt+ǫ,tΛt and Proposition
1 for the map Φ = 1ln⊗Vt+ǫ,t. ✷
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Remark 5 Note that taking X = In ⊗x one immediately gets

d

dt
||Λt(x)||1 ≤ 0 , (90)

for any Hermitian operator x ∈ Mn(C). In particular if X = ρ − σ one
arrives at

d

dt
||Λt(ρ− σ)||1 ≤ 0 , (91)

for any pair of density matrices ρ and σ.

Remark 6 Actually, the formula (91) was used in [24] as a definition of
Markovian dynamics: the dynamics Λt is Markovian iff

d

dt
D[Λt(ρ),Λt(σ)] ≤ 0 , (92)

for all initial states ρ, σ ∈ Sn. It is clear that if Λt is divisible, then (92)
is satisfied. Note, however, that the converse needs not be true. Consider
the following example: let the dynamics Λt be governed by the local in time
generator

Lt(ρ) = γ(t) (ωtTr ρ− ρ) , (93)

where ωt is a family of Hermitian operators satisfying Trωt = 1. The above
generator gives rise to Markovian evolution iff Lt has the standard GKSL
form [18, 19] for all t ≥ 0, that is, iff γ(t) ≥ 0 and ωt defines a legitimate
state, i.e. ωt ≥ 0. The corresponding solution of the master equation ρ̇t =
Ltρt with an initial condition ρ reads as follows

ρt = e−Γ(t)ρ̃t ,

where as usual Γ(t) =
∫ t
0 γ(u)du and ρ̃t satisfies

∂tρ̃t = γ(t)ωtTr ρ̃t .

One has
∂t[Tr ρ̃t] = γ(t)Tr ρ̃t ,

which implies Tr ρ̃t = eΓ(t)Tr ρ̃ = eΓ(t)Tr ρ due to Γ(0) = 1. Therefore, one
arrives at the following equation

∂tρ̃t = γ(t)eΓ(t)ωtTr ρ ,

with the corresponding solution

ρ̃t = ρ̃+

[∫ t

0
γ(u)eΓ(u)ωu du

]
Tr ρ .
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Finally,
ρt = Λt(ρ) = e−Γ(t)ρ+ [1− e−Γ(t)]ΩtTrρ , (94)

where

Ωt =
1

eΓ(t) − 1

∫ t

0
γ(τ)eΓ(τ) ωτdτ .

It is therefore clear that Lt generates a legitimate quantum evolution iff Γ(t) ≥
0 and Ωt ≥ 0, that is, Ωt defines a legitimate state (note, that TrΩt = 1).
In particular, if ωt = ω is time-independent, then Ωt = ω and the solution
simplifies to a convex combination of the initial state ρ and the asymptotic
invariant state ω: ρt = e−Γ(t)ρ + [1 − e−Γ(t)]ω. One easily shows that the
evolution is Markovian iff γ(t) ≥ 0 and ωt is a legitimate density operator.
Consider now condition (92). One has ρt − σt = e−Γ(t)(ρ− σ) and hence

d

dt
||ρt − σt||1 = −γ(t) e−Γ(t)||ρ− σ||1 ≤ 0 ,

implies only γ(t) ≥ 0 but says nothing about ωt. It shows that any ωt

which gives rise to Ωt ≥ 0 leads to the evolution satisfying condition (92)
but only ωt ≥ 0 gives rise to Markovian dynamics. Hence, we may have
non-Markovian dynamics which satisfies condition (92) for all t ≥ 0. In
this case ωt, contrary to Ωt, is no longer a state. The interested reader will
find other examples showing that (92) may differ from divisibility property in
[25, 26, 27].

7. The general structure of local generators

Consider now a dynamical map Λt and suppose that it can be represented
as follows

Λt = eZt , (95)

where Zt :Mn(C) → Mn(C) is a legitimate GKSL generator for all t ≥ 0 and
Z0 = 0 which guarantees that Λ0 = 1ln. It is clear that such representation
enforces Λt to be a family of quantum channels for t ≥ 0. Let us assume that
Zt is differentiable and let

Zt =

∫ t

0
Xτdτ . (96)

Assume now that Λt satisfies local in time Master Equation (35). The corre-
sponding local generator is given by

Lt = Λ̇tΛ
−1
t , (97)
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provided that the inverse map Λ−1
t does exist. Note, however, that the rep-

resentation (95) implies that Λ−1
t = e−Zt and hence Lt is well defined. To

find Lt one needs to compute ∂tΛt. In order to do it we use the following
Wilcox formula [28]

∂t e
Zt =

∫ 1

0
esZt Żt e

(1−s)Zt ds , (98)

and hence

Lt = Λ̇tΛ
−1
t =

∫ 1

0
esZt Xt e

−sZt ds , (99)

where we have used Xt = Żt. The formula (99) establishes very general
form of the local generator. The construction of a legitimate generator is
pretty simple, nevertheless, the formula (99) is highly nontrivial and the
computation of Lt out of Zt might be highly complicated. This is the price
we pay for the simple representation of evolution (95). Hence, we have a kind
of complementarity: either one uses T-product formula (37) with a relatively
simple generator or one avoids the T-product through (95) but uses highly
nontrivial generator (99). The advantage of our approach is that one knows
how to construct the generator (in practice it might be complicated) giving
rise to the legitimate quantum dynamics.

Remark 7 Note, that if Zt is a commutative family, then

0 = ∂t[Zt, Zu] = [Xt, Zu] , (100)

and hence esZt and Xt commute. In this case formula (99) simplifies to

Lt =

∫ 1

0
esZt Xt e

−sZt ds =

∫ 1

0
Xt ds = Xt , (101)

which shows that Lt coincides with Xt. In the noncommutative case this
simple relation is no longer true.

Remark 8 It should be clear why we use the special representation Λt = eZt

for the dynamical map. Using for example the Kraus representation

Λt(ρ) =
∑

α

Kα(t)ρK
†
α(t) ,

there is no simple way to calculate the inverse Λ−1
t . If Λt = eZt we have the

inverse Λ−1
t = e−Zt for free!
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To illustrate this approach let us consider the following instructive exam-
ple of a qubit dynamics: let

Xt = a1(t)L1 + a2(t)L2 , (102)

where L1, L2 are defined in (60) and a1(t), a2(t) are real functions of time.
One has therefore

Zt = A1(t)L1 +A2(t)L2 , (103)

where

A1(t) =

∫ t

0
a1(u) du ; A2(t) =

∫ t

0
a2(u) du . (104)

It is clear that Λt = eZt defines a legitimate qubit dynamics if and only if
Ak(t) ≥ 0 for k = 1, 2. Our goal now is to find the corresponding local genera-
tor Lt using our basic formula (99). Note that a family Xt :M2(C) → M2(C)
provides a noncommutative family of maps due to the following commutation
relation (cf. formula (73))

[L1, L2] = L1 − L2 . (105)

Hence, Lt is different from Xt. To compute Lt via Wilcox formula (99) let us
observe that L1 and L2 close a Lie algebra and hence we may use well-known
Lie algebraic methods. One has the following quite involved expression for
Lt

Lt =

∫ t

0
es[A1(t)L1+A2(t)L2][a1(t)L1 + a2(t)L2]e

−s[A1(t)L1+A2(t)L2] ds . (106)

To deal with it we shall use the well-known Baker-Campbell-Hausdorff (BCH)
formula

eXY e−X = Y + [X,Y ] +
1

2!
[X, [X,Y ]] + . . . =

∞∑

k=0

1

k!
adkXY , (107)

where adXY := [X,Y ]. Using the simple commutation rule (105) one easily
proves for k ≥ 1

adkZL1 = (−1)kAk−1A2(L2 − L1) ,

adkZL2 = (−1)kAk−1A1(L1 − L2) ,

where we introduced
A = A1 +A2 .
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Therefore, one gets

esZL1e
−sZ =

∞∑

k=0

1

k!
adkZL1 = L1 +

∞∑

k=1

1

k!
(−s)kAk−1A2(L2 − L1)

= L1 + (L2 − L1)
A2

A

∞∑

k=1

1

k!
(−sA)k = L1 +

A2

A
(1− e−sA)(L2 − L1) ,

and similarly

esZL2e
−sZ = L2 +

A1

A
(1− e−sA)(L1 − L2) ,

where to simplify the notation we omit the time dependence of A1 and A2.
Inserting

esZL1e
−sZ =

(
1− A2

A

[
1− e−sA

])
L1 +

A2

A
[1− e−sA]L2 , (108)

and

esZL2e
−sZ =

(
1− A1

A
[1− e−sA]

)
L2 +

A1

A
[1− e−sA]L1 , (109)

into (106) one obtains finally

Lt = b1(t)L1 + b2(t)L2 , (110)

where the functions b1(t) and b2(t) are defined by

b1 = a1 − f , (111)

b2 = a2 + f , (112)

and the function f(t) reads

f = e−AW

A
, (113)

with W = a1A2−a2A1 being the Wronskian of a pair {A1(t), A2(t)}. Hence,
the local generator Lt has exactly the same structure as Xt but with func-
tions ak(t) replaced by bk(t). Note, that if a1(t) and a2(t) are not linearly
independent, i.e. a2(t) = λa1(t), then the Wronskian vanishes and bk = ak
which implies Lt = Xt. This result should be clear since in this case Xt

defines a commutative family Xt = a1(t)[L1 + λL2].
To summarize: the local generator Lt is related with Xt by the following

simple relation
Lt = Xt − f(t)[L1 − L2] . (114)
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Roughly speaking the function f(t) measures the non-commutativity of the
dynamical map Λt. Note that we have two representations of Λt: as a solution

of the Master Equation Λt = Texp
(∫ t

0 Ludu
)
and Λt = exp(

∫ t
0 Xudu). Using

the formula (114) one arrives at the following interesting observation

T exp

(∫ t

0
(Xu − f(u)[L1 − L2])du

)
= exp

(∫ t

0
Xudu

)
, (115)

which shows that the role of T-product is just to kill the unwanted term
f(u)[L1 − L2]!

Note, that the representation Λt = exp(
∫ t
0 Xudu) is legitimate if and only

if A1(t), A2(t) ≥ 0. However, this condition says nothing about positivity of
b1(t) and b2(t). Even the integrals

B1 = A1 − F ; B2 = A2 + F , (116)

with F (t) =
∫ t
0 f(u)du need not be positive. Only the sum

B1(t) +B2(t) = A1(t) +A2(t) ≥ 0 , (117)

is fully controlled by A1 and A2. Interestingly, one can prove the following
relations between {a1, a2} and {b1, b2}:

Proposition 5 If b1(t), b2(t) ≥ 0, then A1(t), A2(t) ≥ 0.

This statement is obvious: if b1(t), b2(t) ≥ 0, then Lt generates divisible
dynamical map and hence Λt = eZt implies that Zt is a legitimate GKSL
generator for t ≥ 0 which in turn is equivalent to A1(t), A2(t) ≥ 0. One has
also the dual result

Proposition 6 If a1(t), a2(t) ≥ 0, then B1(t), B2(t) ≥ 0.

The proof is very easy: due to (116) it is enough to show that

−A2(t) ≤ F (t) ≤ A1(t) , (118)

for all t ≥ 0. One has

F (t) =

∫ t

0
du e−A(u)

[
a1(u)A2(u)− a2(u)A1(u)

]
/A(u)

=

∫ t

0
du

[
e−A(u)a1(u)− e−A(u)A1(u)[a1(u) + a2(u)]/A(u)

]

≤
∫ t

0
du e−A(u)a1(u) ≤

∫ t

0
du a1(u) = A1(t) ,

and in the same way one proves that −F (t) ≤ A2(t).
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Remark 9 Actually, the Master Equation with Lt = b1(t)L1 + b2(t)L2 may
be easily solved. Defining

ωt = p1(t)|1〉〈1| + p2(t)|2〉〈2| , (119)

with p1(t) = b2(t)/b(t) and p2(t) = b1(t)/b(t) one easily finds

b1(t)L1 + b2(t)L2 = b(t)[ωtTrρ− ρ]− 1

4
b(t)Lz . (120)

Note that generator b(t)[ωtTrρ− ρ] was already considered in Remark 6 (see
formula (93). Moreover, one easily checks that this generator commutes with
Lz and hence one finds the following formula for Λt

Λt(ρ) =
1

2
e−B(t)

[
(1 + eB(t)/2)ρ+ (1− eB(t)/2)σzρσz

]
+ (1− e−B(t))Ωt ,

where

Ωt =
1

eB(t) − 1

∫ t

0
b(τ)eB(τ)

[
p1(τ)|1〉〈1| + p2(τ)|2〉〈2|

]
dτ .

To check for complete positivity of Λt one computes [1l2 ⊗Λt](P
+
2 ):




e−B + (1− e−B)Ω11 · · e−B/2

· (1− e−B)Ω22 · ·
· · (1− e−B)Ω11 ·

e−B/2 · · e−B + (1− e−B)Ω22


 ,

where we skiped the time dependence. Now, [1l2 ⊗Λt](P
+
2 ) ≥ 0 iff B(t) ≥ 0

and Ωt ≥ 0. The last condition is equivalent to

0 ≤
∫ t

0
bk(τ)e

B(τ)dτ ≤ eB(t) − 1 , (121)

for k = 1, 2. This way we derived conditions for b1(t) and b2(t). Note, how-
ever, that in order to do this we have to solve the original Master Equation!
Only the condition B(t) ≥ 0 was obtained via the Lie algebraic method.

Corollary 3 If Xt is GKSL generator, then
∫ t
0 Ludu is GKSL generator. If

Lt is GKSL generator (the dynamics is Markovian), then
∫ t
0 Xudu is GKSL

generator.

Proposition 7 The corresponding solution eZt may be represented as follows

eZt = eν1(t)L1eν2(t)L2 , (122)
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where

ν1 = ln

(
A

A1e−A +A2

)
, ν2 = ln

(
A1 +A2e

A

A

)
, (123)

and hence ν1 + ν2 = A.

Proof: Since {L1, L2} form a Lie algebra one has

es(A1L1+A2L2) = eu1(s)L1eu2(s)L2 , (124)

where u1(s), u2(s) are real functions of a parameter s satisfying u1(0) =
u2(0) = 0. Differentiating both sides with respect to s one gets

es(A1L1+A2L2)(A1L1 +A2L2)

= u′1(s)L1e
u1(s)L1eu2(s)L2 + u′2(s)e

u1(s)L1eu2(s)L2L2

= u′1(s)L1e
s(A1L1+A2L2) + u′2(s)e

s(A1L1+A2L2)L2 ,

where u′(s) = du(s)/ds. Multiplying both sides by e−s(A1L1+A2L2) leads to

A1L1 +A2L2 = u′1(s)L1 + u′2(s)e
s(A1L1+A2L2)L2e

−s(A1L1+A2L2) ,

and hence using (109) one obtains the following equations for unknown func-
tions u1 and u2:

A1 = u′1(s)
[
1− A2

A
(1− esA)

]
, (125)

A2 = u′1(s)
A2

A
(1− esA) + u′2(s) . (126)

Using ∫ 1

0

dx

1 + aebx
=

1

b
ln

1 + a

e−b + a
, (127)

one finds

u1(1) = A

∫ 1

0

ds

1 + (A2/A1)esA
= ln

(
A

A1e−A +A2

)
, (128)

and

u2(1) = ln

(
A1 +A2e

A

A

)
. (129)

Finally, one takes ν1 := u1(1) and ν2 := u2(1). It is clear that ν1, ν2 ≥ 0
which proves that eν1(t)L1 and eν2(t)L2 are CPTP maps. ✷
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Remark 10 This example may be easily generalized: suppose that {L1, . . . , LN}
is a set of GKSL generators closing a Lie algebra

[Li, Lj ] =

N∑

k=1

ckijLk , (130)

and consider
Xt = a1(t)L1 + . . .+ aN (t)LN , (131)

such that

A1(t) =

∫ t

0
a1(u)du ≥ 0 ; . . . ;AN (t) =

∫ t

0
aN (u)du ≥ 0 . (132)

It should be clear that Wilcox formula leads to

Lt = b1(t)L1 + . . .+ bN (t)LN , (133)

where the functions {b1(t), . . . , bN (t)} are fully determined by {a1(t), . . . , aN (t)}
and the structure constants ckij of the above Lie algebra. There are well-
developed algebraic methods (like Wei-Norman or Magnus expansions [29, 30]
see also the recent review [31]) which may help to deal with such dynamical
problems.

8. Conclusions

We provided a basic introduction to the time-local description of open
quantum systems. The full characterization of Markovian semigroups, com-
mutative evolutions and dynamics corresponding to divisible maps (Marko-
vian evolution) is provided. In the non-commutative case the Wilcox formula
shows the intricate structure of time-local generator Lt and partially explains
the problem of finding necessary and sufficient conditions which do guaran-
tee a legitimate quantum evolution generated by Lt. Recently, there is an
increasing interest in the non-Markovian quantum evolutions and quantum
memory effects. For recent papers devoted to both theoretical and experi-
mental aspects of quantum evolution with memory see e.g. a collection of
papers in [32] and references therein. See also Haikka and Maniscalco [33] in
this volume.
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