On Kossakowski construction of positive maps in matrix algebras

Dariusz Chruściński
Institute of Physics, Faculty of Physics, Astronomy and Informatics
Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland

Abstract

We provide a further analysis of the class of positive maps proposed ten years ago by Kossakowski. In particular we propose a new parametrization which reveals an elegant geometric structure and an interesting interplay between group theory and a certain class of positive maps.

Dedicated to Andrzej Kossakowski on his 75th birthday

1 Introduction - a diagonal type positive maps

Ten year ago in a remarkable paper [1] Kossakowski provided a construction of a family of positive maps in matrix algebras $M_{n}(\mathbb{C})$. This construction reproduces many examples of positive maps already known in the literature. The maps from [1] belong to the following class: let $\left\{e_{0}, \ldots, e_{n-1}\right\}$ denotes an orthonormal basis in \mathbb{C}^{n} and let $E_{i j}:=\left|e_{i}\right\rangle\left\langle e_{j}\right|$. Consider the linear map $\Lambda: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ defined as follows

$$
\begin{equation*}
\Lambda\left(E_{i i}\right)=\sum_{j=0}^{n-1} a_{i j} E_{j j}, \quad \Lambda\left(E_{i j}\right)=-E_{i j}, \quad i \neq j \tag{1}
\end{equation*}
$$

where $a_{i j}$ provides a set of complex parameters. In what follows we call the above maps diagonal type maps, since only diagonal elements $E_{i i}$ are transformed in a non-trivial way. A map Λ is Hermitian, i.e. $[\Lambda(X)]^{\dagger}=\Lambda\left(X^{\dagger}\right)$ iff $a_{i j} \in \mathbb{R}$. The basic question one poses is:

$$
\text { what are conditions for } a_{i j} \text { which guarantee that } \Lambda \text { is a positive map. }
$$

It is clear that a necessary condition is that all matrix elements $a_{i j} \geq 0$. Observe, that $n \times n$ matrix $A=\left[a_{i j}\right]$ with matrix elements $\left[a_{i j}\right] \geq 0$ may be considered as a "classical" positive linear map $A: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n}. Therefore, formula (1) provides a construction of a "quantum" positive map Λ out of the "classical" map A if "classical" conditions $a_{i j} \geq 0$ are completed by a set of suitable "quantum" conditions. This problem is easily solvable for $n=2$. One proves the following

Proposition 1. If $n=2$, then Λ is positive if and only if $a_{i j} \geq 0$ and

$$
\begin{equation*}
\sqrt{a_{00} a_{11}}+\sqrt{a_{01} a_{10}} \geq 1 \tag{2}
\end{equation*}
$$

Moreover, Λ is completely positive if and only if $a_{i j} \geq 0$ and $a_{00} a_{11} \geq 1$.
The prescription (1) for Λ is so simple that it seems that for $n>2$ the corresponding additional conditions for $a_{i j}$ are easy to find. Surprisingly, it is not the case and starting with $n=3$ the general problem is open. We stress that there is an essential difference between $n=2$ and $n>2$. For $n=2$ all
positive maps are decomposable. It is no longer true for $n>2$. And there are well known examples of indecomposable maps belonging to a general family (11).

Let us recall that a map Λ is positive iff for all rank-1 projectors P and Q

$$
\begin{equation*}
\operatorname{tr}[P \Lambda(Q)] \geq 0 \tag{3}
\end{equation*}
$$

Taking $P=|x\rangle\langle x|$ and $Q=|y\rangle\langle y|$ one has $\langle x| \Lambda(|y\rangle\langle y|)|x\rangle \geq 0$ for all $x, y \in \mathbb{C}^{n}$. Using this definition one may prove the following
Theorem 1 ([5]). A map Λ defined in (1) is positive if and only if $a_{i j} \geq 0$ and for all vectors $x \in \mathbb{C}^{n}$

$$
\begin{equation*}
\sum_{i=0}^{n-1} \frac{\left|x_{i}\right|^{2}}{B_{i}(x)} \leq 1 \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{i}(x)=\left|x_{i}\right|^{2}+\sum_{j=0}^{n-1} a_{i j}\left|x_{j}\right|^{2} \tag{5}
\end{equation*}
$$

Moreover, Λ is completely positive if and only if the matrix $D=\left[d_{i j}\right]$ such that $d_{i j}=-1$ for $i \neq j$ and $d_{i i}=a_{i i}$ is positive semi-definite.

We stress that an inequality (44) does not provide a solution to our problem. It is just a reformulation of the original definition of positivity for the special class of maps! One may easily check that for $n=2$ an inequality (44) reproduces condition (21). However, for $n>2$ we do not know how to translate the above inequality into the closed set of conditions upon the matrix elements $a_{i j}$.

2 Circulant matrices

Consider now a special case when $a_{i j}$ defines a circulant matrix, i.e. $a_{i j}=\alpha_{i-j}(\bmod n)$. Actually, many well known examples of positive maps belongs to such class (e.g. reduction map, Choi map and its generalizations). We assume that $\alpha_{k} \geq 0$ for $k=0, \ldots, n-1$ and we denote the corresponding map by $\Lambda\left[\alpha_{0}, \ldots, \alpha_{n-1}\right]$.

Example 1. For $n=2$ denoting $a_{00}=a_{11}=\alpha_{0}=:$ a and $a_{01}=a_{10}=\alpha_{1}=: b$ formula ((2)) reduces to

$$
\begin{equation*}
a+b \geq 1 \tag{6}
\end{equation*}
$$

Recall, that $a=0$ and $b=1$ corresponds to the reduction map $R_{2}(X)=\mathbb{I}_{2} \operatorname{tr} X-X$.
For a circulant matrix Theorem 1 reduces to the following
Proposition 2. A map $\Lambda\left[\alpha_{0}, \ldots, \alpha_{n-1}\right]$ defined in (1) is positive if and only if for all vectors $x \in \mathbb{C}^{n}$

$$
\begin{equation*}
\sum_{i=0}^{n-1} \frac{\left|x_{i}\right|^{2}}{\left(\alpha_{0}+1\right)\left|x_{i}\right|^{2}+\sum_{k=1}^{n-1} \alpha_{k}\left|x_{i+k}\right|^{2}} \leq 1 \tag{7}
\end{equation*}
$$

Moreover, Λ is completely positive if and only if $\alpha_{0} \geq n-1$.
An inequality (7) is known as circulant inequlity [6]. In particular taking $\left|x_{0}\right|=\ldots=\left|x_{n-1}\right|$ one finds the following necessary condition for positivity of Λ

$$
\begin{equation*}
\alpha_{0}+\alpha_{1}+\ldots+\alpha_{n-1} \geq n-1 \tag{8}
\end{equation*}
$$

Note, that the above condition is necessary but not sufficient. Actually, it is sufficient only for $n=2$ (see Example 11). For $n=3$ a full class of parameters $\alpha_{0}=a, \alpha_{1}=b$ and $\alpha_{2}=c$ satisfying circulant inequality (7) was derived in (4).

Theorem 2. (4]) For $n=3$ a map $\Lambda[a, b, c]$ is positive if and only if

1. $a+b+c \geq 2$,
2. if $a \leq 1$, then $b c \geq(1-a)^{2}$.

Moreover, being a positive map it is indecomposable if and only if

$$
\begin{equation*}
4 b c<(2-a)^{2} \tag{9}
\end{equation*}
$$

Λ is completely positive if and only if $a \geq 2$.
Hence, for $n=3$ a necessary condition $a+b+c \geq 2$ is supplemented by an extra condition 3 .
Corollary 1. If $a>1$, then condition (8) is necessary and sufficient for positivity of $\Lambda[a, b, c]$.
Remark 1. For $n>3$ a full set of necessary and sufficient conditions for positivity of $\Lambda\left[\alpha_{0}, \ldots, \alpha_{n-1}\right]$ is not known.

3 Kossakowski construction

Let us define a set of Hermitian diagonal traceless matrices

$$
\begin{equation*}
F_{\ell}=\frac{1}{\sqrt{\ell(\ell+1)}}\left(\sum_{k=0}^{\ell-1} E_{k k}-\ell E_{\ell \ell}\right), \quad \ell=1, \ldots, n-1 \tag{10}
\end{equation*}
$$

These matrices span the Cartan subalgebra of $s u(n-1)$. Moreover, $\operatorname{tr}\left(F_{\alpha} F_{\beta}\right)=\delta_{\alpha \beta}$. Define a real $n \times n$ matrix

$$
\begin{equation*}
a_{i j}:=\frac{n-1}{n}+\sum_{\alpha, \beta=1}^{n-1}\left\langle e_{i}\right| F_{\alpha}\left|e_{i}\right\rangle R_{\alpha \beta}\left\langle e_{j}\right| F_{\beta}\left|e_{j}\right\rangle, \tag{11}
\end{equation*}
$$

where $R_{\alpha \beta}$ is an $(n-1) \times(n-1)$ orthogonal matrix. Consider now a linear map Λ defined by (1) with $a_{i j}$ defined by (11).

Theorem 3 (1). For any orthogonal matrix $R_{\alpha \beta}$ a linear map Λ is positive.
Remark 2. Actually Kossakowski provided more general construction [1]. However, in this paper we restrict our analysis to the special class of diagonal type maps corresponding to (11).

Due to the fact that F_{α} is traceless for $\alpha=1, \ldots, n-1$, one finds

$$
\begin{equation*}
\sum_{i=1}^{n-1} a_{i j}=\sum_{j=1}^{n-1} a_{i j}=n-1 \tag{12}
\end{equation*}
$$

Moreover, since matrix elements $a_{i j} \geq 0$ (it follows from Theorem 3) one finds that

$$
\begin{equation*}
\tilde{a}_{i j}:=\frac{1}{n-1} a_{i j}, \tag{13}
\end{equation*}
$$

defines a doubly stochastic matrix.
Remark 3. $A \operatorname{map} \widetilde{\Lambda}:=\frac{1}{n-1} \Lambda$ is unital trace preserving.
Consider now an inverse problem: suppose we are given a $n \times n$ matrix $\left[a_{i j}\right]$ such that $\left[\widetilde{a}_{i j}\right]$ is doubly stochastic. How to check whether $a_{i j}$ is defined via (11)? The answer is given by the following

Proposition 3 ([5]). A matrix $\left[a_{i j}\right]$ can be represented by (11) if and only if

$$
\begin{equation*}
\sum_{k=0}^{n-1} a_{i k} a_{j k}=\delta_{i j}+n-2 \tag{14}
\end{equation*}
$$

for $i, j=0, \ldots, n-1$.
Define

$$
\begin{equation*}
b_{i j}:=a_{i j}-1 \tag{15}
\end{equation*}
$$

that is,

$$
\begin{equation*}
b_{i j}=\sum_{\alpha, \beta=1}^{n-1}\left\langle e_{i}\right| F_{\alpha}\left|e_{i}\right\rangle R_{\alpha \beta}\left\langle e_{j}\right| F_{\beta}\left|e_{j}\right\rangle-\frac{1}{n} \tag{16}
\end{equation*}
$$

One easily proves
Proposition 4. A matrix $\left[a_{i j}\right]$ satisfies (17) if and only if matrix $\left[b_{i j}\right]$ satisfies

$$
\begin{equation*}
\sum_{k=0}^{n-1} b_{i k} b_{j k}=\delta_{i j} \tag{17}
\end{equation*}
$$

for $i, j=0, \ldots, n-1$, i.e. $\left[b_{i j}\right]$ is an orthogonal matrix.
Note, that if $\left[b_{i j}\right]$ defines an orthogonal matrix, then $\left|b_{i j}\right| \leq 1$ and hence $a_{i j}=b_{i j}+1 \geq 0$.
Corollary 2. A map Λ defined in (1) is positive if the corresponding $b_{i j}$ defines $n \times n$ orthogonal matrix such that

$$
\begin{equation*}
\sum_{i=0}^{n-1} b_{i j}=\sum_{j=0}^{n-1} b_{i j}=-1 \tag{18}
\end{equation*}
$$

It is clear that formula (16) provides an embedding of $O(n-1)$ into $O(n)$, i.e. an orthogonal matrix $R_{\alpha \beta}$ from $O(n-1)$ is mapped into an orthogonal matrix $b_{i j}$ from $O(n)$.

Now, we provide a geometric interpretation of Kossakowski construction. Let $\left\{\mathbf{b}^{(0)}, \ldots, \mathbf{b}^{(n-1)}\right\}$ be an orthonormal basis in \mathbb{R}^{n} such that

$$
\begin{equation*}
\left(\mathbf{b}^{(i)}, \mathbf{e}\right)=-\frac{1}{\sqrt{n}} \tag{19}
\end{equation*}
$$

where (\mathbf{a}, \mathbf{b}) denotes the canonical inner product in \mathbb{R}^{n} and

$$
\begin{equation*}
\mathbf{e}=\frac{1}{\sqrt{n}}(1, \ldots, 1) \tag{20}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
b_{i j}:=\mathbf{b}_{j}^{(i)} \tag{21}
\end{equation*}
$$

Clearly, $\left[b_{i j}\right]$ defines an orthogonal matrix. Moreover, (19) guarantees (18).
Corollary 3. Any Kossakowski map is uniquely defined by an arbitrary orthonormal basis $\left\{\mathbf{b}^{(0)}, \ldots, \mathbf{b}^{(n-1)}\right\}$ satisfying (19).

Corollary 4. If $\left[b_{i j}\right]$ defines a Kossakowski map, then $\left[b_{i \pi(j)}\right]$ defines another Kossakowski map for an arbitrary permutation $\pi \in S_{n}$.

Let $\Sigma_{\mathbf{e}}$ denote an $(n-1)$-dimensional hyperplane in \mathbb{R}^{n} orthogonal to vector e. Let $\left\{\mathbf{f}^{(1)}, \ldots, \mathbf{f}^{(n-1)}\right\}$ be an arbitrary orthonormal basis in $\Sigma_{\mathbf{e}}$. An example of such a basis is provided by

$$
\begin{equation*}
\mathbf{f}_{i}^{(\alpha)}=\left\langle e_{i}\right| F_{\alpha}\left|e_{i}\right\rangle \tag{22}
\end{equation*}
$$

where F_{α} are defined in (10). Clearly, $\left\{\mathbf{f}^{(0)}:=\mathbf{e}, \mathbf{f}^{(1)}, \ldots, \mathbf{f}^{(n-1)}\right\}$ defines an orthonormal basis in \mathbb{R}^{n}. Consider now an orthogonal operator \mathbf{R} such that its matrix representation in the basis $\left\{\mathbf{f}^{(0)}, \mathbf{f}^{(1)}, \ldots, \mathbf{f}^{(n-1)}\right\}$ has the following form

$$
\begin{equation*}
\mathbf{R}_{00}=-1, \quad \mathbf{R}_{0 k}=\mathbf{R}_{k 0}=0, \quad \mathbf{R}_{i j}=R_{i j} \tag{23}
\end{equation*}
$$

It is clear that \mathbf{R} represents rotation (or pseudo-rotation) around \mathbf{e}.
Proposition 5. Let $\left[b_{i j}\right]$ be the matrix representation of \mathbf{R} in the canonical basis in \mathbb{R}^{n}. Then $b_{i j}$ satisfy (18).

Proof: denote by $\left\{\mathbf{e}_{0}, \ldots, \mathbf{e}_{n-1}\right\}$ the canonical basis and let

$$
\begin{equation*}
\mathbf{f}^{(i)}=\sum_{j=0}^{n-1} S_{i j} \mathbf{e}_{j} \tag{24}
\end{equation*}
$$

One has

$$
\begin{equation*}
b=S^{\mathrm{T}} \mathbf{R} S \tag{25}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{i=0}^{n-1} b_{i j}=\sum_{k, l=0}^{n-1} \sum_{i=0}^{n-1} S_{k i} \mathbf{R}_{k l} S_{l j}=\sum_{i=0}^{n-1} S_{0 i} \mathbf{R}_{00} S_{0 j}+\sum_{\alpha, \beta=1}^{n-1} \sum_{i=0}^{n-1} S_{\alpha i} R_{\alpha \beta} S_{j \beta}=-1 \tag{26}
\end{equation*}
$$

due to

$$
\begin{equation*}
S_{0 i}=\frac{1}{\sqrt{n}}, \quad \sum_{i=0}^{n-1} S_{\alpha i}=0, \quad i=0,1, \ldots, n-1 ; \quad \alpha=1, \ldots, n-1 \tag{27}
\end{equation*}
$$

In particular if $\mathbf{f}^{(i)}$ are defined via (22), then (25) reproduces (16).
Consider now the following symmetric set of n vectors $\left\{\mathbf{g}^{(0)}, \ldots, \mathbf{g}^{(n-1)}\right\}$ in $\Sigma_{\mathbf{e}}$ defined by:

1. they have the same length,
2. the angle ' ϕ_{n} ' between arbitrary two vectors is the same.

One proves that

$$
\begin{equation*}
\cos \phi_{n}=-\frac{1}{n-1} \tag{28}
\end{equation*}
$$

Remark 4. Actually, a set of n vectors $\left\{\mathbf{g}^{(0)}, \ldots, \mathbf{g}^{(n-1)}\right\}$ in \mathbb{R}^{n-1} satisfying the above conditions is called an equiangular frame (7).

Proposition 6. Vectors

$$
\mathbf{b}^{(i)}:=\mathbf{g}^{(i)}-\frac{1}{\sqrt{n}} \mathbf{e}
$$

such that $\left|\mathbf{g}^{(i)}\right|^{2}=1-\frac{1}{n}$, define an orthonormal basis in \mathbb{R}^{n} and satisfy (19).
Consider now a special case when the matrix $\left[a_{i j}\right]$ defined in (11) is circulant. Formula (12) implies

$$
\begin{equation*}
\alpha_{0}+\ldots+\alpha_{n-1}=n-1 \tag{29}
\end{equation*}
$$

In this case Proposition 4 reduces to

Proposition 7. A circulant matrix $a_{i j}=\alpha_{i-j}$ satisfies 17) if and only if

$$
\begin{equation*}
\sum_{k=0}^{n-1} \alpha_{i-k} \alpha_{j-k}=\delta_{i j}+n-2 \tag{30}
\end{equation*}
$$

for $i, j=0, \ldots, n-1$.
Introducing

$$
\begin{equation*}
\beta_{i}=\alpha_{i}-1 \tag{31}
\end{equation*}
$$

one finds

$$
\begin{equation*}
\beta_{0}+\ldots+\beta_{n-1}=-1 \tag{32}
\end{equation*}
$$

together with

$$
\begin{equation*}
\sum_{k=0}^{n-1} \beta_{i-k} \beta_{j-k}=\delta_{i j} \tag{33}
\end{equation*}
$$

for $i, j=0, \ldots, n-1$. Clearly, $b_{i j}=\beta_{i-j}$ defines a circulant orthogonal matrix satisfying an additional constraint (32).

4 Examples

Example 2. For $n=2$ one has $F_{1}=\frac{1}{\sqrt{2}} \sigma_{z}$ and $R= \pm 1$, and hence one easily finds

$$
\begin{equation*}
R=1 \rightarrow\left[a_{i j}\right]=\mathbb{I}_{2} ; \quad R=-1 \rightarrow\left[a_{i j}\right]=\sigma_{x} \tag{34}
\end{equation*}
$$

Example 3. For $n=3$

$$
F_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 0 & 0 \tag{35}\\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad ; \quad F_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

and

$$
\left[R_{\alpha \beta}\right]=\left(\begin{array}{cc}
\cos \phi & \sin \phi \tag{36}\\
-\sin \phi & \cos \phi
\end{array}\right)
$$

Interestingly, in this case one finds that the matrix $\left[a_{i j}\right]$ is circulant. Denoting $a:=a_{00}, b:=a_{01}$ and $c:=a_{02}$ one obtains

$$
\begin{align*}
a & =\frac{2}{3}(1+\cos \phi) \\
b & =\frac{1}{3}(2-\cos \phi-\sqrt{3} \sin \phi) \tag{37}\\
c & =\frac{1}{3}(2-\cos \phi+\sqrt{3} \sin \phi)
\end{align*}
$$

Let us observe that introducing $\widetilde{a}=a-1, \widetilde{b}=b-1$ and $\widetilde{c}=c-1$ the above family of maps is uniquely characterized by a circulant orthogonal matrix

$$
\left[b_{i j}\right]=\left(\begin{array}{ccc}
\widetilde{a} & \widetilde{b} & \widetilde{c} \tag{38}\\
\widetilde{c} & \widetilde{a} & \widetilde{b} \\
\widetilde{b} & \widetilde{c} & \widetilde{a}
\end{array}\right)
$$

with $\widetilde{a}+\widetilde{b}+\widetilde{c}=-1$. Interestingly, the well known maps: Choi maps $\Lambda[1,1,0], \Lambda[1,0,1]$ and the reduction map $\Lambda[0,1,1]$ have the following representation in terms of the matrix $\left[b_{i j}\right]$:

$$
\left(\begin{array}{ccc}
0 & 0 & -1 \tag{39}\\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right) ;\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right) ; \quad\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

that is, up to a sign they correspond to circulant permutation matrices.
Remark 5. For $n=2$ and $n=3$ all Kossakowski maps are characterized by a circulant matrix $\left[a_{i j}\right]$. It is no longre true for $n>3$.

Remark 6. Let us observe that parameters a, b, c defined in (37) are compatible with Theorem 2, Note, that maps defined via (37) belong to the boundary of a set of positive maps defined by two equalities in conditions 1. and 2. of Theorem 囩, that is,

$$
\begin{equation*}
a+b+c=2 ; \quad b c=(1-a)^{2} \tag{40}
\end{equation*}
$$

Detailed analysis of the structure of these maps was performed in [2].
Example 4. For $n=4$ one has the following circulant orthogonal $\left[b_{i j}\right]$ matrix: $\widetilde{a}=b_{00}, \widetilde{b}=b_{01}, \widetilde{c}=b_{02}$ and $\widetilde{d}=b_{03}$ satisfying

$$
\begin{equation*}
\widetilde{a}+\widetilde{b}+\widetilde{c}+\widetilde{d}=-1 \tag{41}
\end{equation*}
$$

Orthogonality conditions imply

$$
\begin{equation*}
\widetilde{a}^{2}+\widetilde{b}^{2}+\widetilde{c}^{2}+\widetilde{d}^{2}=1, \quad \widetilde{a} \widetilde{c}+\widetilde{b} \widetilde{d}=0, \quad(\widetilde{a}+\widetilde{c})(\widetilde{b}+\widetilde{d})=0 \tag{42}
\end{equation*}
$$

Therefore, we have two classes of admissible parameters $\{\widetilde{a}, \widetilde{b}, \widetilde{c}, \widetilde{d}\}$ constrained by

$$
\begin{equation*}
\widetilde{a}+\widetilde{b}+\widetilde{c}+\widetilde{d}=-1, \quad \widetilde{a}^{2}+\widetilde{b}^{2}+\widetilde{c}^{2}+\widetilde{d}^{2}=1, \quad \widetilde{b}+\widetilde{d}=0 \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{a}+\widetilde{b}+\widetilde{c}+\widetilde{d}=-1, \quad \widetilde{a}^{2}+\widetilde{b}^{2}+\widetilde{c}^{2}+\widetilde{d}^{2}=1, \quad \widetilde{a}+\widetilde{c}=0 \tag{44}
\end{equation*}
$$

Equivalently, the above conditions may be rewritten as follows

$$
\begin{equation*}
\widetilde{a}^{2}+\widetilde{b}^{2}+\widetilde{c}^{2}+\widetilde{d}^{2}=1, \quad \widetilde{a}+\widetilde{c}=-1, \quad \widetilde{b}+\widetilde{d}=0 \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{a}^{2}+\widetilde{b}^{2}+\widetilde{c}^{2}+\widetilde{d}^{2}=1, \quad \widetilde{a}+\widetilde{c}=0, \quad \widetilde{b}+\widetilde{d}=-1 \tag{46}
\end{equation*}
$$

They describe two circles: the intersection of 3D sphere with two planes. Again, characteristic well known maps $\Lambda[1,1,1,0], \Lambda[1,1,0,1], \Lambda[1,0,1,1]$ and $\Lambda[0,1,1,1]$ (up to a sign) correspond to circulant permutation matrices:
$\left(\begin{array}{cccc}0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right),\left(\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right),\left(\begin{array}{cccc}0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$.
Example 5. For $n=5$ one has the following circulant orthogonal $\left[b_{i j}\right]$ matrix: $\widetilde{a}=b_{00}, \widetilde{b}=b_{01}$, $\widetilde{c}=b_{02}, \widetilde{d}=b_{03}$ and $\widetilde{e}=b_{04}$ satisfying

$$
\begin{equation*}
\widetilde{a}+\widetilde{b}+\widetilde{c}+\widetilde{d}+\widetilde{e}=-1 \tag{47}
\end{equation*}
$$

Orthogonality conditions imply

$$
\begin{equation*}
\widetilde{a}^{2}+\widetilde{b}^{2}+\widetilde{c}^{2}+\widetilde{d}^{2}+\widetilde{e}^{2}=1, \quad \widetilde{a} \widetilde{e}+\widetilde{b} \widetilde{a}+\widetilde{c} \widetilde{b}+\widetilde{d} \widetilde{c}+\widetilde{e} \widetilde{d}=0 \tag{48}
\end{equation*}
$$

One easily checks that the remaining orthogonality conditions are not independent from 47) and 48). The corresponding set of admissible parameters $\{\widetilde{a}, \widetilde{b}, \widetilde{c}, \widetilde{d}, \widetilde{e}\}$ is 2-dimensional but its shape is not very transparent 47) and 48.

5 Circulant case - a complementary parametrization

Let us recall that if $a_{i j}=\alpha_{i-j}$ defines a circulant matrix, then its eigenvalues are given by

$$
\begin{equation*}
\lambda_{k}=\sum_{l=0}^{n-1} \omega^{-k l} \alpha_{l}, \quad k=0, \ldots, n-1 \tag{49}
\end{equation*}
$$

and the corresponding eigenvectors read

$$
\begin{equation*}
\mathbf{x}_{k}=\left(1, \omega^{k}, \omega^{2 k}, \ldots, \omega^{(n-1) k}\right)^{\mathrm{T}} \tag{50}
\end{equation*}
$$

where $\omega=e^{2 \pi i / n}$. Two sets $\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}$ and $\left\{\lambda_{0}, \ldots, \lambda_{n-1}\right\}$ are related by the discrete Fourier transform. Note that

$$
\begin{equation*}
\lambda_{0}=\alpha_{0}+\ldots+\alpha_{n-1}=n-1 \tag{51}
\end{equation*}
$$

Consider now a circulant orthogonal matrix $b_{i j}=\beta_{i-j}$ with $\beta_{k}=\alpha_{k}-1$. The corresponding eigenvalues μ_{k} of $\left[b_{i j}\right]$ are defined by

$$
\begin{equation*}
\mu_{0}=\lambda_{0}-n=-1, \quad \mu_{\alpha}=\lambda_{\alpha}, \quad \alpha=1, \ldots, n-1 . \tag{52}
\end{equation*}
$$

Now, since $\left[b_{i j}\right]$ is orthogonal one has $\left|\mu_{k}\right|=1$ and hence
Proposition 8. Real parameters $\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}$ satisfy (30) if and only if $\left|\lambda_{\alpha}\right|=1$ for $\alpha=1, \ldots, n-1$.
This way we obtain a new parametrization of a set of admissible circulant matrices $\left[a_{i j}\right]$ by phases of $\lambda_{\alpha}=e^{i \phi_{\alpha}}$. Due to $\lambda_{k}=\lambda_{n-k}^{*}$ one has two cases:

1. if $n=2 m+1$, then we have m independent phases $\lambda_{1}=e^{i \phi_{1}}, \ldots, \lambda_{m}=e^{i \phi_{m}}$.
2. if $n=2 m+2$, then we have m independent phases $\lambda_{1}=e^{i \phi_{1}}, \ldots, \lambda_{m}=e^{i \phi_{m}}$ and one real parameter $\lambda_{m+1}= \pm 1$.

Example 6. For $n=3$ putting $\lambda_{1}=e^{i \phi}=\lambda_{2}^{*}$ one finds

$$
\begin{align*}
a & =\frac{1}{3}\left(2+\lambda_{1}+\lambda_{1}^{*}\right)=\frac{2}{3}(1+\cos \phi), \\
b & =\frac{1}{3}\left(2+\omega \lambda_{1}+\omega^{*} \lambda_{1}^{*}\right)=\frac{1}{3}(2-\cos \phi-\sqrt{3} \sin \phi), \tag{53}\\
c & =\frac{1}{3}\left(2+\omega^{*} \lambda_{1}+\omega \lambda_{1}^{*}\right)=\frac{1}{3}(2-\cos \phi+\sqrt{3} \sin \phi),
\end{align*}
$$

due to $\omega=e^{2 \pi i / 3}=\frac{1}{2}(-1+i \sqrt{3})$. This reproduces result of Example 3.
Example 7. For $n=4$ if $\lambda_{1}=e^{i \phi}=\lambda_{3}^{*}$ and $\lambda_{2}=1$ one finds

$$
\begin{equation*}
a=\frac{1}{2}(2+\cos \phi), \quad b=\frac{1}{2}(1-\sin \phi), \quad c=\frac{1}{2}(2-\cos \phi), \quad d=\frac{1}{2}(1+\sin \phi), \tag{54}
\end{equation*}
$$

and similarly if $\lambda_{1}=e^{i \psi}=\lambda_{3}^{*}$ and $\lambda_{2}=-1$ one has

$$
\begin{equation*}
a=\frac{1}{2}(1+\cos \psi), \quad b=\frac{1}{2}(2-\sin \psi), \quad c=\frac{1}{2}(1-\cos \psi), \quad d=\frac{1}{2}(2+\sin \psi) . \tag{55}
\end{equation*}
$$

Note, that for $\lambda_{2}=1$ one has $b+d=1$, whereas for $\lambda_{2}=-1$ one has $b+d=2$. This way we reproduced two classes from Example 4.

Corollary 5. It is therefore clear that

1. if $n=2 m+1$, then a set of admissible parameters defines m-dimensional torus \mathbb{T}_{m}. Note that $O(n-1)=O(2 m)$ and a single torus \mathbb{T}_{m} corresponds to a maximal commutative subgroup of $S O(2 m)$.
2. if $n=2 m+2$, we have two m-dimensional tori \mathbb{T}_{m} and \mathbb{T}_{m}^{\prime}. Torus \mathbb{T}_{m} corresponds to a maximal commutative subgroup of $S O(2 m+1)$ whereas \mathbb{T}_{m}^{\prime} is defined by composing \mathbb{T}_{m} with reflection, that is, $g \in \mathbb{T}_{m}^{\prime}$ iff $-g \in \mathbb{T}_{m}$ (cf. [8]).

Corollary 6. Positive maps $\Lambda\left[\alpha_{0}, \ldots, \alpha_{n-1}\right]$ are invertible. It follows from the fact that

$$
\begin{equation*}
\left|\operatorname{det}\left[a_{i j}\right]\right|=\left|\lambda_{0} \ldots \lambda_{n-1}\right|=n-1 \neq 0 . \tag{56}
\end{equation*}
$$

Note, however, that the inverse $\Lambda^{-1}\left[\alpha_{0}, \ldots, \alpha_{n-1}\right]$ is no longer positive.

6 Conclusions

We analyzed a class of positive maps introduced by Kossakowski [1]. It turns out that these maps display interesting geometric features. In particular its maximal commutative subset $-\Lambda\left[\alpha_{0}, \ldots, \alpha_{n-1}\right]$ - corresponding to circulant matrices $\left[a_{i j}\right]$ is parameterized by tori which defines maximal commutative subgroups of the orthogonal group. For further properties of these maps like (in)decomposability and/or optimality see also [8]. It is clear that via Choi-Jamiołkowski isomorphism can one provide a similar analysis in terms of entanglement witnesses (see 9] for the recent review).

Acknowledgements

This paper was partially supported by the National Science Center project DEC- 2011/03/B/ST2/00136. I thank Andrzej Kossakowski for the fruitful and inspiring discussions and Andrzej Jamiołkowski for pointing out Ref. [7].

References

[1] A. Kossakowski, Open Sys. Information Dyn. 10, 213 (2003).
[2] D. Chruściński and F. A. Wudarski, Open Syst. Inf. Dyn. 18, 387 (2011).
[3] D. Chruściński and F. A. Wudarski, Open Syst. Inf. Dyn. 19, 1250020 (2012).
[4] S. J. Cho, S.-H. Kye, and S. G. Lee, Linear Alg. Appl. 171, 213 (1992).
[5] D. Chruściński and A. Kossakowski, Open Systems and Inf. Dynamics, 14, 275 (2007).
[6] S. Yamagami, Proc. Amer. Math. Soc. 118, 521 (1993).
[7] P. G. Casazza, G. Kutyniok, Introduction to finite frame theory, in Finite Frames: Theory and Applications, Eds. P. G. Casazza and G. Kutyniok, Birkhäuser, Boston (2012).
[8] D. Chruściński, J. Phys. A: Math. Theor. 47, 424033 (2014).
[9] D. Chruściński and G. Sarbicki, J. Phys. A: Math. Theor. 47, 483001 (2014).

