
Non-Markovian quantum probes

P. Haikka
Turku Center for Quantum Physics, Department of Physics and Astronomy, University of
Turku, FIN20014, Turku, Finland

pmehai@utu.fil

S. Maniscalco
Turku Center for Quantum Physics, Department of Physics and Astronomy, University of
Turku, FIN20014, Turku, Finland
EPS/Physics, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

s.maniscalco@hw.ac.uk

(Processed: October 23, 2018; Received: .)

Abstract. We review the most recent developments in the theory of open quantum
systems focusing on situations in which the reservoir memory effects, due to long-lasting
and non-negligible correlations between system and environment, play a crucial role. These
systems are often referred to as non-Markovian systems. After a brief summary of different
measures of non-Markovianity that have been introduced over the last few years we restrict
our analysis to the investigation of information flow between system and environment.
Within this framework we introduce an important application of non-Markovianity, namely
its use as a quantum probe of complex quantum systems. To illustrate this point we consider
quantum probes of ultracold gases, spin chains, and trapped ion crystals and show how
properties of these systems can be extracted by means of non-Markovianity measures.

1. Introduction

The theory of open quantum systems deals with the interaction between
a small quantum system and a complex environment with many degrees of
freedom. Conventionally, the main goal of theoretical investigations on open
quantum systems consists of the development of an efficient mathematical de-
scription, and corresponding physical analysis, of the open system dynamics
by means of phenomenological or microscopic system-environment models.
This usually requires the use of various approximation techniques and nu-
merical simulation methods [1, 2, 3]. Very recently a new and interesting
perspective has begun to emerge. This revolves around the following ques-
tion: What can we learn from the dynamics of an open system, playing the
role of a quantum probe, about its complex environment?

The possibility of extracting global or local properties of the complex en-
vironment by measuring a quantum probe stems from the fact that the probe
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decoherence and/or dissipation, induced by the interaction with the environ-
ment, crucially depends on properties of the latter, such as its spectrum of
excitations, its full counting statistics, or its phase in the case of many-body
systems undergoing quantum phase transitions. One can therefore envisage a
scenario in which the full control of the quantum probe, under certain condi-
tions, allows for the extraction of information on the complex system, ideally
in a non-destructive way. This scenario relies on the following criteria: (i)
efficient initial state preparation of the quantum probe; (i) ability to control
both the interaction time and the interaction strength between the probe
and the complex system; (iii) efficient measurement of the quantum probe
dynamics, ideally without affecting the complex system.

Dramatic developments in the ability to experimentally control both the
quantum state of individual particles (atoms or ions) and the coupling to their
surroundings allows the identification of physical systems in which the crite-
ria above can be, at least in principle, implemented. Such systems include
impurities immersed in ultracold quantum gases and trapped ion crystals.
Complex systems such as ultracold atoms and spin chains are generally char-
acterized by highly structured frequency spectra. As a consequence, the de-
coherent dynamics that they induce in the quantum probe is non-Markovian.
The full toolbox of the theory of non-Markovian open quantum systems is
needed to describe the dynamics of the quantum probe with sufficient detail.
The aim of this review is to introduce these powerful tools and apply them
to the scenario on probing complex many-body systems.

During the last five years a number of characterizations and measures of
non-Markovianity have been proposed in the literature [4, 5, 6, 7, 8, 9, 10,
11, 12, 13], each of them addressing a specific aspect of this multi-faceted
and rich phenomenon. The quantification of non-Markovianity is justified by
the fact that there is increasing evidence of its important role as a resource
for quantum technologies [14, 15, 16, 17, 13]. Non-Markovian evolution is of-
ten characterized by recoherence phenomena and information trapping, thus
leading to longer coherence times in comparison to the Markovian case. Non-
Markovianity measures quantify the maximum backflow of information from
the system to the environment, hence the non-Markovianity of a quantum
probe may be used to infer indirectly, and ideally non-destructively, prop-
erties of complex environments such as the occurrence of quantum phase
transitions.

This review is structured as follows. In Sec. II we review basic concepts
of the theory of open quantum systems such as the Lindblad theorem, divis-
ibility of the dynamical map, and non-Markovianity measures. In Sec. III
we see how a great variety of reservoirs, inducing pure dephasing of impurity
probes, can be engineered with ultracold gases. In Sec. IV we present two
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examples of non-Markovianity as a probe, showing how this quantity allows
for singling out the occurrence of a quantum phase transition in Ising mod-
els, and a structural phase transition in ion crystals. Finally, in Sec. V we
present conclusions.

2. Non-Markovian dynamics

2.1. Open quantum systems

Quantum systems are never isolated from their surroundings and thus the
theory of closed quantum systems fails to describe many essential features
of quantum dynamics. It is therefore necessary to include the effect of the
environment in the dynamical description of the quantum system. However,
including the environment in the equation of motion introduces a large, typ-
ically infinite, number of degrees of freedom, complicating tremendously the
description of the system. Furthermore, one is typically not interested in the
dynamics of the environment but rather on its effects on the system. For this
reason it it useful to reduce the description of the total closed system to the
description of the system of interest only.

In the theory of open quantum systems one considers a total closed system
and separates it into a system of interest, S, and its environment, E [1, 2, 3].
The Hilbert space of the total system separates to that of the system and the
environment, H = HS ⊗HE . The dynamics of the open system is obtained
from the von Neumann equation of the total closed system: tracing over the
environmental degrees of freedom yields a reduced equation of motion for the
system, i.e., the master equation

dρS(t)

dt
= −itrE{[H(t), ρSE(t)]}, (1)

where
ρS(t) = trE{ρSE(t)} (2)

is the state of the system of interest and ρSE(t) the state of the total system,
typically assumed to be initially of the factorised form ρSE(0) = ρS(0) ⊗
ρE(0). The master equation is exact but often many approximations are
required to obtain an equation that can be solved even numerically. The
solutions of the master equation at different times correspond to a dynamical
mapping

Φt0,t : ρS(t0) 7→ ρS(t) = Φt0,tρS(t0). (3)

The mapping describing the evolution of the open system is, in general, no
longer unitary, and it does not conserve the purity of states. This means
that the mapping is generally not reversible, and furthermore, positivity of
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the density matrix is not trivially satisfied. Indeed, the approximations often
used to find a more manageable form for the master equation can lead to
a mapping that violates the physicality of the ensuing state. This can be
manifested as a failure of the mapping to preserve the trace of the positivity
of the quantum state, or more subtly, as a violation of the complete positivity
(CP) of the state.

Complete positivity is a property of a linear mapping Φ : Cn×n → Cm×m,
where Cn×n is a C∗-algebra of complex n × n-matrices. The mapping is
said to be positive if Φ(A) > 0 for all A, k-positive if an extension map
Ik ⊗ Φ : Ck×k ⊗Cn×n → Ck×k ⊗Cm×m is positive and completely positive
if it is k-positive for all k. Intuitively the concept of CP means that the
dynamical mapping can be extended to any larger subspace and the mapping
still remains positive. It it important to note that a CP mapping is always
positive, but the converse is not true in general.

2.2. Lindbad theorem

An important class of open system dynamics for which the physicality
(trace preservation and complete positivity) of the evolving state is always
guaranteed is given by the Lindblad theorem [18, 19]. The dynamical maps
forming this class have two interesting properties: they are time-homogenous,

Φt0,t = Φt−t0,0 ≡ Φτ , (4)

where τ = t− t0, and they obey the semi-group property,

Φt+s = ΦtΦs. (5)

Under these two conditions the general form of the dynamical mapping is

Φt = eLt, (6)

where L is a bounded generator, and a formal derivation yields the general
equation of motion

dρS(t)

dt
= LρS(t). (7)

The theorems of Lindblad [18] and Gorini, Kossakowski and Sudarshan [19]
give the most general form of the generator of the dynamical semi-group L.
For convenience we cite their common result as the Lindblad theorem and
the general form of the operator as the Lindblad form, which is explicitly
expressed as

LρS(t) = −i[HS , ρS(t)] +
∑
k

γk

[
AkρS(t)A†k −

1

2

{
A†kAk, ρS(t)

}]
, (8)
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where {A,B} = AB +BA is the anti-commutator of two operators, HS and
Ak are bounded operators and γk ≥ 0 are positive constants. The Lind-
blad theorem, shown here without the proof, asserts that the following two
statements are equivalent:

(i) {eLt | t ≥ 0} is a semi-group and for each t the mapping eLt : ρS(0) 7→
ρS(t) = eLtρS(0) is CP.

(ii) LρS(t) is in the Lindblad form (8).

The implications of the Lindblad theorem are immediate: if a completely
positive dynamical mapping Φt fulfills the semi-group condition then we
can immediately state the general form of the generator of the semi-group.
Namely, the generator is in the Lindblad form. Conversely, if we have an
equation of motion in the Lindblad form we are assured that the evolution
of the density matrix is always physical as a direct consequence of complete
positivity of the dynamical map.

From a physical perspective, how can one interpret a dynamical process
described by the Lindblad form? As a first step consider the extreme case
of γk = 0 ∀k. In this case the master equation reduces to the von Neumann
equation, describing unitary system dynamics of a closed system. The ef-
fect of the environment is therefore explicitly contained in the terms of the
Lindblad form with γk > 0. Each pair (γk, Ak) corresponds to a different
decay channel, e.g., Ak = σ− describing the spontaneous emission of a two-
level atom. These decay channels arise naturally in many physical scenarios.
Employing the commonly used Born (weak coupling) and Markov (negligibly
short system-environment correlation time) approximations in a microscopic
derivation of the master equation results in a master equation in the Lindblad
form (See, e.g. Ref. [1]).

Moreover, a master equation in the Lindblad form has a physical inter-
pretation that can be understood in terms of so-called quantum jumps, which
we briefly recall here [20, 21]. Let us consider a quantum system in a pure
state |φ〉 evolving during a small interval of time ∆t according to one of the
following processes:

(1) A quantum jump determined by an operator A:

|φ(t)〉 7→ |φ(t+ ∆t)〉QJ =
A |φ(t)〉
||A |φ(t)〉 || (9)

with a probability of ∆p = 〈φ(t)|A†A|φ(t)〉γ∆t, where γ is a positive
constant.

(2) Unitary evolution generated by an effective non-Hermitian Hamiltonian
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Heff = HS − iγA†A

|φ(t)〉 7→ |φ(t+ ∆t)〉U =
e−iHeff∆t |φ(t)〉
||e−iHeff∆t |φ(t)〉 || (10)

with a probability 1−∆p.

These two processes amount to the following change of the density matrix
corresponding to the state vector:

|φ(t)〉 〈φ(t)| 7→ ∆p |φ(t)〉QJ 〈φ(t)|QJ + (1−∆p) |φ(t)〉U 〈φ(t)|U (11)

Consider a Monte Carlo wave function process to simulate the evolution of
the state vector, where at each interval of time a random number r ∈ [0, 1] is
compared to the probability ∆p to determine which process, (1) or (2), takes
place: when r < ∆p the state vector undergoes a quantum jump and when
r ≥ ∆p the state vector evolves deterministically. When this simulation
process is performed for a large ensemble of state vectors, we obtain from
(11), in the limit ∆t→ 0, a master equation that is in the Lindblad form:

dρ(t)

dt
= −i[H,ρ(t)] + γ

[
Aρ(t)A† − 1

2

{
A†A, ρ(t)

}]
, (12)

where ρ(t) = 1
N |ψ(t)〉i 〈ψ(t)|i and N is the number of state vectors forming

the ensemble. This simple study shows that a master equation in the Lind-
blad form describes the dynamics of a quantum system whose deterministic
evolution is disrupted by quantum jumps. The constant γ is interpreted as
the decay rate of that particular quantum jump channel. This result can be
generalized to include more than one jump channel, giving the full Lindblad
master equation (8).

Master equations in the Lindblad form and the dynamical maps with
the semi-group property are especially significant when discussing the border
between Markovian and non-Markovian dynamical processes. Indeed, the
semi-group property means that the map can be divided into infinitely many
time-steps, each identical and independent of the past and future steps [22],
and therefore the dynamical map has the intuitive interpretation of mem-
oryless dynamics. These memoryless dynamical maps are commonly called
Markovian.

Markovian processes successfully describe a plethora of physical processes,
particularly in the field of quantum optics, but can fail if applied to more
complex system-environment interactions where memory effects become im-
portant. This is typically manifested as long system-environment correlation
times that lead to the failure of the Markov approximation. In such situ-
ations one must resort to non-Markovian dynamical maps, and the rest of
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the article focuses on dynamical scenarios where the semi-group Lindblad
description of the system evolution is not sufficient to describe the dynamics
of the system.

2.3. Non-Markovianity as non-divisibility

The Lindblad master equation is often considered the prototype of Marko-
vian, memoryless dynamics. This notion is prompted by the semi-group
property which implies that future evolution of the state is independent of
the past states. Discrepancies arise when addressing the question of what is
not Markovian and, to date, a myriad of deviating points of view have been
advocated. The discussion on systematic definitions of non-Markovianity is
fuelled by the wish to quantify the degree of non-Markovianity in quantum
processes.

The first step in this direction was taken by M. M. Wolf et al., who pro-
posed using deviation from the semi-group property as the principal charac-
teristic of non-Markovian dynamical maps [4]. They further constructed a
quantitative measure of non-Markovianity as the minimal amount of isotropic
noise that has to be added to the dynamics of an open quantum system to
make it Markovian. However, this definition of non-Markovian processes is
very severe and, in some cases, open to debate. There are dynamical pro-
cesses that do not satisfy the semigroup property, but behave in a way that
one would intuitively call Markovian.

To make this point more transparent, consider the microscopic derivation
of the master equation without the Markov approximation. The ensuing
master equation has the same structure as the Lindblad master equation, but
with time-dependent coefficients γk = γk(t). As a result, the corresponding
dynamical map is no longer time-homogenous and the semi-group property
is violated. However, in the case when the decay rates are positive, γk(t) ≥ 0
for each k and t ≥ t0, the dynamical map has the property of being divisible:

Φt0,t = Φt0,sΦs,t (13)

where t ≥ s ≥ t0. The dynamical map can thus be concatenated into a collec-
tion of other dynamical maps, and analogously to the semi-group property,
this concatenation has the intuitive interpretation of memoryless dynamics.
The quantum jump picture of the dynamics still holds, albeit now with time-
dependent jump probabilities.

Instead, if a Lindblad structured master equation with time-dependent
rates has at least one decay rate that takes temporarily negative values, the
divisibility of the corresponding dynamical map is broken. In this case the
intermediate map Φt,s in the concatenation (13) is no longer completely pos-
itive. Moreover, it can be shown that the converse statement also holds,
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i.e., non-divisibility is always manifested as a decay rate taking temporarily
negative values [6]. When a decay rate takes negative values the standard
quantum jump picture breaks down due to the appearance of negative proba-
bilities, and an extension thereof, the non-Markovian quantum jump method,
becomes necessary [23]. According to this description, during a period of the
decay rate being negative a previously occurred jump may be reversed. Re-
versed jumps recreate earlier states, advocating the idea of memory effects.

Several authors have put forward the idea of constructing a measure of
non-Markovianity based on non-divisibility of the dynamical map [6, 9, 11,
12]. The degree of non-Markovianity is quantified by the deviation of the
intermediate map Φt,s from a completely positive map, which may be mea-
sured in several different ways. In this article, however, we focus on a subtly
different way of characterising and quantifying non-Markovianity in terms of
information flowing from the system to the environment, and back to the
system.

2.4. Non-Markovanity as reversed information flow

Divisible dynamical processes lead to monotonic decay of many impor-
tant physical quantities. The converse does not necessarily hold but non-
monotonic dynamics of these quantities can still be used to witness non-
divisibility. However, non-monotonic dynamics is often considered a signa-
ture of non-Markovian dynamics and, especially in the case when one may
wish to harness the temporary revivals of these quantities in certain pro-
tocols, it is useful to define non-Markovian phenomena as deviations from
monotonic dynamics.

As an illustration of this approach, we consider here the seminal proposal
of Breuer, Laine and Piilo (BLP) [5, 7], where the quantity of interest is
the distinguishability of two quantum states ρ1,2(t0) evolving under the dy-
namical map Φt0,t. Note that henceforth we drop the subscript S from the
density matrix of the system ρS(t) and refer it to just ρ(t) for brevity. The
distinguishability is defined using the trace norm,

D(t) =
1

2
||ρ1(t)− ρ2(t)||1, ρ1,2(t) = Φt0,tρ1,2(t0). (14)

A divisible dynamical process decreases the distinguishability of the states
monotonically which can be interpreted as a continuous flow of information
from the system to the environment. BLP define a dynamical process to be
non-Markovian if there is a pair of initial states ρ1,2(t0) such that the distin-
guishability increases for at least one interval of time t ∈ [a, b], taking this to
mean that information flows back to the system from the environment. Based



[Author and title] 9

on this idea, one can define a measure for the degree of non-Markovianity in
a dynamical process as

N = max
ρ1,2(t0)

∫
σ>0

ds σ(s), where σ(t) =
dD(t)

dt
, (15)

and σ(t) is called the information flux. The optimisation over all pairs of
initial states makes the measure complicated to compute, although it has been
shown that the two states maximizing the measure are on the boundary of
the state space and orthogonal to each other [24]. Moreover, for some simple
dynamical maps the maximizing pair has been found [25, 26, 27].

This measure of non-Markovianity has been used extensively to study
non-Markovian phenomena (see, e.g., [28, 29, 30, 31, 32, 33, 34]), but it
is worth noting that other similar measures have also been introduced. A
generalization to continuous variable systems exists, where fidelity is used
instead of the trace distance to describe distinguishability of two evolving
states [10]. Lu, Wang and Sun measure information flux in terms of the
Fisher information [8]. In this scenario one tries to estimate a given quantity,
typically the phase of a state, after the state has been evolving under the
action of a dynamical map. A lower bound on the variance of this estimate
is given by the Fisher information, which decays monotonically when the
dynamical map is divisible. Again, one may define non-Markovian processes
as those that temporarily increase the Fisher information and integrate over
all intervals of positive information flux to give a number quantifying the
degree of non-Markovianity.

Rivas, Plenio and Huelga propose studying the dynamics of a bipartite
state comprising of the system evolving under the dynamical map of interest
and coupled to a stationary ancilla state [6]. The bipartite system is initially
in a maximally entangled state and when the dynamical map is divisible,
entanglement decreases monotonically. Temporary increase of the entangle-
ment can be interpreted as a non-Markovian effect, and an integration over
all such time intervals can be used as a measure of non-Markovianity. The
system-ancilla correlations can also be measured by mutual information, as
in Ref. [12]. Finally, in a similar spirit a very recent proposal studies the
non-monotonic behaviour of quantum and classical channel capacities, estab-
lishing a link between the non-Markovianity of a quantum channel and the
maximal amount of quantum or classical information it can transmit [13].

For the remaining part of the article we take the trace distance based
definition and measure (15) to be the figure of merit in our discussion on
non-Markovian phenomena, since it is easy to compute and has a clear and in-
tuitive physical interpretation. It is worth pointing out that for most models
considered in this article this definition exactly coincides with non-divisibility
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of the dynamical map.

2.5. Microscopic origin of non-Markovianity

With rigorous definitions of non-Markovianity at hand it is possible to
get a deeper understanding of the origin of memory effects. For example, for
certain classes of physical models, non-Markovianity can be traced back to
specific microscopic features of the model. This knowledge is fundamentally
important for reservoir engineering techniques, since it reveals exactly the
physical parameters that correspond to (non-)Markovian dynamics in specific
realizations of open system dynamics. This paves the way to controlling
the appearance and degree of non-Markovianity in these processes. In this
section we derive systematically a condition of the spectral density function
of a purely dephasing model to have non-Markovian dynamics [35]. It is
later shown how this condition relates to certain physical parameters in a
realization of the purely dephasing model.

Consder a general dephasing model describing the interaction between a
qubit and a bosonic reservoir [36, 37, 38]. The Hamiltonian for this model is

H = ω0σz +
∑
k

ωka
†
kak +

∑
k

σz(gkak + g∗ka
†
k),

where ω0 is the qubit frequency, ωk the frequenciey of the k-th reservoir
modes, ak (a†k) are the annihilation (creation) operators and gk describes the
coupling constant between the k-th reservoir mode and the qubit. In the
limit of a continuum of modes the coupling constants are replaced by the the
reservoir spectral density function

J(ω) =
∑
k

|gk|2δ(ωk − ω). (16)

This model admits an exact solution (see Refs. [36, 37, 38]) with con-
stant diagonal elements of the qubit and off-diagonal elements decaying as
ρij(t) = e−Γ(t)ρij(0), i 6= j. The dephasing factor describing this decay for
an environment in thermal equilibrium at temperature T is

Γ(t) = 2

∫ ∞
0

dω J(ω) coth [h̄ω/2kBT ] [1− cos(ωt)]/ω2, (17)

corresponding to a master equation of the form

dρ(t)

dt
=
γ(t)

2

[
σzρ(t)σz −

1

2
{σzσz, ρ(t)}

]
. (18)
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Here the time-dependent dephasing rate is

γ(t) =
dΓ(t)

dt
. (19)

It has been shown that for this dynamical process the pair of initial states
optimizing the measure of Eq. (15) is any pair of antipodal states on the
equator of the Bloch sphere [25, 26]. Without a loss of generality we may
choose the initial pair to be ρ1(0) = |+〉 〈+| and ρ2(0) = |−〉 〈−|, where
|±〉 = (|1〉 ± |0〉)/

√
2. For this optimal choice the distinguishability (which

for qubit states is half the Euclidian distance of the corresponding Bloch
vectors) is

Dopt(t) = e−Γ(t), (20)

leading to optimised information flux

σopt(t) =
Dopt(t)

dt
= −γ(t)e−Γ(t). (21)

The qubit dynamics is non-Markovian (σopt(t) > 0 for some interval of time)
if and only if the dephasing rate takes temporarily negative values, γ(t) < 0.
During these intervals the divisibility property is violated and information
flows from the environment back to the system as manifested in temporary
increase in the distinguishability of the initial states.

With the exact solution (17) in terms of the spectrum J(ω) at hand we
can formulate a condition for the spectral density to induce non-Markovian
dynamics of the qubit. A strictly positive dephasing rate corresponds to
monotonic dynamics of the dephasing factor Γ(t). Since the cosine transform
of a convex function increases monotonically, we can deduce that a sufficient
condition for Markovianity for this dephasing model is that the quantity

ξ(ω, T ) ≡ J(ω) coth [h̄ω/2kBT ] /ω2 (22)

is a convex function. Furthermore, this condition turns out to be also neces-
sary if we specify the study to the family of Ohmic spectra [2]

J(ω) =
ωs

ωs−1
c

e−ω/ωc , (23)

where ωc is the reservoir cutoff frequency and s is the so-called Ohmicity
parameter. The Ohmicity parameter determines if the spectrum is sub-Ohmic
(0 < s < 1), Ohmic (s = 1) or super-Ohmic (s > 1). For the Ohmic class of
spectra the dephasing rate can be calculated analytically in the zero-T and
high-T limits:

γ(t) =

{
ωc[1 + (ωct)

2]−s/2Ξ[s] sin [s arctan(ωct)] , T = 0

2kBT [1 + (ωct)
2]−(s−1)/2Ξ[s− 1] sin [(s− 1) arctan(ωct)] , high-T,

(24)
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where Ξ[x] is the Euler gamma function.
It is easy to check that γ(t) takes temporarily negative values, i.e., the

dephasing dynamics is non-Markovian, when s > 2 in the zero-T case, and
when s > 3 in the high-T case. Therefore the emergence of memory effects for
the Ohmic class of spectra comes from the interplay between the Ohmicity
parameter s and the temperature of the reservoir. There is always a threshold
value of the Ohmicity parameter scrit, depending on the temperature T , such
that when s ≤ scrit the dynamics is Markovian and when s > scrit it is
non-Markovian.

Interestingly, it can be shown for the zero-T and the high-T cases that
the quantity ξ(ω, T ) is non-convex exactly when the qubit dynamics is non-
Markovian. The intermediate-T case cannot be studied analytically, but
numerical studies confirm that transition of the dynamics from Markovian
to non-Markovian coincides exactly with the ξ(ω, T )-function turning from
convex to non-convex. Therefore it can be concluded that the convexity of
ξ(ω, T ) is a necessary and sufficient condition for Markovianity of the purely
dephasing qubit model, in the case of the Ohmic class of spectral density
functions. For more general classes of spectra the condition is guaranteed to
be sufficient, but the necessity has to be studied separately.

Physically the dephasing process can be understood as follows. The action
of the qubit on the environment is a state-dependent displacement operation
on each mode of the environment. The two states of the qubit excite each
mode with opposite phases and this leads to an overlap between the states
of the mode in each case. Destructive interference between excitations of a
mode at different times leads to recoherences at the frequency of that mode.
The balance between these two effects determines whether the dynamics is
Markovian or not. In the case of the Ohmic class of spectra, convexity of
ξ(ω, T ) not only guarantees that decoherence outweighs recoherence, but it
is required. This highlights the key role of the low frequency part of the
spectrum in the occurrence of information backflow for dephasing processes.

This section showed the existence of an explicit connection between the
emergence of memory effects in the purely dephasing dynamics of a qubit,
and the spectral density function characterising the dynamical process. More
generally non-Markovianity is often associated with structured reservoirs, i.e.,
models where the spectral density function J(ω) characterising the system-
environment coupling varies appreciably with frequency. For the Jaynes-
Cummings model, for example, the more structure the reservoir has (the
narrower in the Lorenzian spectrum of the cavity), the more pronounced are
the memory effects [27]. However, the connection between spectral densities
and non-Markovianity can be much more subtle, as is demonstrated in the
case of purely dissipative qubit dynamics, where the low frequency part of the
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|e⟩
|g⟩|l⟩ |r⟩

L

Model I: Double well qubit Model II: Atomic quantum dot

Fig. 1: Impurity atom (red dot) trapped in a double well potential (solid
line), surrounded by a Bose-Einstein condensed ultracold gas of a different
species (blue area) trapped in a shallow potential (dashed line).

spectrum determines the (non-)Markovian character of the system evolution.

3. Simulating non-Markovian processes with ultracold gases

The dephasing model of the previous section was introduced as a rather
abstract model. It was shown that the transition of this model from a Marko-
vian to a non-Markovian process can be controlled by choosing the spectral
density function appropriately. For the class of Ohmic spectra, for example,
it was shown that Ohmic and sub-Ohmic spectra will always result in Marko-
vian dynamics. Non-Markovianity is only observed for super-Ohmic spectra
with Ohmicity parameter s exceeding the critical value scrit = 2 for a zero-T
reservoir. If thermal effects are taken into account even higher values of the
Ohmicity parameter are needed to induce non-Markovianity.

It is natural to ask if there exists a physical scenario realizing this model,
and whether such a precise control over the Ohmicity parameter can be re-
alistically achieved. In this section we show that the model of the previous
section can indeed be simulated physically using a set-up of ultracold quan-
tum gases [39]. The model is experimentally realistic and, moreover, it can
be demonstrated that the effective Ohmicity parameter in this ultracold re-
alisation can be controlled to a very high degree in an experimentally feasible
way.

In this section we introduce the ultracold realization of the purely de-
phasing qubit model [30, 40, 41]. We unveil the mapping between the model
parameters and the physical quantities characterizing the ultracold gases.
Specifically we focus on the physical parameters that define the effective
Ohmicity parameter, and show how appropriate values of these parameters
allow a transition from Markovian to non-Markovian qubit dynamics. This
demonstrates how the ultracold gases simulate a fundamental non-Markovian
dynamical process.
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3.1. The model

Consider two ultracold gases of different species A and B trapped in
optical potentials VA(x) and VB(x), respectively. Potential VA(x) has a very
specific form: it consists of a row of deep double well potentials and the
ultracold gas of species A is assumed to be so scarce that only a single atom
occupies each double well (Fig. 3.). A single atom in the double well forms
a qubit system with the two qubit states represented by the occupation of
the atom in the left or the right well. Potential VB(x), instead, forms a
shallow trap for species B, which is then cooled to a Bose-Einstein condensed
(BEC) state. The BEC acts as an environment for the double well qubit,
or conversely, the atoms trapped in the double well are impurities in the
BEC. The two different species have a density-density interaction and the
Hamiltonian for this system is a sum of the Hamiltonians describing the
impurity atoms, the background gas and their interaction,

HA =

∫
dx Ψ†(x)

[
p2
A

2mA
+ VA(x)

]
Ψ(x),

HB =

∫
dx Φ†(x)

[
p2
B

2mB
+ VB(x) +

gB
2

Φ†(x)Φ(x)

]
Φ(x),

HAB =
gAB

2

∫
dx Φ†(x)Ψ†(x)Ψ(x)Φ(x), (25)

respectively. Here mA, Ψ(x) and VA(x) are the mass, field operator and the
trapping potential of the impurity atom, mB, Φ(x), gB = 4πh̄2aB/mB and
VB(x) are the mass, field operator, coupling constant and trapping potential
of a background gas atom and aB is the scattering length of the boson-boson
collisions. Finally, gAB = 4πh̄2aAB/mAB is the coupling constant of the
impurity-boson interaction where mAB = mAmB/(mA +mB) is the effective
mass.

After a series of approximations the total Hamiltonian can be shown
to take a form resembling that of Eq. (16). The derivation is not shown
here in detail. Instead we only sketch the important steps and refer the
interested reader to Ref. [39]. The impurity field operator is expanded in
terms of Wannier functions {φk} localised in the the two wells of the double
well potential. Assuming sufficiently deep wells both hopping and tunnelling
are suppressed, and the Wannier functions take a Gaussian form. We also
assume a weakly interacting background so that it can be treated in the
usual Bogoliubov approximation, neglect all terms that are quadratic in the
creation and annihilation operators of the Bogoliubov modes and assume that
the background gas is homogenous. The interaction Hamiltonian determining
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the qubit dynamics, up to a possible phase, is then

HAB =
gAB
√
n0

Ω

∑
k, p=L,R

n̂p ĉk

√
εk
Ek

∫
dx |φ(xp)|2eik·x +H.c. (26)

where n0 is the condensate density, Ω is the quantization volume, Ek =√
εk(εk + 2n0gB) is the Bogoliubov dispersion relation, εk = h̄2k2/(2mB)

is the dispersion relation of a non-interacting gas with k = |k|, and ĉk is
the Bogoliubov excitation operator. Operator n̂ is the number operator of
the impurities. When there is exactly one impurity atom in the double well
system n̂R = 1

2(1 + σz) and n̂L = 1
2(1− σz), where σz = |l〉 〈l| − |r〉 〈r|. The

two wells are spatially separated by distance L so that xR = xL − L.
The dynamics of a single qubit can be solved analytically [39]. Exactly

as in the decoherence model of the previous section, the qubit dephases with
ρij(t) = e−Γ(t)ρij(0), i 6= j. The decoherence factor specific to this set-up is

Γ(t) = 8g2
ABnD

∑
k

(|uk| − |vk|)2e−k
2σ2/2 sin2Ekt/2h̄

E2
k

coth
βEk

2
sin2(k · L),

(27)
where σ is the ground state parameter of the double well, |uk| and |vk| are the
k-th Bogoliubov modes and β = 1/kBT . Note that the decoherence factor is
explicitly dependent on the dimension of the BEC. This can be altered exper-
imentally by changing the relative strengths of the optical potential VB(x)
in the three axial directions. Stronger confinement in one axial direction
creates a flat pancake BEC with effective dimension two. Similarly strong
confinement in two axial directions creates an effectively 1-dimensional, cigar
shaped BEC.

Another experimentally feasible way of regulating the qubit dynamics
by changing the properties of the environment is provided by the Feshbach
resonances. This technique can be used to control the scattering length aB
of the background gas particles very precisely and enables an extrapolation
from a free background gas to an interacting background gas. The latter
regime is especially attractive from a fundamental perspective. Most studies
on open quantum systems focus on non-interacting environments and it is
interesting to see the effect of an interacting environment on the emergence
of non-Markovianity in the qubit dynamics.

Motivated by real experimental scenarios we consider a 87Rb-condensate
of density n3 = n0 = 1020m−3 and 23Na impurity atoms trapped in an optical
lattice with lattice wavelength λ = 600nm and trap parameter σ = 45nm.
The well separation is chosen to be L = λ/8. The impurity-boson coupling
is fixed by setting the corresponding scattering length to aAB = 55 a0, where
a0 is the Bohr radius. In the case of a 3D environment the boson-boson
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coupling frequency is g3D
B = 4πh̄2aB/mB but now we assume that the s-wave

scattering length of the background gas can be tuned from its natural value
aB = aRb ≈ 99a0 via Feshbach resonances. We explore a range of values of aB
consistent with the assumption of dilute gas and with the regime of weakly

interacting gases. The latter is a stronger condition, requiring
√
a3
Bn0 � 1.

As a consequence, we can tune the scattering length up to a maximum value
given by aB ≈ 3 aRb. The boson-boson coupling frequency is slightly modified
for lower dimensions. In the quasi-2D case the scattering length is still much
smaller than the axial length of the condensate, aB � az, and the coupling
term is modified to g2D

B =
√

8πh̄2aB/(mBaz) with 2D condensate density
n2 =

√
πn0az [42]. Within the limits of a dilute gas we can increase the

scattering length up to aB ≈ 2 aRb. The potential VB(x) can be also modified
to create a cigar-shaped quasi-1D background gas with transversal width a⊥.
The consequent coupling is g1D

B = 2h̄2aB/(mBa
2
⊥) and the 1D density is

n1 = n0πa
2
⊥, again provided that gas is weakly enough confined, aB � a⊥

[43]. In the quasi-1D regime diluteness of the gas allows at most aB < aRb.

3.2. Crossover from Markovian to non-Markovian

For a realistic set of parameters describing the ultracold gases there is at
most only a single period when the decay rate γ(t) = Γ′(t) is negative, signi-
fying non-Markovianity in the sense of both non-divisibility and information
backflow. This enables the use of a modified non-Markovianity measure

N =
e−Γ(b) − e−Γ(a)

e−Γ(0) − e−Γ(a)
, t ∈ [a, b]⇔ Γ′(t) > 0, (28)

which captures the ratio of information returning to the system during in-
terval a ≤ t ≤ b to the information lost from the system to the environment
in the previous interval 0 ≤ t ≤ a. Unlike the original measure of Eq. (15),
the modified quantifier (28) is bounded between zero (system only leaks in-
formation) and one (system regains all previously lost information) and is
therefore more meaningful as a number. The measure is now a function of
the decoherence factor of Eq. (27).

The non-Markovianity measure for the parameter values elaborated above
is shown in Fig. 3.1. in the case of a zero-T reservoir. In all three dimen-
sions the dynamics of the impurity qubit is Markovian for a free or a very
weakly interacting background gas, and non-Markovian for a sufficiently large
boson-boson interaction of the background gas. The specific critical value of
the boson-boson scattering length signifying the crossover from Markovian
(N = 0, aB ≤ acrit

B ) to non-Markovian (N > 0, aB ≥ acrit
B ) dynamics depends

only on the dimensionality of the BEC: acrit, 3D
B ≈ 0.034 aRb < acrit, 2D

B ≈
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Fig. 2: Top figure: Non-Markovianity measure N as a function of the scat-
tering length of the background gas aB when the background gas is three
dimensional (red dashed line), quasi-two dimensional (blue dotted line) and
quasi-one dimensional (black solid line) and T = 0K. The inset shows a
longer range of the scattering length aB/RRb. Bottom figures: The same for
T = 0.5nK and T = 100nK

0.122aRb < acrit, 1D
B ≈ 0.183aRb. This strongly indicates that the effective

Ohmicity parameter for the ultracold realization of the dephasing qubit dy-
namics is determined by the scattering length of the background bosons aB
and the dimensionality D of the BEC. Both quantities can be controlled in
the laboratory, allowing very precise reservoir engineering and control over
the degree of non-Markovianity in this process.

This analysis can be extended to a finite-T reservoirs, showing that the
qubit model here considered is robust enough against thermal fluctuations
to retain the crossover from Markovian to non-Markovian dynamics for ex-
perimentally realistic temperatures. Only at higher temperatures of about
T = 100 nK the thermal fluctuations start washing out non-Markovian ef-
fects, turning the qubit dynamics Markovian. Resilience against thermal
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fluctuations and the ability to create non-Markovian dynamics with a suit-
able dimension of the BEC combined with a strong enough boson-boson
interaction is a feature characteristic to the double well qubit architecture,
as can be shown by comparing the double well model to an atomic quantum
dot model.

3.3. Comparison to AQD
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Fig. 3: Model of an atomic quantum dot and its non-Markovianity measure
as a function of the the background scattering length aB/aRb for a zero-T
reservoir (solid black line) and a T = 10nKreservoir (solid gray line). Dashed
black line shows for comparison the non-Markovianity of the double well qubit
in a zero-T reservoir.
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Fig. 4: The decoherence function Γ(t) for the double well qubit (solid lines)
and the atomic quantum dot model (dashed lines) for (a) one-dimensional,
(b) two-dimensional and (c) three-dimensional BEC environments and for
background scattering length values aB = 0.25aRb (black lines) and aB =Rb

(gray lines).

The double well architecture is only one way to realize the pure dephasing
model using ultracold gases. A model proposed in Refs. [44, 45] replaces the
double well qubit with a single impurity atom trapped in a deep harmonic
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potential and takes two internal states of the atom as the qubit states (See
Fig. 3.3.). Otherwise the set-up is identical to the model already presented.
This model is referred to as the atomic quantum dot and its total Hamilto-
nian is also given by Eq. (25). With the same assumptions as approximations
as before the impurity-environment interaction Hamiltonian and the corre-
sponding decoherence factor for the atomic quantum dot model are found to
be (see Refs. [44, 45] for a detailed derivation)

HAB =
gAB
√
n0

Ω

∑
k

n̂ ĉk

√
εk
Ek

∫
dx|φ(x)|2eik·x +H.c.,

Γ(t) =
g2
ABn0

Ω

∑
k

e−k
2σ2/2 εk

Ek

sin2(Ekt
2h̄ )

E2
k

. (29)

The similarity between these expressions and those of the double well qubit
model is significant. However note that the latter depends on the spatial
separation between the two wells of the double well. It turns out that this
spatial separation has a crucial impact on the non-Markovian dynamics of
the dephasing model.

Figure 3.3. shows the dynamics of the decoherence factor for the two dif-
ferent qubit models. In the cases of two and three dimensional environments
the decoherence factors evolve in a similar way, but for the quasi-1D BEC
there is a striking dissimilarity in the dephasing process; the double well qubit
is almost unaffected by environmental noise (decoherence factors converges
quickly to a very small value), while the atomic quantum dot dephases com-
pletely (decoherence factor grows without bound), tending to a maximally
mixed state. Moreover, the non-Markovian properties of the two models,
manifested as non-monotonic dynamics of the decoherence factor, are very
different. Dynamics of the atomic quantum dot is Markovian in the quasi-1D
and quasi-2D cases and only when the environment is a three dimensional
BEC we are able to find a critical value of the scattering length such that
there is a crossover from Markovian to non-Markovian dynamics. This is in
stark contrast with the double well model which has the crossover in all three
dimensions. Moreover, non-Markovian effects in the dynamics of the atomic
quantum dot model are not robust against thermal noise. As shown in Fig.
3.3., a temperature which slightly reduces the amount of non-Markovianity
in the dynamics of the double well model washes out all memory effects for
the atomic quantum dot.

3.4. Spectral density function

The crossover from Markovian to non-Markovian dynamics for pure de-
phasing dynamics can be traced back to the behaviour the spectral density
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function, as discussed in Sec. 2. 5. Indeed, the differences between the to dif-
ferent physical models of qubit dephasing presented here become transparent
when we analyze their spectral density functions. Moreover, a comparison
of the two spectra contributes in an interesting way to the discussion on the
connection between structured spectra and non-Markovian dynamical pro-
cesses. The differences between the spectral density functions of the double
well qubit model and the atomic quantum dot model underline the immense
importance of the of the low-frequency part of the spectral density function
for dephasing processes.

The form of the spectral density functions for the physical realizations of
the dephasing model are generally more complicated than the phenomenolog-
ical spectrum (23) of the general dephasing model. The low frequency part
of each spectra, however, is well approximated by an Ohmic type dependence
on the frequency,

J(ω) ∝ ωseff . (30)

The effective Ohmicity parameter seff depends on the model parameters and
turns out to be especially sensitive to the dimensionality of the BEC envi-
ronment and the boson-boson scattering length aB; increasing either of these
experimentally controllable parameters increases the value of seff (See Fig.
5). Crucially, with suitable choice of parameters the value of seff is sufficiently
large to induce non-Markovian effects, exactly as in the general dephasing
model. For both qubit models in a zero-T environment the parameters lead-
ing to seff correspond to the qubit dephasing in a non-Markovian way. When
thermal effects are taken into account, a larger threshold value has to be
reached. For a given set of parameters the value of seff for the double well
qubit is always larger than for the atomic quantum model, explaining why
the former model is more non-Markovian than the latter.

As conjectured before, it is the low frequency part of the spectral density
function that dictates whether the dynamics of the system is Markovian or
not. The extent of this statement becomes evident when we look at the whole
spectrum in Fig. 5. The spectral density function of the double well qubit
model has a very rich structure over the whole range of relevant frequencies,
especially in the case of a 1D environment. Contrary to the typical idea that
structured spectra are associated to non-Markovian effects, for dephasing
dynamics this structure has no effect on the non-Markovianity. If seff < scrit,
as determined by a small enough scattering length aB, the qubit dynamics
is still Markovian despite the rich structure over the whole range of relevant
frequencies. This result highlights the importance of the low frequency part of
the spectrum in the emergence of non-Markovian dynamics and emphasizes
the difference between pure dephasing dynamics and models such as the
driven qubit or the Jaynes-Cummings model, where structures spectra can
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be associated to memory effects.

4. Non-Markovian quantum probes

The archetype of open quantum systems, i.e., a small system of interest
interacting with a larger environment, lends itself to an alternative viewpoint.
If we are interested, instead, in the larger system, can we infer some of its
properties by studying the smaller system? In this picture the smaller system
acts as a probe of the larger system. Evolution of the probe system is dictated
by the properties of the environment and the way the two are coupled, and
with a suitable set-up a given property of the environment can be exposed
by some feature in the evolution of the probe. In a best-case-scenario this
property can be studied without significantly affecting the larger system, in
the spirit of making a non-destructive measurement of the environment. In
this section we explore this question first in a general setting, and then by
focusing on two different physical models.

4.1. Non-Markovianity and Lochmidt echo

Consider once again a purely dephasing open system model, where a qubit
is coupled to a complex many-body environment via an interaction term HI

[31]. Assume an initially factorized composite state

ρSE(0) = |φS〉〈φS | ⊗ ρE(0) (31)

with a pure initial system |φS〉 = cg|g〉+ce|e〉, |cg|2 + |ce|2 = 1. The evolution
of the environment is consequently split into two branches with weights given
by the qubit coefficients cα, α = g, e so that in each branch the environment
Hamiltonian HE is replaced by an effective Hamiltonian

Hα = HE + 〈α|HI |α〉 . (32)

Here the latter term represents the action of the qubit on the environment
described by the interaction Hamiltonian. Tracing over the environmental
degrees of freedom we find that the qubit evolves as

ρS(t) = |cg|2|g〉〈g|+ |ce|2|e〉〈e|+ c∗gce ν(t)|e〉〈g|+ H.c., (33)

where ν(t) is the decoherence factor. When also the initial environmental
state is pure, ρE(0) = |Φ〉〈Φ|, the decoherence factor is simply the overlap
between perturbed environmental states of the two branches

ν(t) = 〈Φ|eiHgte−iHet|Φ〉. (34)
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The square modulus of the decoherence factor

|ν(t)|2 = L(t) (35)

is a quantity knows as the Loschmidt echo. Loschmidt echo describes the
stiffness of a many-body system to external perturbations and it emerges in
many interesting fields of study [46]. In the context of chaotic systems, for
example, the Loschmidt echo is used to study the sensitivity of dynamics on
the initial state. It also characterizes the ability of a system to return to its
initial state after imperfect backwards evolution, thus having consequences
on the study of time reversal. Indeed, the concept of Loschmidt echo was
originally coined after extensive discussions between Loschmidt and Boltz-
mann on the origin of macroscopic irreversibility.

In this case we obtain the Loschmidt echo of the many-body environment
directly from the qubit evolution. Furthermore, information flow between the
system and the environment is determined by the Loschmidt echo. More ex-
plicitly, the pair maximizing the measure of non-Markovianity for dephasing
noise is again a pair of antipodal states on the equator of the Bloch sphere
and for this optimal pair the distinguishability is

Dopt(t) =
√
L(t). (36)

The distinguishability is a monotonic function of the Loschmidt echo and
hence any non-monotonic behavior of the Loschmidt echo immediately indi-
cates a reversed information flux (σopt(t) > 0). This gives a neat expression
for the measure of non-Markovianity in terms of the Loschmidt echo:

N =
∑
n

√
L(bn)−

√
L(an), (37)

where [an, bn] are the time intervals over which L′(t) > 0 and L(an) and L(bn)
are the local minimum and maximum, respectively, of the Loschmidt echo.
The utility of this simple connection between the non-Markovianity measure
and the Loschmidt echo becomes transparent when the environment is a
critical system.

4.2. Ising model in a transverse field

Ising model in a transverse field is a prototype of a quantum critical
system [47]. This simple and intuitive model comprises of a 1D chain of
spins with nearest neighbour interactions, characterized by parameter J , and
under the influence of a transverse magnetic field with interaction strength
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λ. The Hamiltonian for this system is

HIsing = −J
N∑
j=1

σzjσ
z
j+1 + λσxj . (38)

In the limit of λ � J the system has a doubly degenerate ferromagnetic
ground state, where all the spins point in a single direction, either up or
down. In the opposite limit λ � J the magnetic field dominates the spin-
spin interactions and the system has a paramagnetic ground state with all
the spins polarized in the direction of the magnetic field. When the two
competing effects balance, λ = J , the transverse Ising model undergoes a
second order quantum phase transition.

The phase transition of the transverse Ising model can be probed with
a central spin which couples to all the spins in the Ising chain with equal
strength δ [48]. The interaction Hamiltonian is then

HI = δ|e〉〈e|
N∑
j=1

σxj . (39)

Inserting this interaction into Eq. (32) shows that the central qubit splits
the evolution of the transverse Ising model into two branches. In the branch
corresponding to the qubit in the ground state the Ising chain evolves ac-
cording to Hamiltonian (38), while in the other branch the strength of the
magnetic field is replaced by an effective value λ∗ = λ + δ; the presence of
the qubit effectively increases the impact of the transverse field by a small
quantity δ. Close to the critical point this small perturbation is enough to
significantly alter the dynamics of the Ising chain, which is reflected right
back to the dynamics of the central probe qubit.

It has been shown previously that the decay of the Loschmidt echo is
strongly enhanced around the critical point [48]. The hyper-sensitivity of
the Loschmidt echo to the critical point translates in a striking way to the
non-Markovianity measure (37) of the central qubit. (Again we omit the
straightforward but lengthy calculation, preferring to focus on the physical
implications of the final result. An interested reader is referred to Ref. [31] for
details.) It should be noted that since the Loschmidt echo of the transverse
Ising model does not have an analytical expression in the thermodynamic
limit, we can only study the non-Markovianity measure for a finite number
of environment spins. Consequently the echo will always have revivals aris-
ing from finite-size effects and the qubit dynamics is trivially non-Markovian.
Fortunately in many cases it is possible to distinguish different physical phe-
nomena happening on different time-scales, e.g., in this case the revivals due
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to finite-size effects and the revivals due to the structure of the environment.
In Fig. 4.2. the time-integration of the non-Markovianity measure has been
truncated to a time smaller than the expected reoccurrence time and hence
the measure captures revivals due to information flowback.

A plot of the non-Markovianity measure for various values of the effective
field λ∗ and number of spins N in the Ising chain is shown in Fig. 4.2.. When
the magnetic field is tuned in such a way that the Ising model is not at the
critical point, the dynamics of the central qubit is always non-Markovian
and at least a small amount of information returns temporarily from the
environment to the system. The closer the Ising model is to the critical
point, the less information is returned to the system. However, it is only at
the critical point when the information flow is unidirectional. An especially
interesting feature is the independence of the result N = 0 on the size of
the environment. It can therefore be concluded that the non-Markovianity
measure has a strong imprint of the quantum phase transition of the Ising
model, even for a finite-sized environment. Indeed, N has the remarkable
property of being able to pinpoint the critical value of the transverse field
away from the thermodynamic limit where the quantum phase transition
truly takes place. This means that the centrally coupled qubit can be used
to probe the quantum phase transition of the Ising model in a transverse
field.

4.3. Coulomb chain

The ability of a probe qubit to pinpoint the quantum phase transition
of its environment is not unique to the model introduced above. The non-
Markovianity measure characterizing the dynamics of a probe qubit can also
be used to indicate the phase transition of a many-body system, as sketched
in this section.

The system in question is a Coulomb chain of repulsively interacting ions
in an anisotropic trap with a large transverse confinement and cooled to very
cold temperatures where quantum fluctuations dominate the system proper-
ties. With sufficiently strong confinement in the transverse direction the ions
form a linear array. If the transverse confinement is reduced or the density
of the ions in the chain is increased, the chain undergoes a structural phase
transition to a zigzag structure. The precise nature of the structural linear-
zigzag phase transition is still unresolved, but there is increasing evidence
that it is a quantum phase transition [49], and of the same universality class
as the transverse Ising model [50].

It has been proposed that this structural phase transition can be observed
using Ramsey interferometry on one of the ions in the Coulomb chain [51].
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In this scheme a transverse laser excites the modes of the Coulomb chain
and the ion is left to evolve freely with the rest of the chain. After a time
t a second laser pulse of the opposite direction is imposed on the probe
ion, and the ground state probability Pg(t) is then measured. The ground
state probability now depends on the properties of the external degrees of
freedom, namely the state of the Coulomb chain, and its evolution is distinctly
different for a chain in the linear configuration and for a chain in the zigzag
configuration.

The Ramsey interferometry scenario readily admits an open system pic-
ture where the two internal degrees of freedom of the ion excited in the
Ramsey sequence play the role of a qubit and the excitation modes of the
kicked Coulomb chain are the environmental degrees of freedom. The dy-
namical map describing the dynamics of the qubit system is very complex,
including the effect of the two laser pulses of the Ramsey interferometry and
the intermediate unitary evolution of the Coulomb chain.

For this dynamical map the pair of states maximising the non-Markovianity
measure has to be resolved numerically since an analytical result for com-
plicated dissipative dynamics is not known. Compelling numerical evidence
indicates that the maximizing pair is the same as for the dephasing model,
namely an antipodal pair of states on the equator of the Bloch sphere with an
equal superposition of the two states (|e〉 ± |g〉)/

√
2. Interestingly, this pair

of states is not affected by dissipative dynamics and undergoes pure dephas-
ing dynamics only, making the situation intriguingly similar to the transverse
Ising model probed by a centrally coupled qubit. The distinguishability of the
optimal pair of states and the consequent non-Markovianity measure depend
explicitly on the visibility of the Ramsey interferometry signal, a quantity
reminiscent of the Loschmidt echo describing the evolution of the overlap of
two environment states.

The sensitivity of the environment to perturbations close to the criti-
cal point, now measured by the visibility, is again manifested in the non-
Markovian character of the probe qubit. However, the relationship between
the criticality of the Coulomb chain and the non-Markovianity measure is
more complex than in the case of the transverse Ising model. In particular,
there is now a greater sensitivity to the time truncation in the integration of
the BLP measure, as shown in Fig. 4.3.. For short evolution times the non-
Markovianity measure has a distinct minimum at the critical point. Unlike
in the case of the transverse Ising model the measure does not go to zero at
the critical point indicating a total inhibition of information backflow, but
nonetheless the reversed flow of information is clearly suppressed.

If the truncation is made after a longer period of time, the dependence
of the non-Markovianity measure on the deviation from criticality is rather
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different: now the measure has a maximum at the critical point (See Fig. ??).
This is explained by a specific feature of the long-time dynamics, namely the
system coupling dominantly to only a single ”soft” mode of the environment.
Coupling to only a single environment mode creates a strong interaction
between the mode and the probe qubit leading to considerable bidirectional
information exchange and a high value of the non-Markovianity measure.
This effect is enhanced the closer the system is to the critical point, explaining
why the measure has a maximum at the critical point.

5. Outlook and conclusions

In this review we have seen examples of the potential use of non-Markovianity
of an immersed quantum probe to extract information on the complex system
they are interacting with. We have seen that a two-state impurity immersed
in a Bose-Einstein condensate undergoes Markovian or non-Markovian dy-
namics depending on the strength of the interaction between the atoms of the
condensate, and we have explained how, by changing the scattering length
of the condensate, one can observe the transition from Markovian to non-
Markovian dynamics. As this crossover uniquely depends on the dimension-
ality of the gas, one can infer the transition from a 3D to a quasi-2D to a
quasi-1D condensate simply by measuring the probe. We have then quan-
titatively linked non-Markovianity to the Loschmidt echo and seen how the
former quantity vanishes exactly and only at quantum phase transition for
the Ising model in a transverse field. In the Ising model example we consider
chains of spins subjected to nearest neighbour interactions. In comparison
to the other example considered, the ion crystal, each ion experiences long-
range interaction. By changing the trapping potential the ions undergo a
structural phase transition from a linear to a zig zag configuration. Also here
the non-Markovianity measure is an indicator of the occurrence of a phase
transition.

All the case-studies considered here seem to indicate that it is indeed
possible to extract quantum information on a complex system by means of
a quantum probe and, in some cases, non-Markovianity is a good quantifier
for such a purpose. There are however a number of open questions that wait
to be answered. A general theory investigating the advantages and possible
limitations of quantum probes is presently missing, as well as a clear under-
standing of the potential of multiple local quantum probes versus entangled
quantum probes. The use of quantum probes may be of particular importance
for verifying quantum simulations. By definition, specific-purpose quantum
simulators allow for the emulation of quantum systems whose dynamics or
general properties cannot be studied with classical computers. Hence, in
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many cases, one cannot verify the correctness of their result. However, there
should be ways of increasing the confidence in the result of the simulation.
Most of the existing measurements on ultracold gases either destroy the phys-
ical system performing the simulation, e.g., a Bose lattice or, by the very act
of observing the many-body system, inevitably project a quantum superpo-
sition or entangled state into its corresponding statistical mixture, therefore
deleting its quantumness. A way to overcome this problem, in principle, is
to avoid a direct measurement of the many-body quantum simulator by de-
tecting its properties in an indirect way by means of a quantum probe. If the
conditions for efficient quantum probing are satisfied, then we will be able to
map properties of the quantum simulator onto the quantum probe dynam-
ics and extract this information without destroying the quantum simulator
itself.

While much remains to be done to lay the foundation of a theory of
quantum probes for complex systems, we are convinced that such a theory
would lead to a paradigm shift in the way we currently think of quantum
measurements.
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Fig. 5: Spectral density functions J(ω) for the double well model (solid lines
in all figures) and the atomic quantum dot model (dashed lines in all figures)
in a (a) one-dimensional, (b) two-dimensional and (c) three-dimensional en-
vironment. Left hand side figures show the full spectrum, and the figures
on the right show the low-frequency contribution. In the latter we show the
spectrum for a weakly interacting background gas with aB = 10−3aRb (black
lines) and for a BEC with aB = aRb (gray lines).
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Fig. 6: Non-Markovianity measure N as a function of the particle number
N and the renormalized field λ∗.

- 0.03 0 0.03

0.06

0.1

0.14
(b)

∆

N

0 20 40 60 80 100

0.85

0.90

0.95

1.00 (a)

τ

D

∆

τ

D

1.0 0.5 0 0.5 1.0 10
7

0.12

0.14

0.16

0.18 (b)

∆

N

0 500 1000 1500 2000

0.80

0.85

0.90

0.95

1.00
(a)

τ

D

N

Fig. 7: Left: Non-Markovianity measure N of the Coulomb chain for short
time-scale truncation as a function of ∆ = νt/νc − 1 for N = 100 (blue solid
line) and N = 1000 (green dashed line). νt is the tuning parameter and
νc its critical value, i.e., ∆ quantifies the distance from the critical point.
Right: Non-Markovianity measure N of the Coulomb chain for long time-
scale truncation as a function of ∆ for N = 300.
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