On Kossakowski construction of positive maps in matrix algebras

Dariusz Chruściński

Institute of Physics, Faculty of Physics, Astronomy and Informatics Nicolaus Copernicus University, Grudziadzka 5, 87–100 Toruń, Poland

Abstract

We provide a further analysis of the class of positive maps proposed ten years ago by Kossakowski. In particular we propose a new parametrization which reveals an elegant geometric structure and an interesting interplay between group theory and a certain class of positive maps.

Dedicated to Andrzej Kossakowski on his 75th birthday

1 Introduction – a diagonal type positive maps

Ten year ago in a remarkable paper [1] Kossakowski provided a construction of a family of positive maps in matrix algebras $M_n(\mathbb{C})$. This construction reproduces many examples of positive maps already known in the literature. The maps from [1] belong to the following class: let $\{e_0, \ldots, e_{n-1}\}$ denotes an orthonormal basis in \mathbb{C}^n and let $E_{ij} := |e_i\rangle\langle e_j|$. Consider the linear map $\Lambda: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ defined as follows

$$\Lambda(E_{ii}) = \sum_{j=0}^{n-1} a_{ij} E_{jj} , \quad \Lambda(E_{ij}) = -E_{ij} , \quad i \neq j .$$
 (1)

where a_{ij} provides a set of complex parameters. In what follows we call the above maps diagonal type maps, since only diagonal elements E_{ii} are transformed in a non-trivial way. A map Λ is Hermitian, i.e. $[\Lambda(X)]^{\dagger} = \Lambda(X^{\dagger})$ iff $a_{ij} \in \mathbb{R}$. The basic question one poses is:

what are conditions for a_{ij} which guarantee that Λ is a positive map.

It is clear that a necessary condition is that all matrix elements $a_{ij} \ge 0$. Observe, that $n \times n$ matrix $A = [a_{ij}]$ with matrix elements $[a_{ij}] \ge 0$ may be considered as a "classical" positive linear map $A : \mathbb{R}^n \to \mathbb{R}^n$. Therefore, formula (1) provides a construction of a "quantum" positive map Λ out of the "classical" map A if "classical" conditions $a_{ij} \ge 0$ are completed by a set of suitable "quantum" conditions. This problem is easily solvable for n = 2. One proves the following

Proposition 1. If n = 2, then Λ is positive if and only if $a_{ij} \ge 0$ and

$$\sqrt{a_{00}a_{11}} + \sqrt{a_{01}a_{10}} \ge 1 \ . \tag{2}$$

Moreover, Λ is completely positive if and only if $a_{ij} \geq 0$ and $a_{00}a_{11} \geq 1$.

The prescription (1) for Λ is so simple that it seems that for n > 2 the corresponding additional conditions for a_{ij} are easy to find. Surprisingly, it is not the case and starting with n = 3 the general problem is open. We stress that there is an essential difference between n = 2 and n > 2. For n = 2 all

positive maps are decomposable. It is no longer true for n > 2. And there are well known examples of indecomposable maps belonging to a general family (1).

Let us recall that a map Λ is positive iff for all rank-1 projectors P and Q

$$\operatorname{tr}[P\Lambda(Q)] \ge 0 \ . \tag{3}$$

Taking $P = |x\rangle\langle x|$ and $Q = |y\rangle\langle y|$ one has $\langle x|\Lambda(|y\rangle\langle y|)|x\rangle \ge 0$ for all $x, y \in \mathbb{C}^n$. Using this definition one may prove the following

Theorem 1 ([5]). A map Λ defined in (1) is positive if and only if $a_{ij} \geq 0$ and for all vectors $x \in \mathbb{C}^n$

$$\sum_{i=0}^{n-1} \frac{|x_i|^2}{B_i(x)} \le 1 , \qquad (4)$$

where

$$B_i(x) = |x_i|^2 + \sum_{j=0}^{n-1} a_{ij} |x_j|^2 .$$
(5)

Moreover, Λ is completely positive if and only if the matrix $D = [d_{ij}]$ such that $d_{ij} = -1$ for $i \neq j$ and $d_{ii} = a_{ii}$ is positive semi-definite.

We stress that an inequality (4) does not provide a solution to our problem. It is just a reformulation of the original definition of positivity for the special class of maps! One may easily check that for n = 2an inequality (4) reproduces condition (2). However, for n > 2 we do not know how to translate the above inequality into the closed set of conditions upon the matrix elements a_{ij} .

2 Circulant matrices

Consider now a special case when a_{ij} defines a circulant matrix, i.e. $a_{ij} = \alpha_{i-j} \pmod{n}$. Actually, many well known examples of positive maps belongs to such class (e.g. reduction map, Choi map and its generalizations). We assume that $\alpha_k \ge 0$ for $k = 0, \ldots, n-1$ and we denote the corresponding map by $\Lambda[\alpha_0, \ldots, \alpha_{n-1}]$.

Example 1. For
$$n = 2$$
 denoting $a_{00} = a_{11} = \alpha_0 = :a$ and $a_{01} = a_{10} = \alpha_1 = :b$ formula (2) reduces to

$$a+b \ge 1 \ . \tag{6}$$

Recall, that a = 0 and b = 1 corresponds to the reduction map $R_2(X) = \mathbb{I}_2 \operatorname{tr} X - X$.

For a circulant matrix Theorem 1 reduces to the following

Proposition 2. A map $\Lambda[\alpha_0, \ldots, \alpha_{n-1}]$ defined in (1) is positive if and only if for all vectors $x \in \mathbb{C}^n$

$$\sum_{i=0}^{n-1} \frac{|x_i|^2}{(\alpha_0+1)|x_i|^2 + \sum_{k=1}^{n-1} \alpha_k |x_{i+k}|^2} \le 1 .$$
(7)

Moreover, Λ is completely positive if and only if $\alpha_0 \ge n-1$.

An inequality (7) is known as *circulant inequlity* [6]. In particular taking $|x_0| = \ldots = |x_{n-1}|$ one finds the following necessary condition for positivity of Λ

$$\alpha_0 + \alpha_1 + \ldots + \alpha_{n-1} \ge n-1 . \tag{8}$$

Note, that the above condition is necessary but not sufficient. Actually, it is sufficient only for n = 2 (see Example 1). For n = 3 a full class of parameters $\alpha_0 = a$, $\alpha_1 = b$ and $\alpha_2 = c$ satisfying circulant inequality (7) was derived in [4].

Theorem 2. ([4]) For n = 3 a map $\Lambda[a, b, c]$ is positive if and only if

1.
$$a + b + c \ge 2$$
,

2. if $a \le 1$, then $bc \ge (1-a)^2$.

Moreover, being a positive map it is indecomposable if and only if

$$4bc < (2-a)^2 . (9)$$

 Λ is completely positive if and only if $a \geq 2$.

Hence, for n = 3 a necessary condition $a + b + c \ge 2$ is supplemented by an extra condition 3.

Corollary 1. If a > 1, then condition (8) is necessary and sufficient for positivity of $\Lambda[a, b, c]$.

Remark 1. For n > 3 a full set of necessary and sufficient conditions for positivity of $\Lambda[\alpha_0, \ldots, \alpha_{n-1}]$ is not known.

3 Kossakowski construction

Let us define a set of Hermitian diagonal traceless matrices

$$F_{\ell} = \frac{1}{\sqrt{\ell(\ell+1)}} \left(\sum_{k=0}^{\ell-1} E_{kk} - \ell E_{\ell\ell} \right) , \quad \ell = 1, \dots, n-1 .$$
 (10)

These matrices span the Cartan subalgebra of su(n-1). Moreover, $tr(F_{\alpha}F_{\beta}) = \delta_{\alpha\beta}$. Define a real $n \times n$ matrix

$$a_{ij} := \frac{n-1}{n} + \sum_{\alpha,\beta=1}^{n-1} \langle e_i | F_\alpha | e_i \rangle R_{\alpha\beta} \langle e_j | F_\beta | e_j \rangle , \qquad (11)$$

where $R_{\alpha\beta}$ is an $(n-1) \times (n-1)$ orthogonal matrix. Consider now a linear map Λ defined by (1) with a_{ij} defined by (11).

Theorem 3 ([1]). For any orthogonal matrix $R_{\alpha\beta}$ a linear map Λ is positive.

Remark 2. Actually Kossakowski provided more general construction [1]. However, in this paper we restrict our analysis to the special class of diagonal type maps corresponding to (11).

Due to the fact that F_{α} is traceless for $\alpha = 1, \ldots, n-1$, one finds

$$\sum_{i=1}^{n-1} a_{ij} = \sum_{j=1}^{n-1} a_{ij} = n-1 .$$
(12)

Moreover, since matrix elements $a_{ij} \ge 0$ (it follows from Theorem 3) one finds that

$$\widetilde{a}_{ij} := \frac{1}{n-1} a_{ij} , \qquad (13)$$

defines a doubly stochastic matrix.

Remark 3. A map $\widetilde{\Lambda} := \frac{1}{n-1} \Lambda$ is unital trace preserving.

Consider now an inverse problem: suppose we are given a $n \times n$ matrix $[a_{ij}]$ such that $[\tilde{a}_{ij}]$ is doubly stochastic. How to check whether a_{ij} is defined via (11)? The answer is given by the following

Proposition 3 ([5]). A matrix $[a_{ij}]$ can be represented by (11) if and only if

$$\sum_{k=0}^{n-1} a_{ik} a_{jk} = \delta_{ij} + n - 2 , \qquad (14)$$

for $i, j = 0, \dots, n - 1$.

Define

$$b_{ij} := a_{ij} - 1 ,$$
 (15)

that is,

$$b_{ij} = \sum_{\alpha,\beta=1}^{n-1} \langle e_i | F_\alpha | e_i \rangle R_{\alpha\beta} \langle e_j | F_\beta | e_j \rangle - \frac{1}{n} , \qquad (16)$$

One easily proves

Proposition 4. A matrix $[a_{ij}]$ satisfies (17) if and only if matrix $[b_{ij}]$ satisfies

$$\sum_{k=0}^{n-1} b_{ik} b_{jk} = \delta_{ij} , \qquad (17)$$

for i, j = 0, ..., n - 1, i.e. $[b_{ij}]$ is an orthogonal matrix.

Note, that if $[b_{ij}]$ defines an orthogonal matrix, then $|b_{ij}| \leq 1$ and hence $a_{ij} = b_{ij} + 1 \geq 0$.

Corollary 2. A map Λ defined in (1) is positive if the corresponding b_{ij} defines $n \times n$ orthogonal matrix such that

$$\sum_{i=0}^{n-1} b_{ij} = \sum_{j=0}^{n-1} b_{ij} = -1 .$$
(18)

It is clear that formula (16) provides an embedding of O(n-1) into O(n), i.e. an orthogonal matrix $R_{\alpha\beta}$ from O(n-1) is mapped into an orthogonal matrix b_{ij} from O(n).

Now, we provide a geometric interpretation of Kossakowski construction. Let $\{\mathbf{b}^{(0)}, \dots, \mathbf{b}^{(n-1)}\}$ be an orthonormal basis in \mathbb{R}^n such that

$$(\mathbf{b}^{(i)}, \mathbf{e}) = -\frac{1}{\sqrt{n}} , \qquad (19)$$

where (\mathbf{a}, \mathbf{b}) denotes the canonical inner product in \mathbb{R}^n and

$$\mathbf{e} = \frac{1}{\sqrt{n}}(1,\dots,1) \ . \tag{20}$$

Let us define

$$b_{ij} := \mathbf{b}_j^{(i)} \ . \tag{21}$$

Clearly, $[b_{ij}]$ defines an orthogonal matrix. Moreover, (19) guarantees (18).

Corollary 3. Any Kossakowski map is uniquely defined by an arbitrary orthonormal basis $\{\mathbf{b}^{(0)}, \ldots, \mathbf{b}^{(n-1)}\}$ satisfying (19).

Corollary 4. If $[b_{ij}]$ defines a Kossakowski map, then $[b_{i\pi(j)}]$ defines another Kossakowski map for an arbitrary permutation $\pi \in S_n$.

Let $\Sigma_{\mathbf{e}}$ denote an (n-1)-dimensional hyperplane in \mathbb{R}^n orthogonal to vector \mathbf{e} . Let $\{\mathbf{f}^{(1)}, \ldots, \mathbf{f}^{(n-1)}\}$ be an arbitrary orthonormal basis in $\Sigma_{\mathbf{e}}$. An example of such a basis is provided by

$$\mathbf{f}_{i}^{(\alpha)} = \langle e_{i} | F_{\alpha} | e_{i} \rangle , \qquad (22)$$

where F_{α} are defined in (10). Clearly, $\{\mathbf{f}^{(0)} := \mathbf{e}, \mathbf{f}^{(1)}, \dots, \mathbf{f}^{(n-1)}\}$ defines an orthonormal basis in \mathbb{R}^n . Consider now an orthogonal operator \mathbf{R} such that its matrix representation in the basis $\{\mathbf{f}^{(0)}, \mathbf{f}^{(1)}, \dots, \mathbf{f}^{(n-1)}\}$ has the following form

$$\mathbf{R}_{00} = -1$$
, $\mathbf{R}_{0k} = \mathbf{R}_{k0} = 0$, $\mathbf{R}_{ij} = R_{ij}$. (23)

It is clear that \mathbf{R} represents rotation (or pseudo-rotation) around \mathbf{e} .

Proposition 5. Let $[b_{ij}]$ be the matrix representation of \mathbf{R} in the canonical basis in \mathbb{R}^n . Then b_{ij} satisfy (18).

Proof: denote by $\{\mathbf{e}_0, \ldots, \mathbf{e}_{n-1}\}$ the canonical basis and let

$$\mathbf{f}^{(i)} = \sum_{j=0}^{n-1} S_{ij} \mathbf{e}_j \ . \tag{24}$$

One has

$$b = S^{\mathrm{T}} \mathbf{R} S \ . \tag{25}$$

and hence

$$\sum_{i=0}^{n-1} b_{ij} = \sum_{k,l=0}^{n-1} \sum_{i=0}^{n-1} S_{ki} \mathbf{R}_{kl} S_{lj} = \sum_{i=0}^{n-1} S_{0i} \mathbf{R}_{00} S_{0j} + \sum_{\alpha,\beta=1}^{n-1} \sum_{i=0}^{n-1} S_{\alpha i} R_{\alpha\beta} S_{j\beta} = -1 , \qquad (26)$$

due to

$$S_{0i} = \frac{1}{\sqrt{n}} , \quad \sum_{i=0}^{n-1} S_{\alpha i} = 0 , \quad i = 0, 1, \dots, n-1 ; \quad \alpha = 1, \dots, n-1 .$$
 (27)

In particular if $\mathbf{f}^{(i)}$ are defined via (22), then (25) reproduces (16).

Consider now the following symmetric set of *n* vectors $\{\mathbf{g}^{(0)}, \ldots, \mathbf{g}^{(n-1)}\}$ in $\Sigma_{\mathbf{e}}$ defined by:

- 1. they have the same length,
- 2. the angle ' ϕ_n ' between arbitrary two vectors is the same.

One proves that

$$\cos\phi_n = -\frac{1}{n-1} \ . \tag{28}$$

Remark 4. Actually, a set of n vectors $\{\mathbf{g}^{(0)}, \ldots, \mathbf{g}^{(n-1)}\}$ in \mathbb{R}^{n-1} satisfying the above conditions is called an equiangular frame [7].

Proposition 6. Vectors

$$\mathbf{b}^{(i)} := \mathbf{g}^{(i)} - \frac{1}{\sqrt{n}} \mathbf{e} ,$$

such that $|\mathbf{g}^{(i)}|^2 = 1 - \frac{1}{n}$, define an orthonormal basis in \mathbb{R}^n and satisfy (19).

Consider now a special case when the matrix $[a_{ij}]$ defined in (11) is circulant. Formula (12) implies

$$\alpha_0 + \ldots + \alpha_{n-1} = n - 1 . (29)$$

In this case Proposition 4 reduces to

Proposition 7. A circulant matrix $a_{ij} = \alpha_{i-j}$ satisfies (17) if and only if

$$\sum_{k=0}^{n-1} \alpha_{i-k} \alpha_{j-k} = \delta_{ij} + n - 2 , \qquad (30)$$

for $i, j = 0, \ldots, n - 1$.

Introducing

$$\beta_i = \alpha_i - 1 , \qquad (31)$$

one finds

$$\beta_0 + \ldots + \beta_{n-1} = -1 , \qquad (32)$$

together with

$$\sum_{k=0}^{n-1} \beta_{i-k} \beta_{j-k} = \delta_{ij} , \qquad (33)$$

for i, j = 0, ..., n - 1. Clearly, $b_{ij} = \beta_{i-j}$ defines a circulant orthogonal matrix satisfying an additional constraint (32).

4 Examples

Example 2. For n = 2 one has $F_1 = \frac{1}{\sqrt{2}} \sigma_z$ and $R = \pm 1$, and hence one easily finds

$$R = 1 \rightarrow [a_{ij}] = \mathbb{I}_2 ; \quad R = -1 \rightarrow [a_{ij}] = \sigma_x . \tag{34}$$

Example 3. For n = 3

$$F_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 0 \end{pmatrix} ; \quad F_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -2 \end{pmatrix} ,$$
(35)

and

$$[R_{\alpha\beta}] = \begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{pmatrix} .$$
(36)

Interestingly, in this case one finds that the matrix $[a_{ij}]$ is circulant. Denoting $a := a_{00}, b := a_{01}$ and $c := a_{02}$ one obtains

$$a = \frac{2}{3}(1 + \cos \phi) ,$$

$$b = \frac{1}{3}(2 - \cos \phi - \sqrt{3} \sin \phi) ,$$

$$c = \frac{1}{3}(2 - \cos \phi + \sqrt{3} \sin \phi) .$$

(37)

Let us observe that introducing $\tilde{a} = a - 1$, $\tilde{b} = b - 1$ and $\tilde{c} = c - 1$ the above family of maps is uniquely characterized by a circulant orthogonal matrix

$$[b_{ij}] = \begin{pmatrix} \tilde{a} & \tilde{b} & \tilde{c} \\ \tilde{c} & \tilde{a} & \tilde{b} \\ \tilde{b} & \tilde{c} & \tilde{a} \end{pmatrix} , \qquad (38)$$

with $\tilde{a} + \tilde{b} + \tilde{c} = -1$. Interestingly, the well known maps: Choi maps $\Lambda[1, 1, 0]$, $\Lambda[1, 0, 1]$ and the reduction map $\Lambda[0, 1, 1]$ have the following representation in terms of the matrix $[b_{ij}]$:

$$\begin{pmatrix}
0 & 0 & -1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{pmatrix};
\begin{pmatrix}
0 & -1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{pmatrix};
\begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix},$$
(39)

that is, up to a sign they correspond to circulant permutation matrices.

Remark 5. For n = 2 and n = 3 all Kossakowski maps are characterized by a circulant matrix $[a_{ij}]$. It is no longre true for n > 3.

Remark 6. Let us observe that parameters a, b, c defined in (37) are compatible with Theorem 2. Note, that maps defined via (37) belong to the boundary of a set of positive maps defined by two equalities in conditions 1. and 2. of Theorem 2, that is,

$$a + b + c = 2$$
; $bc = (1 - a)^2$. (40)

Detailed analysis of the structure of these maps was performed in [2].

Example 4. For n = 4 one has the following circulant orthogonal $[b_{ij}]$ matrix: $\tilde{a} = b_{00}$, $\tilde{b} = b_{01}$, $\tilde{c} = b_{02}$ and $\tilde{d} = b_{03}$ satisfying

$$\widetilde{a} + \widetilde{b} + \widetilde{c} + \widetilde{d} = -1 . \tag{41}$$

Orthogonality conditions imply

$$\widetilde{a}^2 + \widetilde{b}^2 + \widetilde{c}^2 + \widetilde{d}^2 = 1 , \quad \widetilde{a}\widetilde{c} + \widetilde{b}\widetilde{d} = 0, \quad (\widetilde{a} + \widetilde{c})(\widetilde{b} + \widetilde{d}) = 0 .$$

$$(42)$$

Therefore, we have two classes of admissible parameters $\{\widetilde{a}, \widetilde{b}, \widetilde{c}, \widetilde{d}\}$ constrained by

$$\widetilde{a} + \widetilde{b} + \widetilde{c} + \widetilde{d} = -1 , \quad \widetilde{a}^2 + \widetilde{b}^2 + \widetilde{c}^2 + \widetilde{d}^2 = 1 , \quad \widetilde{b} + \widetilde{d} = 0 , \qquad (43)$$

and

$$\widetilde{a} + \widetilde{b} + \widetilde{c} + \widetilde{d} = -1 , \quad \widetilde{a}^2 + \widetilde{b}^2 + \widetilde{c}^2 + \widetilde{d}^2 = 1 , \quad \widetilde{a} + \widetilde{c} = 0 , \qquad (44)$$

Equivalently, the above conditions may be rewritten as follows

$$\widetilde{a}^2 + \widetilde{b}^2 + \widetilde{c}^2 + \widetilde{d}^2 = 1 , \quad \widetilde{a} + \widetilde{c} = -1 , \quad \widetilde{b} + \widetilde{d} = 0 , \qquad (45)$$

and

$$\tilde{a}^2 + \tilde{b}^2 + \tilde{c}^2 + \tilde{d}^2 = 1$$
, $\tilde{a} + \tilde{c} = 0$, $\tilde{b} + \tilde{d} = -1$. (46)

They describe two circles: the intersection of 3D sphere with two planes. Again, characteristic well known maps $\Lambda[1, 1, 1, 0], \Lambda[1, 1, 0, 1], \Lambda[1, 0, 1, 1]$ and $\Lambda[0, 1, 1, 1]$ (up to a sign) correspond to circulant permutation matrices:

$$\begin{pmatrix} 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Example 5. For n = 5 one has the following circulant orthogonal $[b_{ij}]$ matrix: $\tilde{a} = b_{00}$, $\tilde{b} = b_{01}$, $\tilde{c} = b_{02}$, $\tilde{d} = b_{03}$ and $\tilde{e} = b_{04}$ satisfying

$$\widetilde{a} + \widetilde{b} + \widetilde{c} + \widetilde{d} + \widetilde{e} = -1 .$$
(47)

Orthogonality conditions imply

$$\widetilde{a}^2 + \widetilde{b}^2 + \widetilde{c}^2 + \widetilde{d}^2 + \widetilde{e}^2 = 1 , \quad \widetilde{a}\,\widetilde{e} + \widetilde{b}\,\widetilde{a} + \widetilde{c}\,\widetilde{b} + \widetilde{d}\,\widetilde{c} + \widetilde{e}\,\widetilde{d} = 0 .$$

$$\tag{48}$$

One easily checks that the remaining orthogonality conditions are not independent from (47) and (48). The corresponding set of admissible parameters $\{\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}, \tilde{e}\}$ is 2-dimensional but its shape is not very transparent (47) and (48).

5 Circulant case — a complementary parametrization

Let us recall that if $a_{ij} = \alpha_{i-j}$ defines a circulant matrix, then its eigenvalues are given by

$$\lambda_k = \sum_{l=0}^{n-1} \omega^{-kl} \alpha_l , \quad k = 0, \dots, n-1 , \qquad (49)$$

and the corresponding eigenvectors read

$$\mathbf{x}_k = (1, \omega^k, \omega^{2k}, \dots, \omega^{(n-1)k})^{\mathrm{T}} , \qquad (50)$$

where $\omega = e^{2\pi i/n}$. Two sets $\{\alpha_0, \ldots, \alpha_{n-1}\}$ and $\{\lambda_0, \ldots, \lambda_{n-1}\}$ are related by the discrete Fourier transform. Note that

$$\lambda_0 = \alpha_0 + \ldots + \alpha_{n-1} = n-1 . \tag{51}$$

Consider now a circulant orthogonal matrix $b_{ij} = \beta_{i-j}$ with $\beta_k = \alpha_k - 1$. The corresponding eigenvalues μ_k of $[b_{ij}]$ are defined by

$$\mu_0 = \lambda_0 - n = -1$$
, $\mu_\alpha = \lambda_\alpha$, $\alpha = 1, \dots, n-1$. (52)

Now, since $[b_{ij}]$ is orthogonal one has $|\mu_k| = 1$ and hence

Proposition 8. Real parameters $\{\alpha_0, \ldots, \alpha_{n-1}\}$ satisfy (30) if and only if $|\lambda_{\alpha}| = 1$ for $\alpha = 1, \ldots, n-1$.

This way we obtain a new parametrization of a set of admissible circulant matrices $[a_{ij}]$ by phases of $\lambda_{\alpha} = e^{i\phi_{\alpha}}$. Due to $\lambda_k = \lambda_{n-k}^*$ one has two cases:

- 1. if n = 2m + 1, then we have m independent phases $\lambda_1 = e^{i\phi_1}, \ldots, \lambda_m = e^{i\phi_m}$.
- 2. if n = 2m + 2, then we have *m* independent phases $\lambda_1 = e^{i\phi_1}, \ldots, \lambda_m = e^{i\phi_m}$ and one real parameter $\lambda_{m+1} = \pm 1$.

Example 6. For n = 3 putting $\lambda_1 = e^{i\phi} = \lambda_2^*$ one finds

$$a = \frac{1}{3}(2 + \lambda_1 + \lambda_1^*) = \frac{2}{3}(1 + \cos \phi) ,$$

$$b = \frac{1}{3}(2 + \omega\lambda_1 + \omega^*\lambda_1^*) = \frac{1}{3}(2 - \cos \phi - \sqrt{3}\sin \phi) ,$$

$$c = \frac{1}{3}(2 + \omega^*\lambda_1 + \omega\lambda_1^*) = \frac{1}{3}(2 - \cos \phi + \sqrt{3}\sin \phi) ,$$

(53)

due to $\omega = e^{2\pi i/3} = \frac{1}{2}(-1 + i\sqrt{3})$. This reproduces result of Example 3.

Example 7. For n = 4 if $\lambda_1 = e^{i\phi} = \lambda_3^*$ and $\lambda_2 = 1$ one finds

$$a = \frac{1}{2}(2 + \cos\phi) , \quad b = \frac{1}{2}(1 - \sin\phi) , \quad c = \frac{1}{2}(2 - \cos\phi) , \quad d = \frac{1}{2}(1 + \sin\phi) , \tag{54}$$

and similarly if $\lambda_1 = e^{i\psi} = \lambda_3^*$ and $\lambda_2 = -1$ one has

$$a = \frac{1}{2}(1 + \cos\psi) , \quad b = \frac{1}{2}(2 - \sin\psi) , \quad c = \frac{1}{2}(1 - \cos\psi) , \quad d = \frac{1}{2}(2 + \sin\psi) . \tag{55}$$

Note, that for $\lambda_2 = 1$ one has b + d = 1, whereas for $\lambda_2 = -1$ one has b + d = 2. This way we reproduced two classes from Example 4.

Corollary 5. It is therefore clear that

- 1. if n = 2m + 1, then a set of admissible parameters defines m-dimensional torus \mathbb{T}_m . Note that O(n-1) = O(2m) and a single torus \mathbb{T}_m corresponds to a maximal commutative subgroup of SO(2m).
- 2. if n = 2m + 2, we have two m-dimensional tori \mathbb{T}_m and \mathbb{T}'_m . Torus \mathbb{T}_m corresponds to a maximal commutative subgroup of SO(2m + 1) whereas \mathbb{T}'_m is defined by composing \mathbb{T}_m with reflection, that is, $g \in \mathbb{T}'_m$ iff $-g \in \mathbb{T}_m$ (cf. [8]).

Corollary 6. Positive maps $\Lambda[\alpha_0, \ldots, \alpha_{n-1}]$ are invertible. It follows from the fact that

$$\left|\det[a_{ij}]\right| = \left|\lambda_0 \dots \lambda_{n-1}\right| = n - 1 \neq 0 .$$

$$(56)$$

Note, however, that the inverse $\Lambda^{-1}[\alpha_0, \ldots, \alpha_{n-1}]$ is no longer positive.

6 Conclusions

We analyzed a class of positive maps introduced by Kossakowski [1]. It turns out that these maps display interesting geometric features. In particular its maximal commutative subset — $\Lambda[\alpha_0, \ldots, \alpha_{n-1}]$ — corresponding to circulant matrices $[a_{ij}]$ is parameterized by tori which defines maximal commutative subgroups of the orthogonal group. For further properties of these maps like (in)decomposability and/or optimality see also [8]. It is clear that *via* Choi-Jamiołkowski isomorphism can one provide a similar analysis in terms of entanglement witnesses (see [9] for the recent review).

Acknowledgements

This paper was partially supported by the National Science Center project DEC- 2011/03/B/ST2/00136. I thank Andrzej Kossakowski for the fruitful and inspiring discussions and Andrzej Jamiołkowski for pointing out Ref. [7].

References

- [1] A. Kossakowski, Open Sys. Information Dyn. 10, 213 (2003).
- [2] D. Chruściński and F. A. Wudarski, Open Syst. Inf. Dyn. 18, 387 (2011).
- [3] D. Chruściński and F. A. Wudarski, Open Syst. Inf. Dyn. 19, 1250020 (2012).
- [4] S. J. Cho, S.-H. Kye, and S. G. Lee, Linear Alg. Appl. 171, 213 (1992).
- [5] D. Chruściński and A. Kossakowski, Open Systems and Inf. Dynamics, 14, 275 (2007).
- [6] S. Yamagami, Proc. Amer. Math. Soc. 118, 521 (1993).
- [7] P. G. Casazza, G. Kutyniok, *Introduction to finite frame theory*, in Finite Frames: Theory and Applications, Eds. P. G. Casazza and G. Kutyniok, Birkhäuser, Boston (2012).
- [8] D. Chruściński, J. Phys. A: Math. Theor. 47, 424033 (2014).
- [9] D. Chruściński and G. Sarbicki, J. Phys. A: Math. Theor. 47, 483001 (2014).