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Abstract

We provide a further analysis of the class of positive maps proposed ten years ago by Kossakowski.
In particular we propose a new parametrization which reveals an elegant geometric structure and an
interesting interplay between group theory and a certain class of positive maps.

Dedicated to Andrzej Kossakowski on his 75th birthday

1 Introduction — a diagonal type positive maps

Ten year ago in a remarkable paper [I] Kossakowski provided a construction of a family of positive maps in
matrix algebras M,,(C). This construction reproduces many examples of positive maps already known in
the literature. The maps from [I] belong to the following class: let {eo, ..., e,—1} denotes an orthonormal
basis in C™ and let E;; := |e;)(e;|. Consider the linear map A : M, (C) — M,,(C) defined as follows

n—1
A(Ei) = Z aijEj; . MEiyj)=—Eyj, i#j. (1)
=0

where a;; provides a set of complex parameters. In what follows we call the above maps diagonal type
maps, since only diagonal elements E;; are transformed in a non-trivial way. A map A is Hermitian, i.e.
[A(X)]T = A(XT) iff a;; € R. The basic question one poses is:

what are conditions for a;; which guarantee that A is a positive map.

It is clear that a necessary condition is that all matrix elements a;; > 0. Observe, that n x n matrix
A = [a;;] with matrix elements [a;;] > 0 may be considered as a “classical” positive linear map A : R" —
R™. Therefore, formula (I]) provides a construction of a “quantum” positive map A out of the “classical”
map A if “classical” conditions a;; > 0 are completed by a set of suitable “quantum” conditions. This
problem is easily solvable for n = 2. One proves the following

Proposition 1. Ifn =2, then A is positive if and only if a;; > 0 and

Vagoai1 ++/apiao > 1. (2)
Moreover, A is completely positive if and only if a;; > 0 and apoair > 1.

The prescription (Il) for A is so simple that it seems that for n > 2 the corresponding additional
conditions for a;; are easy to find. Surprisingly, it is not the case and starting with n = 3 the general
problem is open. We stress that there is an essential difference between n = 2 and n > 2. For n = 2 all
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positive maps are decomposable. It is no longer true for n > 2. And there are well known examples of
indecomposable maps belonging to a general family ().
Let us recall that a map A is positive iff for all rank-1 projectors P and @

tr[PA(Q)] >0 . (3)

Taking P = |z)(x| and @ = |y)(y| one has (z|A(Jy)(y|)|z) > 0 for all z,y € C". Using this definition one
may prove the following

Theorem 1 ([5]). A map A defined in ([{D) is positive if and only if a;; > 0 and for all vectors z € C*

Bi(z) = )
where

Bi(x) = |z[* Za”|x3| : (5)
Moreover, A is completely positive if and only if the matric D = [d;;] such that d;; = —1 for i # j and
di; = ay; s positive semi-definite.

We stress that an inequality (]) does not provide a solution to our problem. It is just a reformulation
of the original definition of positivity for the special class of maps! One may easily check that for n = 2
an inequality (@) reproduces condition ([2). However, for n > 2 we do not know how to translate the
above inequality into the closed set of conditions upon the matrix elements a;;.

2 Circulant matrices

Consider now a special case when a,; defines a circulant matrix, i.e. a;; = o;—; (mod n). Actually,
many well known examples of positive maps belongs to such class (e.g. reduction map, Choi map and its
generalizations). We assume that «y > 0 for k = 0,...,n — 1 and we denote the corresponding map by
A[ao, ey an_l].

Example 1. For n =2 denoting agy = a11 = o =: a and agy = a19 = oy =: b formula (@) reduces to
a+b>1. (6)
Recall, that a =0 and b =1 corresponds to the reduction map Rao(X) = Iptr X — X.
For a circulant matrix Theorem [I] reduces to the following

Proposition 2. A map Alay,...,a,—1] defined in [d) is positive if and only if for all vectors x € C™

n—1

> 1

= (o + 1)l + Xpoy anlzie]?

|5171|2

(7)

Moreover, A is completely positive if and only if ag > n — 1.

An inequality () is known as circulant inequlity [6]. In particular taking |xg| = ... = |2,_1] one finds
the following necessary condition for positivity of A

ag+oay+...Fap_1>n—1. (8)

Note, that the above condition is necessary but not sufficient. Actually, it is sufficient only for n = 2
(see Example[]). For n = 3 a full class of parameters oy = a, a; = b and as = c¢ satisfying circulant
inequality (7)) was derived in [4].



Theorem 2. ([J]) For n =3 a map Ala,b,c| is positive if and only if

1.a+b+c>2,

2. ifa <1, then bc> (1—a)?.
Moreover, being a positive map it is indecomposable if and only if

4be < (2 —a)? . 9)

A is completely positive if and only if a > 2.

Hence, for n = 3 a necessary condition a + b + ¢ > 2 is supplemented by an extra condition 3.
Corollary 1. If a > 1, then condition (8) is necessary and sufficient for positivity of Ala, b, c].

Remark 1. Forn > 3 a full set of necessary and sufficient conditions for positivity of A|ag, ..., an—1]
is not known.

3 Kossakowski construction

Let us define a set of Hermitian diagonal traceless matrices

£—1
1
Fj=—— Eu, —CEw), (=1,....n—1. 10
’ WH)(;O o — () (10)

These matrices span the Cartan subalgebra of su(n — 1). Moreover, tr(F,Fg) = dop. Define a real n x n

matrix
n—1
n—1

aij = ——+ > (eil Falei) Ragle;| Fales) (11)
a,B=1

where R,p is an (n — 1) x (n — 1) orthogonal matrix. Consider now a linear map A defined by () with
a;; defined by (II]).

Theorem 3 ([I]). For any orthogonal matriz Rap a linear map A is positive.

Remark 2. Actually Kossakowski provided more general construction [1]. However, in this paper we
restrict our analysis to the special class of diagonal type maps corresponding to (I1).

Due to the fact that F,, is traceless for « = 1,...,n — 1, one finds

n—1 n—1
Zaij:Zaij:n—l. (12)
i=1 j=1

Moreover, since matrix elements a;; > 0 (it follows from Theorem [B)) one finds that

- 1
Q5 = maij , (13)

defines a doubly stochastic matrix.

Remark 3. A map A= ﬁ A is unital trace preserving.

Consider now an inverse problem: suppose we are given a n X n matrix [a;;] such that [a;;] is doubly
stochastic. How to check whether a;; is defined via (II))? The answer is given by the following



Proposition 3 ([5]). A matriz [a;j] can be represented by (1) if and only if

n—1
Z ik = 0i +n —2, (14)
k=0
for i,j=0,...,n—1.
Define
bij = Qg — 1 5 (15)
that is,
n—1 1
bij = (eil Fales) Rapej| Fsles) — — (16)
a,B=1

One easily proves

Proposition 4. A matriz [a;;] satisfies {I7) if and only if matriz [b;;] satisfies

n—1
Z bikbjk = dij (17)
k=0

for i,j=0,...,n—1, i.e. [b;] is an orthogonal matriz.
Note, that if [b;;] defines an orthogonal matrix, then |b;;| <1 and hence a;; = b;; +1 > 0.

Corollary 2. A map A defined in (1)) is positive if the corresponding b;; defines n x n orthogonal matriz

such that . .
D b= by=-1. (18)
i=0 =0

It is clear that formula (8] provides an embedding of O(n — 1) into O(n), i.e. an orthogonal matrix
R, from O(n — 1) is mapped into an orthogonal matrix b;; from O(n).
Now, we provide a geometric interpretation of Kossakowski construction. Let {b(o), e 7b("_l)} be

an orthonormal basis in R™ such that 1
b® )= —— 19
( ) e) \/ﬁ ) ( )

where (a, b) denotes the canonical inner product in R and

Let us define .
bij == by) . (21)

Clearly, [b;;] defines an orthogonal matrix. Moreover, ([9) guarantees (IS]).

Corollary 3. Any Kossakowski map is uniquely defined by an arbitrary orthonormal basis {b(®), ... b=}
satisfying (19).

Corollary 4. If [by;]| defines a Kossakowski map, then [bi.(;y] defines another Kossakowski map for an
arbitrary permutation ™ € S,.



Let ¥ denote an (n — 1)-dimensional hyperplane in R™ orthogonal to vector e. Let {f(1), ... f(»=1}
be an arbitrary orthonormal basis in ¥e. An example of such a basis is provided by

£ = (e;|Fales) (22)

where F,, are defined in ([[0). Clearly, {f(©) := e, £, ... £(»=D} defines an orthonormal basis in R”. Con-
sider now an orthogonal operator R such that its matrix representation in the basis {f(o), £ f("_l)}
has the following form

Roo = —1 s Ror =R =0 R Rij = Rij . (23)

It is clear that R represents rotation (or pseudo-rotation) around e.

Proposition 5. Let [b;;] be the matriz representation of R in the canonical basis in R™. Then b;; satisfy

(3.

Proof: denote by {eo,...,e,—1} the canonical basis and let
) n—1
f(z) = Z Sl-jej . (24)
j=0
One has
b=STRS . (25)
and hence
n—1 n—1 n—1

n—1 n—1
= D SkRuS, = Z SoR00S0; + Y Y SaiRapSjs = — (26)

k,l=0 i=0 a,f=1 i=0

> by
1=0
due to

1 n
Soi = — , Sei=0, i=0,1,....n—1; a=1,...,n—1. (27)
AP

In particular if f(*) are defined via ([22)), then (23] reproduces (I8).
Consider now the following symmetric set of n vectors {g(?),...,g(»= D} in ¥, defined by:

1. they have the same length,

2. the angle ‘¢,,” between arbitrary two vectors is the same.

One proves that

1
y = ——— . 28
cos ¢ — (28)
Remark 4. Actually, a set of n vectors {g(o), .. .,g("_l)} in R"~1 satisfying the above conditions is
called an equiangular frame [7].
Proposition 6. Vectors
p) = g _ Lo

N
such that |gW|?> =1 — L, define an orthonormal basis in R™ and satisfy (I9).
Consider now a special case when the matrix [a;;] defined in (II]) is circulant. Formula (I2) implies
at...tap1=n—1. (29)

In this case Proposition [ reduces to



Proposition 7. A circulant matriz a;; = o;—; satisfies (17) if and only if

n—1
Z Qg =0 +n —2, (30)
k=0
for i,j=0,...,n—1.
Introducing
Bi=a;—1, (31)
one finds
Bo+ ...+ Bn1=-1, (32)
together with
n—1
> BickBiok =0y , (33)
k=0
for 4,5 =0,...,n — 1. Clearly, b;; = B;—; defines a circulant orthogonal matrix satisfying an additional

constraint (B2)).

4 Examples
Example 2. For n =2 one has Fi = % 0, and R = +1, and hence one easily finds
R=1 — [aij]:]lg; R=-1 — [aij]:O'x. (34)
Example 3. Forn =3
1 1 0 0 1 1 0 0
FiF=—| 0 -1 0 ;o Fo=—1 0 1 0 , (35)
V2 0 0 O V6 0 0 -2
and
B cos¢ sing
[Ras] = ( —sing cos¢ ) ' (36)
Interestingly, in this case one finds that the matriz [a;;] is circulant. Denoting a := ago,b := ap1 and
c:= ags one obtains
2
a = §(1+cos¢) ,
1
b = g(2-COS¢-\/§Sin¢) , (37)
1
c = 5(2 — cos ¢+ V/3sing) .

Let us observe that introducing a = a — 1,5 =b—1 and ¢ = ¢ — 1 the above family of maps is uniquely
characterized by a circulant orthogonal matrix

a b ¢
bis]=1 ¢ @ b , (38)
b ¢ a



witha+b+¢= —1. Interestingly, the well known maps: Choi maps A[1,1,0], A[1,0,1] and the reduction
map A[0,1,1] have the following representation in terms of the matriz [b;;]:

0 0 -1 0 -1 0 -1 0 0
1 0 0 | ; 0o o0 -1 |; 0 -1 0
0 -1 0 -1 0 0 0 0 -1

: (39)

that s, up to a sign they correspond to circulant permutation matrices.

Remark 5. Forn =2 and n =3 all Kossakowski maps are characterized by a circulant matriz [a;;]. It
is no longre true for n > 3.

Remark 6. Let us observe that parameters a,b, c defined in ([37) are compatible with Theorem[2 Note,
that maps defined via [37) belong to the boundary of a set of positive maps defined by two equalities in
conditions 1. and 2. of Theorem[2, that is,

a+btc=2; be=(1—-a)?. (40)
Detailed analysis of the structure of these maps was performed in [2].

Example 4. For n =4 one has the following circulant orthogonal [b;;] matriz: @ = bgo, b= bo1, ¢ = boz
and d = bos satisfying

a+b+c+d=-1. (41)
Orthogonality conditions imply
PP +E+d* =1, ac+bd=0, @+e)(b+d) =0. (42)
Therefore, we have two classes of admissible parameters {a, 37 c, J} constrained by
a+b+c+d=-1, P+ +F+d*=1, b+d=0, (43)
and _ _ B B
aG+b+c+d=—-1, A®+*+E+d*=1, a+c=0, (44)
Equivalently, the above conditions may be rewritten as follows
P4+ +E+d =1, a+c=-1, b+d=0, (45)
and _ B o
P+ +E+dP=1, a+¢c=0, b+d=-1. (46)

They describe two circles: the intersection of 8D sphere with two planes. Again, characteristic well known
maps A[1,1,1,0],A[1,1,0,1],A[1,0,1,1] and A[0,1,1,1] (up to a sign) correspond to circulant permutation
matrices:

0 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 0
-1 0 0 0 0 0 0 -1 0 0 -1 0 0 -1 0 0
0 -1 0 0 | -1 0 0 0 ’ 0 0 0 -1 ’ 0 0 -1 0
0 0 -1 0 0 -1 0 0 -1 0 0 0 0 0 0 -1

Example 5. For n = 5 one has the following circulant orthogonal [b;;] matriz: @ = boo, b= bo1,
¢ =boa,d = boz and € = boy satisfying
a+b+c+d+e=-1. (47)
Orthogonality conditions imply
P+ +E+d+E =1, ac+ba+cb+di+ed=0. (48)
One easily checks that the remaining orthogonality conditions are not independent from ({7) and ({Z8).
The corresponding set of admissible parameters {a,b,¢,d, e} is 2-dimensional but its shape is not very

transparent [{7) and (48).



5 Circulant case — a complementary parametrization

Let us recall that if a;; = a;—; defines a circulant matrix, then its eigenvalues are given by
)\k:Zw_klal, k=0,....,n—1, (49)

and the corresponding eigenvectors read

xp = (1w, W, .. ,w(”fl)k)T , (50)
where w = €™/, Two sets {ag,...,a,_1} and {\g,...,A\,_1} are related by the discrete Fourier
transform. Note that

AOZOéo—i-...—i—Oén,l:n—l. (51)

Consider now a circulant orthogonal matrix b;; = 3;—; with 8, = aj, — 1. The corresponding eigenvalues
wi of [b;;] are defined by

po=X—-—n=-1, pe=Xa, a=1,....n—1. (52)
Now, since [b;;] is orthogonal one has |ux| = 1 and hence
Proposition 8. Real parameters {ao, ..., an_1} satisfy (30) if and only if [N\o| =1 fora=1,...,n—1.

This way we obtain a new parametrization of a set of admissible circulant matrices [a;;] by phases of
Ao = €. Due to \, = Ay _, one has two cases:

1. if n = 2m + 1, then we have m independent phases A\; = €/®1,... \,, = e'¥m.
2. if n = 2m+2, then we have m independent phases \; = e*®1, ..., \,, = €’ and one real parameter
)\m_;,_l = :l:l

Example 6. For n =3 putting \; = ¢'® = \} one finds

1 2
a = §(2+)\1+)\*{):§(1+60s¢),
1 1
b = §(2+m1+mx;):g(z_cow—\/ﬁsm@, (53)
1 1
¢ = §(2+w*A1+wA1‘):5(2—cos¢+\/§sm¢),

due to w = e2™/3 = %(—1 +v/3). This reproduces result of Example 3.
Example 7. Forn =4 if \; = e'® = \} and A2 = 1 one finds

1 1 1 1
a:§(2+cos¢)), b:i(l—sinqﬁ), c:§(2—cos¢), d:§(1+sin¢), (54)
and similarly if A\ = e = A3 and Ay = —1 one has
1 1 i 1 1 .
a:§(1+cosw) , b=§(2—s1nw) , 025(1—cosw) , d:§(2—|—s1nz/1) ) (55)

Note, that for Ao =1 one has b+d = 1, whereas for Ao = —1 one has b+d = 2. This way we reproduced
two classes from Example [§)

Corollary 5. It is therefore clear that



1. if n = 2m + 1, then a set of admissible parameters defines m-dimensional torus T,,. Note that
O(n — 1) = O(2m) and a single torus T, corresponds to a mazimal commutative subgroup of
SO(2m).

2. if n = 2m+ 2, we have two m-dimensional tori Ty, and T,,. Torus T,, corresponds to a maximal
commutative subgroup of SO(2m + 1) whereas T/, is defined by composing Ty, with reflection, that

is, g € Ty iff —g € T (cf. [§)).

Corollary 6. Positive maps A, ..., a,—1] are invertible. It follows from the fact that
|det[aij]| = |)\O'-')\n—l| =n-—1 750 . (56)
Note, however, that the inverse A~tay, ..., an_1] is no longer positive.

6 Conclusions

We analyzed a class of positive maps introduced by Kossakowski [I]. It turns out that these maps
display interesting geometric features. In particular its maximal commutative subset — Afag, ..., @,—1]
— corresponding to circulant matrices [a;;] is parameterized by tori which defines maximal commutative
subgroups of the orthogonal group. For further properties of these maps like (in)decomposability and/or
optimality see also [8]. Tt is clear that wvie Choi-Jamiotkowski isomorphism can one provide a similar
analysis in terms of entanglement witnesses (see [9] for the recent review).
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