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Abstract

We provide a further analysis of the class of positive maps proposed ten years ago by Kossakowski.

In particular we propose a new parametrization which reveals an elegant geometric structure and an

interesting interplay between group theory and a certain class of positive maps.

Dedicated to Andrzej Kossakowski on his 75th birthday

1 Introduction – a diagonal type positive maps

Ten year ago in a remarkable paper [1] Kossakowski provided a construction of a family of positive maps in
matrix algebras Mn(C). This construction reproduces many examples of positive maps already known in
the literature. The maps from [1] belong to the following class: let {e0, . . . , en−1} denotes an orthonormal
basis in Cn and let Eij := |ei〉〈ej |. Consider the linear map Λ : Mn(C) →Mn(C) defined as follows

Λ(Eii) =

n−1∑

j=0

aijEjj , Λ(Eij) = −Eij , i 6= j . (1)

where aij provides a set of complex parameters. In what follows we call the above maps diagonal type
maps, since only diagonal elements Eii are transformed in a non-trivial way. A map Λ is Hermitian, i.e.
[Λ(X)]† = Λ(X†) iff aij ∈ R. The basic question one poses is:

what are conditions for aij which guarantee that Λ is a positive map.

It is clear that a necessary condition is that all matrix elements aij ≥ 0. Observe, that n × n matrix
A = [aij ] with matrix elements [aij ] ≥ 0 may be considered as a “classical” positive linear map A : Rn →
Rn. Therefore, formula (1) provides a construction of a “quantum” positive map Λ out of the “classical”
map A if “classical” conditions aij ≥ 0 are completed by a set of suitable “quantum” conditions. This
problem is easily solvable for n = 2. One proves the following

Proposition 1. If n = 2, then Λ is positive if and only if aij ≥ 0 and

√
a00a11 +

√
a01a10 ≥ 1 . (2)

Moreover, Λ is completely positive if and only if aij ≥ 0 and a00a11 ≥ 1.

The prescription (1) for Λ is so simple that it seems that for n > 2 the corresponding additional
conditions for aij are easy to find. Surprisingly, it is not the case and starting with n = 3 the general
problem is open. We stress that there is an essential difference between n = 2 and n > 2. For n = 2 all
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positive maps are decomposable. It is no longer true for n > 2. And there are well known examples of
indecomposable maps belonging to a general family (1).

Let us recall that a map Λ is positive iff for all rank-1 projectors P and Q

tr[PΛ(Q)] ≥ 0 . (3)

Taking P = |x〉〈x| and Q = |y〉〈y| one has 〈x|Λ(|y〉〈y|)|x〉 ≥ 0 for all x, y ∈ Cn. Using this definition one
may prove the following

Theorem 1 ([5]). A map Λ defined in (1) is positive if and only if aij ≥ 0 and for all vectors x ∈ Cn

n−1∑

i=0

|xi|2
Bi(x)

≤ 1 , (4)

where

Bi(x) = |xi|2 +

n−1∑

j=0

aij |xj |2 . (5)

Moreover, Λ is completely positive if and only if the matrix D = [dij ] such that dij = −1 for i 6= j and
dii = aii is positive semi-definite.

We stress that an inequality (4) does not provide a solution to our problem. It is just a reformulation
of the original definition of positivity for the special class of maps! One may easily check that for n = 2
an inequality (4) reproduces condition (2). However, for n > 2 we do not know how to translate the
above inequality into the closed set of conditions upon the matrix elements aij .

2 Circulant matrices

Consider now a special case when aij defines a circulant matrix, i.e. aij = αi−j (mod n). Actually,
many well known examples of positive maps belongs to such class (e.g. reduction map, Choi map and its
generalizations). We assume that αk ≥ 0 for k = 0, . . . , n − 1 and we denote the corresponding map by
Λ[α0, . . . , αn−1].

Example 1. For n = 2 denoting a00 = a11 = α0 =: a and a01 = a10 = α1 =: b formula (2) reduces to

a+ b ≥ 1 . (6)

Recall, that a = 0 and b = 1 corresponds to the reduction map R2(X) = I2trX −X.

For a circulant matrix Theorem 1 reduces to the following

Proposition 2. A map Λ[α0, . . . , αn−1] defined in (1) is positive if and only if for all vectors x ∈ Cn

n−1∑

i=0

|xi|2

(α0 + 1)|xi|2 +
∑n−1

k=1 αk|xi+k|2
≤ 1 . (7)

Moreover, Λ is completely positive if and only if α0 ≥ n− 1.

An inequality (7) is known as circulant inequlity [6]. In particular taking |x0| = . . . = |xn−1| one finds
the following necessary condition for positivity of Λ

α0 + α1 + . . .+ αn−1 ≥ n− 1 . (8)

Note, that the above condition is necessary but not sufficient. Actually, it is sufficient only for n = 2
(see Example 1). For n = 3 a full class of parameters α0 = a, α1 = b and α2 = c satisfying circulant
inequality (7) was derived in [4].
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Theorem 2. ([4]) For n = 3 a map Λ[a, b, c] is positive if and only if

1. a+ b+ c ≥ 2 ,

2. if a ≤ 1 , then bc ≥ (1 − a)2.

Moreover, being a positive map it is indecomposable if and only if

4bc < (2 − a)2 . (9)

Λ is completely positive if and only if a ≥ 2.

Hence, for n = 3 a necessary condition a+ b+ c ≥ 2 is supplemented by an extra condition 3.

Corollary 1. If a > 1, then condition (8) is necessary and sufficient for positivity of Λ[a, b, c].

Remark 1. For n > 3 a full set of necessary and sufficient conditions for positivity of Λ[α0, . . . , αn−1]
is not known.

3 Kossakowski construction

Let us define a set of Hermitian diagonal traceless matrices

Fℓ =
1√

ℓ(ℓ+ 1)

( ℓ−1∑

k=0

Ekk − ℓEℓℓ

)
, ℓ = 1, . . . , n− 1 . (10)

These matrices span the Cartan subalgebra of su(n− 1). Moreover, tr(FαFβ) = δαβ . Define a real n× n

matrix

aij :=
n− 1

n
+

n−1∑

α,β=1

〈ei|Fα|ei〉Rαβ〈ej |Fβ |ej〉 , (11)

where Rαβ is an (n− 1) × (n− 1) orthogonal matrix. Consider now a linear map Λ defined by (1) with
aij defined by (11).

Theorem 3 ([1]). For any orthogonal matrix Rαβ a linear map Λ is positive.

Remark 2. Actually Kossakowski provided more general construction [1]. However, in this paper we
restrict our analysis to the special class of diagonal type maps corresponding to (11).

Due to the fact that Fα is traceless for α = 1, . . . , n− 1, one finds

n−1∑

i=1

aij =

n−1∑

j=1

aij = n− 1 . (12)

Moreover, since matrix elements aij ≥ 0 (it follows from Theorem 3) one finds that

ãij :=
1

n− 1
aij , (13)

defines a doubly stochastic matrix.

Remark 3. A map Λ̃ := 1
n−1 Λ is unital trace preserving.

Consider now an inverse problem: suppose we are given a n× n matrix [aij ] such that [ãij ] is doubly
stochastic. How to check whether aij is defined via (11)? The answer is given by the following
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Proposition 3 ([5]). A matrix [aij ] can be represented by (11) if and only if

n−1∑

k=0

aikajk = δij + n− 2 , (14)

for i, j = 0, . . . , n− 1.

Define
bij := aij − 1 , (15)

that is,

bij =
n−1∑

α,β=1

〈ei|Fα|ei〉Rαβ〈ej |Fβ |ej〉 −
1

n
, (16)

One easily proves

Proposition 4. A matrix [aij ] satisfies (17) if and only if matrix [bij ] satisfies

n−1∑

k=0

bikbjk = δij , (17)

for i, j = 0, . . . , n− 1, i.e. [bij ] is an orthogonal matrix.

Note, that if [bij ] defines an orthogonal matrix, then |bij | ≤ 1 and hence aij = bij + 1 ≥ 0.

Corollary 2. A map Λ defined in (1) is positive if the corresponding bij defines n×n orthogonal matrix
such that

n−1∑

i=0

bij =
n−1∑

j=0

bij = −1 . (18)

It is clear that formula (16) provides an embedding of O(n− 1) into O(n), i.e. an orthogonal matrix
Rαβ from O(n− 1) is mapped into an orthogonal matrix bij from O(n).

Now, we provide a geometric interpretation of Kossakowski construction. Let {b(0), . . . ,b(n−1)} be
an orthonormal basis in Rn such that

(b(i), e) = − 1√
n
, (19)

where (a,b) denotes the canonical inner product in Rn and

e =
1√
n

(1, . . . , 1) . (20)

Let us define
bij := b

(i)
j . (21)

Clearly, [bij ] defines an orthogonal matrix. Moreover, (19) guarantees (18).

Corollary 3. Any Kossakowski map is uniquely defined by an arbitrary orthonormal basis {b(0), . . . ,b(n−1)}
satisfying (19).

Corollary 4. If [bij ] defines a Kossakowski map, then [biπ(j)] defines another Kossakowski map for an
arbitrary permutation π ∈ Sn.
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Let Σe denote an (n− 1)-dimensional hyperplane in Rn orthogonal to vector e. Let {f (1), . . . , f (n−1)}
be an arbitrary orthonormal basis in Σe. An example of such a basis is provided by

f
(α)
i = 〈ei|Fα|ei〉 , (22)

where Fα are defined in (10). Clearly, {f (0) := e, f (1), . . . , f (n−1)} defines an orthonormal basis in Rn. Con-
sider now an orthogonal operator R such that its matrix representation in the basis {f (0), f (1), . . . , f (n−1)}
has the following form

R00 = −1 , R0k = Rk0 = 0 , Rij = Rij . (23)

It is clear that R represents rotation (or pseudo-rotation) around e.

Proposition 5. Let [bij ] be the matrix representation of R in the canonical basis in Rn. Then bij satisfy
(18).

Proof: denote by {e0, . . . , en−1} the canonical basis and let

f (i) =
n−1∑

j=0

Sijej . (24)

One has
b = STRS . (25)

and hence

n−1∑

i=0

bij =
n−1∑

k,l=0

n−1∑

i=0

SkiRklSlj =
n−1∑

i=0

S0iR00S0j +
n−1∑

α,β=1

n−1∑

i=0

SαiRαβSjβ = −1 , (26)

due to

S0i =
1√
n
,

n−1∑

i=0

Sαi = 0 , i = 0, 1, . . . , n− 1 ; α = 1, . . . , n− 1 . (27)

In particular if f (i) are defined via (22), then (25) reproduces (16).
Consider now the following symmetric set of n vectors {g(0), . . . ,g(n−1)} in Σe defined by:

1. they have the same length,

2. the angle ‘φn’ between arbitrary two vectors is the same.

One proves that

cosφn = − 1

n− 1
. (28)

Remark 4. Actually, a set of n vectors {g(0), . . . ,g(n−1)} in Rn−1 satisfying the above conditions is
called an equiangular frame [7].

Proposition 6. Vectors

b(i) := g(i) − 1√
n
e ,

such that |g(i)|2 = 1 − 1
n , define an orthonormal basis in Rn and satisfy (19).

Consider now a special case when the matrix [aij ] defined in (11) is circulant. Formula (12) implies

α0 + . . .+ αn−1 = n− 1 . (29)

In this case Proposition 4 reduces to
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Proposition 7. A circulant matrix aij = αi−j satisfies (17) if and only if

n−1∑

k=0

αi−kαj−k = δij + n− 2 , (30)

for i, j = 0, . . . , n− 1.

Introducing
βi = αi − 1 , (31)

one finds
β0 + . . .+ βn−1 = −1 , (32)

together with
n−1∑

k=0

βi−kβj−k = δij , (33)

for i, j = 0, . . . , n− 1. Clearly, bij = βi−j defines a circulant orthogonal matrix satisfying an additional
constraint (32).

4 Examples

Example 2. For n = 2 one has F1 = 1√
2
σz and R = ±1, and hence one easily finds

R = 1 → [aij ] = I2 ; R = −1 → [aij ] = σx . (34)

Example 3. For n = 3

F1 =
1√
2




1 0 0
0 −1 0
0 0 0


 ; F2 =

1√
6




1 0 0
0 1 0
0 0 −2


 , (35)

and

[Rαβ ] =

(
cosφ sinφ
− sinφ cosφ

)
. (36)

Interestingly, in this case one finds that the matrix [aij ] is circulant. Denoting a := a00, b := a01 and
c := a02 one obtains

a =
2

3
(1 + cosφ) ,

b =
1

3
(2 − cosφ−

√
3 sinφ) , (37)

c =
1

3
(2 − cosφ+

√
3 sinφ) .

Let us observe that introducing ã = a − 1, b̃ = b − 1 and c̃ = c − 1 the above family of maps is uniquely
characterized by a circulant orthogonal matrix

[bij ] =




ã b̃ c̃

c̃ ã b̃

b̃ c̃ ã


 , (38)
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with ã+ b̃+ c̃ = −1. Interestingly, the well known maps: Choi maps Λ[1, 1, 0], Λ[1, 0, 1] and the reduction
map Λ[0, 1, 1] have the following representation in terms of the matrix [bij ]:




0 0 −1
−1 0 0
0 −1 0


 ;




0 −1 0
0 0 −1
−1 0 0


 ;




−1 0 0
0 −1 0
0 0 −1


 , (39)

that is, up to a sign they correspond to circulant permutation matrices.

Remark 5. For n = 2 and n = 3 all Kossakowski maps are characterized by a circulant matrix [aij ]. It
is no longre true for n > 3.

Remark 6. Let us observe that parameters a, b, c defined in (37) are compatible with Theorem 2. Note,
that maps defined via (37) belong to the boundary of a set of positive maps defined by two equalities in
conditions 1. and 2. of Theorem 2, that is,

a+ b+ c = 2 ; bc = (1 − a)2 . (40)

Detailed analysis of the structure of these maps was performed in [2].

Example 4. For n = 4 one has the following circulant orthogonal [bij ] matrix: ã = b00, b̃ = b01, c̃ = b02

and d̃ = b03 satisfying
ã+ b̃+ c̃+ d̃ = −1 . (41)

Orthogonality conditions imply

ã2 + b̃2 + c̃2 + d̃2 = 1 , ãc̃+ b̃d̃ = 0, (ã+ c̃)(̃b + d̃) = 0 . (42)

Therefore, we have two classes of admissible parameters {ã, b̃, c̃, d̃} constrained by

ã+ b̃+ c̃+ d̃ = −1 , ã2 + b̃2 + c̃2 + d̃2 = 1 , b̃+ d̃ = 0 , (43)

and
ã+ b̃+ c̃+ d̃ = −1 , ã2 + b̃2 + c̃2 + d̃2 = 1 , ã+ c̃ = 0 , (44)

Equivalently, the above conditions may be rewritten as follows

ã2 + b̃2 + c̃2 + d̃2 = 1 , ã+ c̃ = −1 , b̃+ d̃ = 0 , (45)

and
ã2 + b̃2 + c̃2 + d̃2 = 1 , ã+ c̃ = 0 , b̃+ d̃ = −1 . (46)

They describe two circles: the intersection of 3D sphere with two planes. Again, characteristic well known
maps Λ[1, 1, 1, 0],Λ[1, 1, 0, 1],Λ[1, 0, 1, 1] and Λ[0, 1, 1, 1] (up to a sign) correspond to circulant permutation
matrices:


0 0 0 −1
−1 0 0 0
0 −1 0 0
0 0 −1 0


 ,




0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0


 ,




0 −1 0 0
0 0 −1 0
0 0 0 −1
−1 0 0 0


 ,




−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

Example 5. For n = 5 one has the following circulant orthogonal [bij ] matrix: ã = b00, b̃ = b01,

c̃ = b02, d̃ = b03 and ẽ = b04 satisfying

ã+ b̃+ c̃+ d̃+ ẽ = −1 . (47)

Orthogonality conditions imply

ã2 + b̃2 + c̃2 + d̃2 + ẽ2 = 1 , ã ẽ+ b̃ ã+ c̃ b̃+ d̃ c̃+ ẽ d̃ = 0 . (48)

One easily checks that the remaining orthogonality conditions are not independent from (47) and (48).

The corresponding set of admissible parameters {ã, b̃, c̃, d̃, ẽ} is 2-dimensional but its shape is not very
transparent (47) and (48).
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5 Circulant case — a complementary parametrization

Let us recall that if aij = αi−j defines a circulant matrix, then its eigenvalues are given by

λk =

n−1∑

l=0

ω−klαl , k = 0, . . . , n− 1 , (49)

and the corresponding eigenvectors read

xk = (1, ωk, ω2k, . . . , ω(n−1)k)T , (50)

where ω = e2πi/n. Two sets {α0, . . . , αn−1} and {λ0, . . . , λn−1} are related by the discrete Fourier
transform. Note that

λ0 = α0 + . . .+ αn−1 = n− 1 . (51)

Consider now a circulant orthogonal matrix bij = βi−j with βk = αk − 1. The corresponding eigenvalues
µk of [bij ] are defined by

µ0 = λ0 − n = −1 , µα = λα , α = 1, . . . , n− 1 . (52)

Now, since [bij ] is orthogonal one has |µk| = 1 and hence

Proposition 8. Real parameters {α0, . . . , αn−1} satisfy (30) if and only if |λα| = 1 for α = 1, . . . , n− 1.

This way we obtain a new parametrization of a set of admissible circulant matrices [aij ] by phases of
λα = eiφα . Due to λk = λ∗n−k one has two cases:

1. if n = 2m+ 1, then we have m independent phases λ1 = eiφ1 , . . . , λm = eiφm .

2. if n = 2m+2, then we have m independent phases λ1 = eiφ1 , . . . , λm = eiφm and one real parameter
λm+1 = ±1.

Example 6. For n = 3 putting λ1 = eiφ = λ∗2 one finds

a =
1

3
(2 + λ1 + λ∗1) =

2

3
(1 + cosφ) ,

b =
1

3
(2 + ωλ1 + ω∗λ∗1) =

1

3
(2 − cosφ−

√
3 sinφ) , (53)

c =
1

3
(2 + ω∗λ1 + ωλ∗1) =

1

3
(2 − cosφ+

√
3 sinφ) ,

due to ω = e2πi/3 = 1
2 (−1 + i

√
3). This reproduces result of Example 3.

Example 7. For n = 4 if λ1 = eiφ = λ∗3 and λ2 = 1 one finds

a =
1

2
(2 + cosφ) , b =

1

2
(1 − sinφ) , c =

1

2
(2 − cosφ) , d =

1

2
(1 + sinφ) , (54)

and similarly if λ1 = eiψ = λ∗3 and λ2 = −1 one has

a =
1

2
(1 + cosψ) , b =

1

2
(2 − sinψ) , c =

1

2
(1 − cosψ) , d =

1

2
(2 + sinψ) . (55)

Note, that for λ2 = 1 one has b+ d = 1, whereas for λ2 = −1 one has b+ d = 2. This way we reproduced
two classes from Example 4.

Corollary 5. It is therefore clear that
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1. if n = 2m + 1, then a set of admissible parameters defines m-dimensional torus Tm. Note that
O(n − 1) = O(2m) and a single torus Tm corresponds to a maximal commutative subgroup of
SO(2m).

2. if n = 2m+ 2, we have two m-dimensional tori Tm and T′
m. Torus Tm corresponds to a maximal

commutative subgroup of SO(2m+ 1) whereas T′
m is defined by composing Tm with reflection, that

is, g ∈ T′
m iff −g ∈ Tm (cf. [8]).

Corollary 6. Positive maps Λ[α0, . . . , αn−1] are invertible. It follows from the fact that

|det[aij ]| = |λ0 . . . λn−1| = n− 1 6= 0 . (56)

Note, however, that the inverse Λ−1[α0, . . . , αn−1] is no longer positive.

6 Conclusions

We analyzed a class of positive maps introduced by Kossakowski [1]. It turns out that these maps
display interesting geometric features. In particular its maximal commutative subset — Λ[α0, . . . , αn−1]
— corresponding to circulant matrices [aij ] is parameterized by tori which defines maximal commutative
subgroups of the orthogonal group. For further properties of these maps like (in)decomposability and/or
optimality see also [8]. It is clear that via Choi-Jamio lkowski isomorphism can one provide a similar
analysis in terms of entanglement witnesses (see [9] for the recent review).
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