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We present a comparative analysis of exact and approximate quantum error correction by means of
simple unabridged analytical computations. For the sake of clarity, using primitive quantum codes,
we study the exact and approximate error correction of the two simplest unital (Pauli errors) and
nonunital (non-Pauli errors) noise models, respectively. The similarities and differences between
the two scenarios are stressed. In addition, the performances of quantum codes quantified by
means of the entanglement fidelity for different recovery schemes are taken into consideration in the
approximate case. Finally, the role of self-complementarity in approximate quantum error correction
is briefly addressed.

PACS numbers: 03.67.Pp (quantum error correction)

I. INTRODUCTION

It is known that decoherence is one of the most important obstacles in quantum information processing, since
it causes a quantum computer to lose its quantum properties destroying its performance advantages over a classical
computer. There are different methods for preserving quantum coherence. One possible technique exploits redundancy
in encoding information. As pointed out in [I], one might think that redundancy cannot be of any use in quantum
computing, since quantum states cannot be cloned [2] However, using the property of quantum entanglement, Shor
and Steane discovered a clever scheme for exploiting redundancy [3, 4]. This scheme is known as quantum error
correcting codes (QECCs). For a comprehensive introduction to QECCs, we refer to [5]. Within such scheme,
information is encoded in linear subspaces (codes) of the total Hilbert space in such a way that errors induced by
the interaction with the environment can be detected and corrected. The QECCs approach may be interpreted as
an active stabilization of a quantum state in which, by monitoring the system and conditionally carrying on suitable
operations, one prevents the loss of information. In detail, the errors occur on a qubit when its evolution differs from
the ideal one. This happens by interaction of the qubit with an environment.

Among the first and most famous QECCs, there are the Shor nine-qubit code [3], the Calderbank-Shor-Steane
seven-qubit code [4, [6] and the perfect 1-error correcting five-qubit code [7, 8] with transmission rate equal to 1/5.
In general, scientists aim at searching for new quantum codes capable of combatting very general error models and
correcting for arbitrary errors at unknown positions in the codeword. These results, in general, have more theoretical
than practical importance, since they assume the existence of a fairly sophisticated quantum computer which has
not been built yet. Fortunately, in many realistic situations, additional information on possible errors is available.
Ideally, this knowledge should be taken into consideration in order to construct the simplest code with the highest
transmission rate that can have a good chance to be implemented in a real laboratory. We stress ¢deally since, in
general, it is a difficult problem to design quantum codes for any particular noise model. For instance, there are
quantum systems for which the noise leads to dephasing errors only or bit-flip errors only. It has been shown that
for such restricted types of decoherence, it is possible to perform error correction of one arbitrary dephasing/bit-flip
error by encoding a single logical qubit into a minimum of three physical qubits [9]. Furthermore, uncovering efficient
codes for restricted error models may be important for proof of principle demonstrations of quantum error correction
[10]. Consider an error model where the position of the erroneous qubits is known. Such errors at known positions are
denoted as erasures [10]. A t-error correcting code is a 2t-erasure correcting code. Also, while 1/5 is the highest rate
for a l-error correcting code, four qubits are sufficient for a code to correct one arbitrary erasure. Omitting suitable
normalization factors, the perfect four-qubit code for the correction of one erasure reads [10],

102) €110000) + [1111) and, [1) <1001) + |0110). (1)
In general, when no knowledge on the noise model is assumed, the errors to be corrected are completely random. This
scenario may lead to the error correction of Pauli-type errors X, Y, Z (with X def 0z, Y def Oy, Z def o) that occur

with equal probability px = py = pz = £ (symmetric depolarizing channel, [IT]). However, if further information

about an error process is available, more efficient codes can be designed as pointed out earlier. As a matter of fact,
in many physical systems, the types of noise are likely to be unbalanced between amplitude (X-type) and phase
(Z-type) errors. These are asymmetric error models which are still described by Kraus operators that are (unitary)
Pauli matrices (Pauli Kraus operators). However, there are types of noise models seen in realistic settings that are



not described by Pauli Kraus operators and, for these cases as well, the task of constructing good error correcting
codes is very challenging. The amplitude damping (AD) channel is the simplest nonunital channel whose Kraus

operators cannot be described by (unitary) Pauli operations [I1]. The two Kraus operators for AD noise are given by

Ag L o () and 44 def V7 0) (1] where v denotes the damping rate (or, damping probability parameter). As we

may observe, there is no simple way of reducing A; to one Pauli error operator since |0) (1| is not normal. Observe
that AJ{ X 05 — 10y, therefore the linear span of A; and AJ{ equals the linear span of o, and o,. If the quantum

system interacts with an environment at finite temperature, the Kraus operator AJ{ will appear in the noise model (as
stressed in [12], the error space to be corrected is a subspace of that spanned by the interaction operators, selected by
the initial state of the environment) [II]. Therefore, if a code is capable of correcting ¢ o,- and ¢ o,-errors, it can also

correct ¢t A; and t A}L errors. For the AD channel, we only need to deal with the error A; but not with AJ{. For such
a reason, requiring to be capable of correcting both o,- and o,-errors is a less efficient way for constructing quantum
codes for the AD channel. The first quantum code correcting single-AD errors was a [[4, 1]] code presented by Leung
et al. in [13]. Omitting proper normalization factors, the Leung et al. [[4, 1]] code reads,

10,) 2°10000) + [1111) and, |11,) %' 0011) + |1100) . (2)

The four-qubit code spanned by the codewords |0y) and |1) in Eq. represents a departure from standard QECCs
that seek to perfectly correct up to ¢ arbitrary errors on the system. The key-point advanced in [I3] is that exact
correctability is too strong a restriction. Relaxing the Knill-Laflamme QEC conditions (KL-conditions) [I4] in such a
manner that they are only approximately satisfied and allowing for a negligible error in the recovery scheme, better
codes with higher transmission rates can be uncovered. The adaptation of the code to the noise model, an idea
remarked later also in [I5], is a crucial factor behind the success of the Leung et al. four-qubit code. Following the
lead of [13], other works concerning the error correction of amplitude damping errors have appeared into the literature
[I5H20]. In [I6] 17], it is emphasized that the concept of self-complementarity is crucial for error correcting amplitude
damping errors, although the sel-complementarity of the Leung et al. code is not specifically mentioned. In [15],
the performance of various quantum error correcting codes for AD errors are numerically analyzed. In particular, a
numerical analysis of the performance (quantified by means of Schumacher’s entanglement fidelity, [21] ) of the four-
qubit code for two recovery schemes can be found. The recovery schemes employed are the so-called code projected
and the optimal channel adapted recovery schemes. The latter scheme was computed via semidefinite programming
methods in [I9]. However, no explicit analytical investigation (similar, for instance, to the investigations presented in
[22] and [23] for depolarizing and Weyl unitary errors, respectively) is available. Furthermore, as pointed out in [20],
numerically computed recovery maps are difficult to describe and understand analytically.

Inspired by [16], [I7], we uncover that among the possible 28-pairs of orthonormal self-complementary codewords
in H3, only three pairs are indeed good (locally permutation equivalent, [25]) single AD-error correcting codes. In
particular, two of these pairs define the perfect 1-erasure correcting code in Eq. and the well-known four-qubit
Leung et al. code in Eq. . Moreover, motivated by the numerical analysis presented in [I5], we provide a fully
analytical investigation of the performances, quantified in terms of Schumacher’s entanglement fidelity, of the Leung
et al. four-qubit code. For the four-qubit code, the performance is evaluated for three different recovery schemes:
the standard QEC recovery operation, the code-projected recovery operation and, finally, an analytically-optimized
Fletcher’s-type channel-adapted recovery operation [15].

The layout of this article is as follows. In Section II, we describe necessary conditions for approximate quantum
error correction together with necessary and sufficient conditions for exact quantum error correction. In Section III,
we present a detailed study for the exact error correction of the bit-flip (or, similarly, phase-flip) noise errors by means
of the three-qubit repetition code. We also present an analytical investigation of amplitude errors by means of the
Leung et al. four-qubit code. The performance of each code is quantified by means of the entanglement fidelity. In
particular, we compare three different recovery schemes in the approximate case. The concluding remarks appear in
Section IV. A number of appendices with technical details of calculations are also provided.

II. FROM EXACT TO APPROXIMATE QUANTUM ERROR CORRECTION CONDITIONS

The very first sufficient conditions for approximate quantum error correction were introduced by Leung et al. in
[13]. They showed that quantum codes can be effective in the error correction procedure even though they violated
the standard KL-conditions. However, these violations characterized by small deviations from the standard error-
correction conditions are allowed provided that they do not affect the desired fidelity order.



A. Exact quantum error correction conditions

For the sake of reasoning, let us consider a quantum stabilizer code C with code parameters [[n, k,d]] encoding
k-logical qubits in the Hilbert space HX into n-physical qubits in the Hilbert space % and distance d. Assume that
the noise model after the encoding procedure is A (p) and can be described by an operator-sum representation,

Ap) BN Appal, (3)
ke

where K is the index set of all the enlarged Kraus operators Ay that appear in the sum. The noise channel A is a
CPTP (completely positive and trace preserving) map. The codespace of C is a k-dimensional subspace of H} where

some error operators that characterize the error model A being considered can be reversed. Denote with Ayeversible C

AL {Ax} with k € K the set of reversible enlarged errors Ay on C such that Kieversible def {k : Ag € Aroversible} 18

the index set of Ayeversible- Therefore, the noise model A’ (p) given by,
def
Np) = Y ApAl (4)
ke)creversible

is reversible on C C H%. The noise channel A’ denotes a CP but non-TP map. The enlarged error operators Ay in
Areversible satisfy the standard error correction conditions [I1],

PeA Ay Pe = apm Pe, (5)

for any I, m € Kieversible; Fc denotes the projector on the codespace and «y,, are entries of a positive Hermitian
matrix. Furthermore, a subset of error operators Ag in Apeversible iS detectable if it satisfies the following detectability
conditions,

PeApPe = Aa, Fe, (6)

where A4, denotes a proportionality constant between PeApPc and Pe. The fulfillment of Eq. for some subset
of enlarged error operators A; that characterize the operator sum representation of the noise model A implies that
there exists an new operator-sum decomposition of A such that A’ (p) in Eq. becomes,

def
Np) = > AppAl (7)
;eversible

where is replaced by
Pe Al AL Pe = prmdim Pe, (8)

for any I, m € K sl With the error detection probabilities p,, non-negative c-numbers. We remark that Eq.

is equivalent to the usual (exact) orthogonality and non-deformation conditions for a nondegenerate code,
(ic| AT Am| 1) = 8530impin (9)

for any i, j labelling the logical states and [, m € Kieversible-
Observe that for any linear operator Aj on a vector space V there exists a unitary Uy and a positive operator

gL \/AQA;C such that [11],
1= Upd = U/ AJ AL (10)

We stress that J is the unique positive operator that satisfies Eq. . As a matter of fact, multiplying A} = UpJ
on the left by the adjoint equation Ag =JU ,I gives,

ATAL = JUU T = T2 = T =\/Al A, (11)

Furthermore, if A} is invertible (that is, det A}, # 0), Uy, is unique and reads,

-1
Uy a7t = 4, (\/AQA;) . (12)
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How do we choose the unitary U, when Aj is not invertible? The operator J is a positive operator and belongs to a
special subclass of Hermitian operators such that for any vector |v) € V, (v |J|v) is a real and non-negative number.
Therefore, J has a spectral decomposition

JENATA =S al, (13)
l

where A; > 0 and {|l)} denotes an orthonormal basis for the vector space V. Define the vectors |¢;) €of A} |l) and
notice that,

(W) = (1] 4 4y

1) = ]2y = A2, (14)
For the time being, consider only those [ for which A; # 0. For those [, consider the vectors |e;) defined as

def [Pr) _ Ajll)
e ==

(15)
with (e; |y ) = 0y For those [ for which A; = 0, extend the orthonormal set {|e;)} in such a manner that it forms an
orthonormal basis {|E})}. Then, a suitable choice for the unitary operator Uy such that

Ay 1) = UeJ D), (16)

with {]I)} an orthonormal basis for V' reads,
def
Ux = D 1E) (- (17)
1

In summary, the unitary Uy is uniquely determined by Eq. when Aj is invertible or Eq. when Aj is not
necessarily invertible. We finally stress that the non-uniqueness of U, when det A} = 0 is due to the freedom in
choosing the orthonormal basis {|I}} for the vector space V.

In the scenario being considered, when Eq. is satisfied, the enlarged error operators A/, admit polar decompo-
sitions,

AL Pe = /prnUn e, (18)
with k € Kreversible: From Eqs. and (18], we get
PmbimPe = Pe Al Al Pe = \/pipm PeU} Uy, Pe, (19)
that is,
PeU U, Pe = 81n Pe. (20)

We stress that Eq. is needed for an unambiguous syndrome detection since, as a consequence of the orthogonality

of different R} def U, Pec, the recovery operation R def {Rn} is trace preserving. This can be shown as follows.

Let V% be the subspace of 3 spanned by the corrupted images {4}, |ir)} of the codewords |ip). Let {|vi%)} be an

orthonormal basis for V. We define such a subspace V- for each of the codewords. Because of the KL-conditions
(14,

(ilAfAwlin) = (julAfAwlin), i, j

(il AfAwlj) =0,V i # j, (21)

the subspaces Vit and VIt with i # j are orthogonal subspaces. If Vi @ VIt is a proper subset of H% with
VL @ VIt £ Hy we denote its orthogonal complement by O. We then have,

eV e (Vo) = (Ve V) e o, =



where,

0L (vir g yir)t (23)

Let {|ox)} be an orthonormal basis for O. Then, the set of states {|vi%), |og)} constitutes an orthonormal basis for

‘Hy. We introduce the quantum recovery operation R with operation elements

R &t {Rl,..., Ry...., O}, (24)

with,

R(ME Y RupRL+0p0", (25)
keK!

reversible

where,

R, Y i) (viE | (26)

and O (with O = OT = OT0) is a projector onto the subspace O in Eq. ,
0=y Jow) {oul (27)
k

We remark that the recovery operation R is a trace preserving quantum operation by construction because,

T T
S RIR,4010- %" (zm@:‘e\) S ) (o2 +(z|ok><ok|> (z|ok/><okf|)
i J i Y

T I

= > |viE) Ginlin) (W[ + D lok) (oklow) (ox]

i, j k, k/

= > [oiE) (vl 65+ D low) {ow| Srrr

I k, k'
=D o) (o= + D low) (ol
r, 4 k

- IQ" X 27 (28)

since Byp 2o {‘U$L> , lok)} is an orthonormal basis for H%. For more details, we refer to [14].

B. Approximate quantum error correction conditions

In general, approximate quantum error correction becomes useful when the operator-sum representation of the
noise model is defined by errors parametrized by a certain number of small parameters such as the coupling strength
between the environment and the quantum system. For the sake of simplicity, suppose the error model is characterized
by a single small parameter § and assume the goal is to uncover a quantum code for the noise model A’ with fidelity,

F>1-0(6°), (29)

for some 8 > 0. How strong can be the violation of the standard (exact) KL-conditions in order to preserve the
desired fidelity order in Eq. ? In other words, how relaxed can the approximate error correction conditions be so
that the inequality in is satisfied? The answer to this important question was provided by Leung et al. in [13].



It turns out that for both exact and approximate quantum error correction conditions, it is necessary that

def
Pdetection = Z Pk > ]:a (30)
keKk!

reversible

where Pietection denotes the total error detection probability. Eq. requires that all the enlarged error operators

A} with maximum detection probability must be included in A/ 1.,

max Tr (|¢m> (] ALT A;) ~ O (6%) with a < 5. (31)
The important point is that a good overlap between the input and output states is needed while it is not necessary
to recover the exact input state |1;,) (¥in|, since we do not require F = 1. In terms of the enlarged error opera-
tors restricted to the codespace, this means that such errors need to be only approximately unitary and mutually
orthogonal. These considerations lead to the relaxed sufficient error correction conditions.

In analogy to , assume that the polar decomposition for Aj is given by,

AlPe = Uy Pe AT A Pe. (32)

Since PCA;TA;PC restricted to the codespace C have different eigenvalues, the exact error correction conditions are
not fulfilled. Let us say that p; and \;p; are the largest and the smallest eigenvalues, respectively, where both p; and
A are c-numbers. Furthermore, let us define the so-called residue operator m; as [13],

def /
™ = PcAETA;PC — 1\ )\lplPCa (33)

0 < |m| 2 (71;771)

where,

Nl

< Vo =V . (34)
Substituting into , we get

4P = Ui (v +m) Pe. (35)
From Eq. 1} and imposing that PCUlTUmPc = & P, the analog of Eq. becomes

PeAY AL Pe = (MI + wj) (\/Ampml + wm) Pedim, (36)

where,
yui (]. — )\l) S O (5ﬂ+1) ) VZ € ,C;eversible' (37)

We stress that when the exact error correction conditions are satisfied, \; = 1 and m; = 0 (the null operator).

Thus, in that scenario, Eqs. (8) and (36] coincide. Finally, we point out that an approximate recovery operation
def

R = {Rl,..., R.,..., O} with Ry defined in Eq. and O formally defined just as in the exact case can be employed
in this new scenario as well. However, assuming to consider R], def U,,Pc, extra care in the explicit computation of
the unitary operators U, is needed in view of the fact that the polar decomposition is replaced by the one in
(32). For an explicit unabridged and correct computation of recovery operators as originally proposed by Leung et
al., see Appendix A. For further theoretical details, we refer to reference [13].

III. FROM EXACT TO APPROXIMATE QEC: TWO SIMPLE NOISE MODELS

The objective in this section is to discuss in detail the exact and approximate error correction conditions for the
simplest unital and nonunital channels, respectively. Specifically, we consider the bit-flip and the amplitude damping
noise models. Error correction is performed by means of the three-qubit bit-flip repetition code for the unital channel
while we employ the four-qubit Leung et al. code for the nonunital noise model. We acknowledge that the bit-flip noise
model is certainly not the prototype of a truly quantum noise model. However, we believe its consideration is suitable
for our purposes, since we wish to essentially stress the similarities and differences between exact and approximate
error correction schemes avoiding unnecessary complications. The exact error correction analysis for more realistic
and truly quantum error models along the lines presented here could be found in previous works of one of the Authors
[22124].



A. The simplest unital channel with Pauli errors

We consider a bit-flip noisy quantum channel and QEC is performed via the three-qubit bit-flip repetition code
[I1I]. We remark that the bit-flip and the phase-flip (or, dephasing) channels are unitarily equivalent. This means
that there exists a unitary operator U such that the action of one channel is the same as the other, provided the first
channel is proceed by U and followed by UT. In the case being considered, it follows that

ef
Api (p) & (H 0 Apnase 0 H) (),

where H denotes the Hadamard single-qubit gate. Error correction of dephasing errors by means of the three-qubit
phase flip repetition code works very much like the error correction of bit-flip errors via the three-qubit bit flip
repetition code. That said, we admit that a pure dephasing channel, with no other sources of noise at all, is physically
improbable. However, in many physical systems, dephasing is indeed the dominant error source [26].

The performance of the error correcting code is quantified by means of the entanglement fidelity as function of the

error probability. The bit flip noisy channel Al(jliz (single use of the channel) is defined as follows,

def
A (0) = (1—p) p+pXpXT, (38)
where the matrix representation in the 1-qubit computational basis Beomputational = {|0) , |1)} of the X-Pauli operator
is given by,
def ( (0]X|0) (O|X|1)\ (01
[X]Beomptntionn — ( axjoy (axpy ) =\10) (39)

Observe that the bit-flip channel is a unital channel since Al()liz (I) = I. Consider the three-qubit bit flip encoding
defined as,

10) = [02) = (000}, [1) — [1,) = [111). (40)

The action of three uses of the bit flip channel A](O?i’z (p) on 3-qubits quantum states reads,

1
3 def
Al(m) (p) = Z PizPiyDiy (Ai3 ® Aiz ® Ai1) P (A13 ® Aiz ® Ail)T ) (41)

i1, 12, 13=0

where Ag defy , Aq 2f X are Pauli operators. Furthermore,
def def
po = 1-p,p1 = p, (42)
with,
1
> pipipi =i+ 3p10g + 3pipo + pf = 1. (43)

i1, 12, i3=0
To simplify our notation, we may assume that 4; ®...®A4;, = A, ...A;,. The channel A](D?i’z (p) can be written as,

7 7
A (p) B " A pAfl and, S AT AL = I, (44)
k=0 k=0

where we denote with A the superoperator defined in terms of the enlarged error operators {A4j,.., A%}. In an explicit
way, the error operators {Aj,.., A,} read,

Ayl e P o, AL\ IpmX o P ?, Ay S\ /il © X2 e 1P,
; def

AL Rl @ P e X, AL S pipe Xt e X2 e 1P, ALY [pPpo Xt e 1P @ X°,

Ay = ppel @ X2 @ X3, AL S X @ X2 @ X°. (45)



The set of error operators satisfying the detectability condition, Pc A} Pc = Aa; Pe, where e o 10z) Oz + [1z) (1]
is the projector operator on the code subspace C défSpan{\O,;) , |1r)} is given by,

def

Adctcctablc - {A A/la A/Qa Aéy Aﬁp Aga A/6} g A (46)

The only non detectable error is A%. Furthermore, since all the detectable errors are invertible, the set of correctable

errors is such that A’ Acorrectable 18 detectable [27]. Tt follows that,

correctable

def
-Acorrectable - {A Alla A/27 Ag} g Adetectable g -A (47)

To be more explicit, the set of enlarged error operators { A} with k € {0,..., IE} is correctable provided that,

Pe AT Al Pe P, (48)
for any pair of (I, m) with I, m € {0,..., l?:}. Eq. is satisfied if and only if,
1L> <1L ‘A'TA’

for any pair of (I, m) with [, m € {O,..., k} The enlarged error operators {A;} in can be rewritten as,

/ def / 1 _ I A/ def / X1 A/ def / X2
A p(1—p)° X3, AL E P (1 p)XIX2, AL S p2 (1 p) XX,

<0L )A’TA’

0L> <1L ‘A'TA’

1L> and, <0L ‘A’TA’

0L> —0, (49)

Ay T PR, A, X XX (50)

The action of the correctable error operators Acorrectable 01 the codewords |0r,) and |11) is given by,

0r) = Ap [0L) = /P |000), A7 |0r) = +/p1pg [100), A5 |0r) = 1/p1pg |010), A3 |0L) = 4/p1pg |001)

L) = AG[1p) = \/pg [111), AL (1) = \/p1pg |011), A5 [1) = \/pip§ [101) , Az [1r) = /p1pF [110). (51)

The two four-dimensional orthogonal subspaces V& and V't of Hj generated by the action of Acorrectable 01 [07)
and |17) are defined as,

VOr = Span { [1)*) = [000) , [v5*) =[100), [0§*) = 1010), |v§*) = |001) }, (52)
and,

def

Ve = Span {|v") = |111), [v3? ) = [011), |vg®) = [101), |vg*) = [110)}, (53)

respectively. Notice that V& @ V't = H3. The recovery superoperator R <+ {R;} with [ = 1,.., 4 is defined as [14],

1
R, ¥y, Z vy ) (vp*
i=0

where the unitary operator V; is such that V; |vliL> = |zL> for i € {0, 1}. Substltutlng and into , it
follows that the four recovery operators {Rg, R, Rz, R3} are given by,

; (54)

e 1 ; 1
Ry & —p=—="PeAg = |000) (00| + [111) (111], Ry &f Pe A"t =1000) (100] + |111) (011],
(1-p)?° p(1-p)?
def 1 "o def 1 "o
Ry = P A =1000) (010] + |111) (101], Rs &' —— Pc A = [000) (001| + |111) (110], (55)
2 3
p(1-p) VP



with,

3
> RIR) = Iys o (56)
=0

We observe that the four recovery operators R; associated with the four correctable errors A; with j € {0, 1, 2, 3}
are formally defined as,

aer  10z) (0] AT 1) (1] A

ooyl

When considering exact quantum error correction, R; oc PCA;r where the coefficient of proportionality must be

(57)

determined in such a manner that its product with A;-T leads to a unitary operator. This coefficient equals the square
root of <OL A;.TA; OL> (or, <1L A;TA;
standard QEC recovery superoperator R def {Ro, R1, Ra, R3}:

1 L>) We emphasize three features of exact-QEC, two of which concern the

e The two eigenvalues Apax and Ay of the (2 x 2)-matrix associated with the operators PCA;TA;HPC (with A}
correctable errors) on the codespace C coincide. For example, for PCAQAE)PC we have Apax = Amin = (1 — p)g;

e The projector on the codespace P¢ belongs to R, the standard QEC recovery;

e All the four recovery operators in R are p-independent, where p denotes the error probability and is the single
parameter that characterizes the noise model being considered.

For the simple bit-flip noise model with error correction performed by means of the three-qubit bit-flip code, the
entanglement fidelity reads [211 28],

7 3 7 3
def
Fisa (0) = dlmCCQZDTr (ReADel” = 233 100 |Re A} 01) + (11 |RiAf 1)) (58)

1=0 k=0 1=0 k=0
Substituting into the RHS of (5 ., we obtain

»lk\H

2
Fiiz1.1) (p)iii <OL’AgA2 OL> + <1L’A;JA2’1L> . (59)

1=0 k=0 \/<0L’A;€TA;€ 0L> \/<1L’A;€TA2 1L>

We observe that Fy3 1,1y (p) is, in principle, the sum of 4 x 8 = 32-terms that arise by considering all the possible pairs
(k, l) with k € {0, 1,2, 3} and [ € {0, 1, 2, 3, 4, 5, 6, 7, 8}. However, it turns out that only 4-terms are nonvanishing
and contribute to the computation of the entanglement fidelity. They are {(k, )} = {(0,0), (1, 1), (2, 2), (3, 3)}.
Thus, only the four correctable errors { Ay, A}, A}, AL} are recoverable. Indeed, they are fully recovered and,

(mAf), = (ou|Afas|ou) 1= (10|44

In the exact-QEC scenario, we stress:

1L> I 1. (60)

e Only the correctable errors are recoverable. Indeed, they are fully recoverable. No off-diagonal contribution
arises.

In summary, Fis,1,17] (p) reads

‘ (0nlag aplor) . (1ol gl ’ (Onlaiarlon) | (1o]ay apl)
. V0orag aglo) — \/(1e|agap|ie) V0orafagfor)  \/(1]afag|in)
Fis (P) = 5

(oL]A5 AjloL) (1p|A AL |1L) (oL]A5 ALloL) (1L]AT AL |1L)

\/<0L|A’;A'2|0L> \/<1L|A;TA/2|1L> \/(0L|A/3*A/3|0L> \/<1L|A’4TA'4|1L>

=3 [o{on ]34,

0)+4 (0 |4 44

0) +4(0s, |45 4

0) +4 (0,45 45

OL>} ) (61)
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that is,

— AV

iy () = (00 |4 4}

Substituting into , we get

00) + {0z ]A’JA’l

0L> + <0L ’AIQTA/Q

0r) + {0z ’AgAg

0L> . (62)

Fizy (p) =1 —3p* +2p°. (63)

When the error probability p increases beyond a certain threshold p, quantum error correction does more harm than
good. To uncover this point p, we have to check two conditions. First, we compare Fyz 1 1)) (p) with the fidelity
without coding and error correction (the so-called single-qubit baseline performance),

1
ef 1
Faoqre () 7Y 1T A" =1-2p + 7. (64)
k=0

For this error correction scheme to be useful, it must be

Fro-qec (p) < Fiiz,1,1y () - (65)

In the case being considered, this inequality holds true for any 0 < p < 1. Second, the error correction scheme is

effective provided that the failure probability Peajiure (P) defy Fia,1,1)) (p) is smaller than the error probability p,

Pfailure (p) S D (66)

This second inequality holds true if and only if 0 < p < %

B. The simplest nonunital channel with non-Pauli errors

An approximate QEC framework turns out to be of great use when combatting non-Pauli errors. Within such
framework, we allow for a negligible but non-vanishing error in the recovery so that errors need not be exactly
orthogonal to be unambiguously detected and perfectly recovered. Indeed, we allow for slight non-orthogonalities
between approximately correctable error operators. This way, correctable errors have to satisfy the KL-conditions only
approximately. As a consequence, in such a scenario, the composite operation RAE is necessarily only approximately
close to the identity on the codespace. Observe that in such approximate QEC framework, for a given noise model,
more codes satisfying the approximate KL-conditions can be constructed. Furthermore, it is not unusual to uncover
codes of shorter block lengths which, although of less general applicability, may indeed be more efficient for the specific
error model considered. For instance, when considering amplitude damping errors in the standard Ay, A; non-Pauli
error basis on a n-qubits state, to the first order in 7, (n + 1)-errors may occur. Thus, in order to be correctable
by this nondegenerate non-Pauli basis code, such errors must map the codeword space to orthogonal spaces if the
syndrome is to be detected unambiguously. Thus, it must be 2™ > 2 (n 4 1), that is n > 3. Instead, considering the
error correction of the same decoherence model by means of nondegenerate standard Pauli basis codes, it must be
2™ > 2(2n 4+ 1), that is n > 5. The former scenario arises when considering the amplitude damping channel and using
the Leung et al. [[4, 1]] code.

In the case of amplitude damping, we model the environment as starting in the |0) state as it were at zero temper-
ature. The AD quantum noisy channel is defined as [I1],

1
def
Aap () €3 AppAl, (67)
k=0
where the Kraus error operators Ay read,

AodZEf%{(14—@)]4-(1—\/ﬁ)%}w‘hdg%(%‘f‘wy)- (68)

Observe that the AD channel is nonunital since Aap (I) # I. The (2 x 2)-matrix representation of the Ay operators
is given by,

Aoz(é\/lo—ﬁ and,A1:(8 \?) (69)



11

The action of the Ay with k € {0, 1} operators on the computational basis vectors |0) and |1) reads,

Ag|0) =10}, Ao [1) = /1 =~7]1), (70)
and,
A|0) =0, A1 |1) =/710), (71)

respectively. The codewords of the Leung et al. [[4, 1]] quantum code are given by [I3],

o 1 dof 1
102) %" — (]0000) + [1111)) and, |17) %" — (j0011) + [1100)). (72)

V2 V2

We underline that this code is a two-dimensional subspace of the 16-dimensional compler Hilbert space Hj and
is spanned by self-complementary codewords. Recall that a code C is called self-complementary if its codespace is
spanned by codewords {|c,)} defined as,

act |a) + [a)

73 (73)

|Ca>

where a is a binary string of length n and a def 16®a is the complement of a. In Appendix B, we show that, in
addition to the Leung et al. four-qubit code, there are only two additional two-dimensional subspaces spanned by
self-complementary codewords in Hj capable of error-correcting single AD-errors.

After the encoding operation, the total set of enlarged error operators is given by the following 16 enlarged error
operators,

A(]O()Ov Al()(]()a AOIOOa A()()l(h AOOO17 All(]()v AlOlO» Al(]Olu A()ll()7 A(]l(]h AOOll»

def
-Atotal = 5 (74)
A11107 A10117 A01117 AllOla Allll

== 3 (1) =0)+ () 6+ 6)+() )

Consider the following quantum state |¢),

where,

) ajoL) + B11L), (76)

where «, § € C and |04|2 + |ﬁ|2 = 1. Then, the action of the weight-0 enlarged error operator Agggo on |¢) reads,

|0000) + (1 —~)?|1111)
V2

The action of the four weight-1 enlarged error operators is given by,

Aoooo [¥) = « (77)

p [(1 _ .y (oo1y + |noo>)] .

V2

y(1 -

Agono 1) = | 29 (o (1= ) 1100+ 810003)] Ao 1) = 1/ 20 [ (1 - 9) 1120) + 5100103 (7

The action of the six weight-2 enlarged error operators reads,

Avioo [6) = —= a (1 — 4) [0011) + £10000)], A1o10 [10) = —=ry (1 — ~) [0101),

V2 V2
Aroor [¢) = %’Y (1 —7)10110), Ao110 [¢) = —=7 (1 — ) [1001),

Sl=2 e

Aoto1 [) = —=~ (1 = 7) [1010) , Agouy |¢) =

7 [ (1 — 7) [1100) + 3]0000)] . (79)



12

The action of the four weight-3 enlarged error operators is given by,

A1110 |¢ ’)/ \/ 1-— |0001 A1011 |¢ ’}/ A/ 1-— |0100
A0111 |’¢ ’)/ \/ 1-— |1000 A1101 I?,b ’Y A/ 1-— |0010 (80)

Finally, the action of the weight-4 enlarged error operator reads,

«
Ann |[¢) = E’Yz |0000) . (81)
For the sake of completeness, observe that
1 1 1
Z P(Ai1i2i3i4) = Z TI‘( 11921314 |w> < | 117,27,37,4> = Z <'(/J ‘A;rliziguAiliziSizl ,(/)>
i1, iz, i3, i4=0 i1, i2, 13, 14=0 i1, i2, i3, 14=0

4
_ (“22+(1_2”) a? + B2 (1—7)2> +4<7(12_”) (a2 (1—7)2+52)> +

Q
+47 (a2 1-7)7°+ 52) +2029% (1 —7)% +20%9% (1 — ) + —~*

=a?+ 2=+ 187 =1, (82)

where P (A;,i,i4,) denotes the probability that A4;,;,:4:, occurs. We recall that for a given code C, the set of detectable
errors is closed under linear combinations. That is, if 4 and Es are both detectable, then so is aFy + SFE5. This
useful property implies that to check detectability, one has to consider only the elements of a linear basis for the space
of errors of interest. An enlarged error operator A is detectable if and only if,

PcAch X Pc, (83)

where P, &' |0r) (Or| + |1z) (11| is the projector on the codespace C. Condition requires that for detectable
errors it must be,

<OL |Ak| 0L> = <1L |Ak| 1L> and7 <0L |Ak| 1L> =0= <1L ‘Ak| 0L> . (84)

For the weight-0 enlarged error operator Agggg, we have

<0L|A0000|0L>—1—’Y+ =¥ =1-74+0(*), (1z|Aoooo|12) =1 -7,

2

(0 [Aoooo| 1) = 0 = (11 [Aoooo| Oz) - (85)

Therefore, Agggp is detectable. Similarly, it turns out that the four weight-1 enlarged error operators Ajggg, Ao100,
Agoro and Aggor are detectable. For instance, for Agigp we obtain

(0r |Ao100|02) = 0= (11 [Ag100| 1z) and, (Or |Aoioo| 1) =0 = (11 |Ap100/0L) - (86)

Considering the weight-2 enlarged error operators, it follows that Aj1099 and Agg11 are not detectable since

1 _
(0r |A1100/0) = 0= (11 |A1100| 1) and, (Or |Aii00]1L) = % #0, (11 |A1100/0r) = ¥ # 0, (87)

and,

1—
(01 | Aoona|02) = 0= {Le [dgont| 12) and, {0 [doonr|12) = 2 #0, (1 [Aoom|0n) = TP 0. (s
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On the contrary the weight-2 enlarged error operators A1919, A1001, Ao110 and Ag191 are detectable. For instance, for
A1010 we have

(0z |A1010|02) = 0= (11 |A1010|1z) and, (Oz |A1010|12) =0 = (11 |A1010/0z) - (89)

The four weight-3 enlarged error operators Ay110, A1011, Ao111 and Aj191 are all detectable. For each one of them we
get the same type of relations which hold true for A;1119. For instance,

(0 |A1110]10r) =0 = (11 |A1110] 1) and, Oz |Ai110|1z) =0 = (11 |A1110/0L) - (90)

Finally, the weight-4 enlarged error operator Aj11; is not detectable since

2
(0 |A1111]0z) = % #0=(1p|A1111]1z) and, (Oz|A1111]1n) =0= (17 |A1111]0z) . (91)

We point out that the physical reason why Agggo is detectable and Aj11; is not detectable is as follows: there is a
nonzero probability for the error Agggp to occur within the considered orders (up to linear orders in gamma), whereas
the error A1111; would simply never occur in those allowed orders (0-th and 1-st in gamma); in other words, by ignoring
terms proportional to v2, the Aj111 error (four photons get lost) simply does not exist and thus it cannot be referred
to as detectable. In conclusion, we have

def
Agetectable = Atotal/ {40011, 41100, A1111} € Atotal- (92)

We also recall that the notion of correctability depends on all the errors in the set under consideration and, unlike
detectability, cannot be applied to individual errors [27]. Furthermore, it is important to note that a linear combination
of correctable errors is also a correctable error. A set of enlarged error operators { Ay} is correctable iff,

PCAIAmPC 0.8 Pc. (93)

Condition requires that for correctable errors it must be,

(o, ‘AZTAm‘OL> = (1 ]AfAn|1L) and, (0p ’A}Am

1) =0=(1, ’A}Am

0L> : (94)

In the case under investigation, it turns out that the following set of enlarged error operators is correctable

def
Acorrectable = {40000, 410005 40100, 40010, A0001} € Adetectable © Atotal- (95)

When [ # m, error operators in Acorrectable Perfectly (arbitrary order in ) satisfy the conditions in . When [ = m,
we have

<0L Agoovoooo 1L> =0= (1 A&)ovoooo Or, 0r A(TJoovoooo 0L> =1-2y+0(¥*) = <1L ‘Ag)oovoooo‘ 1L>,

Or Aiookooo 1p 1 AIOOOAwoo Or Or Aioooz‘hooo 0p)= % +0(¥*) =(1, AioooAlooo 1p,

)

A$100A01oo 1p,

)

0L A(TJomAOOlO Or 1 A(TJoonom 1r,

[
o[
_|_
a
=)

[\v]
SN—
[

Or A(T)oonom 1r, 1r, A$010A0010 Or

0z |Alpo1 Aooor| 1z 12 | Af 501 Aooor | Oz 01 |Aly01 Aooor| 0z 12 | Af o1 Aooor | 11

)

(96)

{ )
)=0=( )
01 [ Ao Aowo| 1) = 0 = (12 [ Ao Aonan 00 . (01 [ g o]0
)=0=( )
)=0=( )

)
)
)
)

I
o2
+
S
—~
@)
[N
SN—
I
PES PES P P
—
~

)
)
)
=5+0() = )

therefore, the KL-conditions in are only approximately fulfilled to the first order in the damping parameter ~.
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1. The standard QEC recovery operation

Let us construct now the standard QEC recovery operators. Following our remarks in Section II, we observe that
the suitable orthonormal basis By for the 16-dimensional complez Hilbert space H3 reads,

BH4 d—Ef{‘v]L> |ok} (97)
with,
of [0000) + (1 —~)?[1111 of [0011) + (1100 of of
\vo>d=‘ [ k) >, vy) |>\/§|>,| o) Lj0111), Jus) &' (0100)
1+ (1—9)°

lvg) 211011), [us) € (1000), |ve) & [1101), Jur) 2 10001) , |vs) X (1110,

lvg) < |0010) (98)
and,

l01) = [v10) € (0101), Joo) = |v11) 2 0110), |03) = |v12) % [1001), Jos) = |v15) & |1010),

2
105) = [or) def (1—7) |0000>-—|1111>,|O >Ez|v15>§§fﬂy1gggjjg}992. (99)
' 14+ (1-9) 6 V2

The standard QEC recovery superoperator R is given by,
R “ { Ro, Ry, Rz, Rs, Rs, O}, (100)
where,

ef ef ef
Ro < |01) (vo] + 12) (v1], Ri € (0z) (va] + [15) (v3], Ra 101) (va] + [11) (vs] ,

def def
Ry = [0r) (ve| +[|1L) (v7|, Ra = [0r) (vs|+ [11) (vo|, O

def

[vj@

) (ok| - (101)

b
Il

We remark that, unlike the exact case, we have now:

e The two eigenvalues A\pax and Ay, of the (2 x 2)-matrix associated with the operators PCA;rAmPC (with Ay
correctable errors) on the codespace C do not coincide. For example, for PCA:SAOPC we have A\pax = M

and Apin = (1 — 7)2. The discrepancy between the two eigenvalues is a fingerprint of the non-unitarity of Ay Pe
where Ay, is correctable;

e The non-tracelessness of the operators PcAlTAmPc with [ # m is an indicator of the non-orthogonality between
AmPc and Ach;

e The projector on the codespace Pz does not belong to R, the standard QEC recovery;

e There exist recovery operators in R that are y-dependent, where v denotes the damping probability and is the
single parameter that characterizes the noise model being considered.
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In this case, it turns out that the entanglement fidelity becomes,

-recover, def 1
Filag < () = WZITr (RpAr)el”
l, k

:% \/1+(12—7)4+\/2(1— F \/17_ <41+ 12_ . <§>2>+

1 (P

+ 4
2(1+(1-9")
~1-2v+0 (7%, (102)
that is,
EC-recover
FE Vi) =1-2v"+0(¥*). (103)
We stress that ]—'%Ef TOCOVEY () is, in principle, the sum of 5 x 16 = 80-terms that arise by considering

all the possible pairs (k,1) with & € {0,..,4} and [ € {0,...,16}. However, it turns out that only 6-
terms are nonvanishing and contribute to the computation of the entanglement fidelity. They are {(k, 1)} =
{(0,0), (1,1), (2,2), (3,3), (4,4), (0, 15)}. Thus, not only the five correctable errors {4y, A1, Aa, A3, Ay} are
partially recoverable since

(o0 a4,

00) # (10 |Af 4

1 L> (for arbitrary orders in ), (104)

but there is also the emergence of an off-diagonal contribution (0, 15). Thus, unlike the exact scenario, we have for
the approximate case that:

e Not only the correctable errors are recoverable. Indeed, they are not fully recoverable. Off-diagonal contributions
do arise.

2. The code-projected recovery operation

As we have noticed in Eq. (101)), the standard QEC recovery does not contain the projector on the codespace as
possible recovery operator. In this new case, the chosen (orthonormal) basis vectors spanning Hj are given by,

e [0000) + [1111) e 0011) +[1100)

det [0000) — |1111
oy 0000) — [1111)

det |0011) — {1100
g st 0011) — [1100)

[v0)  Jvs) =

V2 V2 V2 N
oa) € [0111) , Jus) 2 [0100), Jvg) & [1011), or) < [1000) , [vs) % [1101), [vg) < |0001)
010) € [1110) , Jor1) €' [0010), Jora) ©[1001), [o1z) € 1010), [v14) € [0101), [o15) < [0110) . (105)

The code-projected recovery (CP recovery) becomes,

(ijf {R17 R27 R, R47 Rs, Rﬁa Ry, R87 Ry, RlO}a (106)
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where,
def
Ry =|00) (0| + 1) (1L,
def 1 1 1 1
Ry =10 — (0000| — — (1111| | + |1 — (0011} — — (1100] ) ,
2 j0u) (75 (0000] — = 1ttt ) 1) (5 0011] - - (1100
def def def

Rs = |0) (0111] 4 |11) (0100] = R.a,40, R4 = |0L) (1011| + |11) (1000] = R4 Rs = |0) (1101] 4 |1L) (0001] = R4y,

0100’

Rs ' 0L) (1110] + [11) (0010] = Rayop,» Ry = [02) (1001] = Ragyg, Rs < [01) (1010] = Ragy,,

Ry “|01) (0101] = Raypye, Rio % |0L) (0110] = Ry, (107)

Observe that,

10 10
S" P ¥ ST RLRw = RIR: + RIRy + RIR; + RiRy + RIRs + RiRs + RIR; + R{Rs + R} Ry + Rl Ruo
k=1 k=1

= 0000) (0000] + ... + [1111) (1111] = Tpayos. (108)

The entanglement fidelity becomes,

15 10

-recover; def ]-
Flaa "= o3>0 ’Tl" (RiAL)(c
27 ==

° (109)

where R; € R and A def Aoooo, A def A1000y-++, Als = A1111. We point out that both the recovery operators R; and

Rs contribute to the entanglement fidelity in Eq. (109) since,

2
(0 |R1Apo00|0z) =1 =7+ %7 (1 [R1Aoooo| 1) =1 =1,
2
(0L [R2Aooo0|OL) = v — %a (1z [R2Aooo0| 1) = 0, (110)
and,
2 2
(0 |R1A1111|02) + (12 |R1 A1 | 1) = % +0= %,
2 2
(01 |R2A1111|02) + (12 |RoA1111| 1) = 77 +0= % (111)
Furthermore, the contributions of recovery operators R3, R4, R5, Rg are given by,
1-— 1-—
0z [R3A1000|0) + (11 [R3A1000] 12) = (1 — ) \/7( 5 7) + \/7( 5 7),
1-— 1-—
0z [R4A0100|0r) + (11 |R4Ao100] 1) = (1 — ) \/7( 5 il + \/7( 5 W’), (112)
and,
1-— 1-—
(0r |R5A0010|01) + (11 |R5Aoo1o] 1) = (1 — ) \/7( 5 ) + \/V( 5 V),
1-— 1-—
(O Rocdoonn 02) + {12 [Rodsan] 12) = (1 = 1) [ L= 4 [10=0) (13)



17

respectively. Finally, the contribution arising from the recovery operators R7, Rg, Rg, R19 becomes transparent once
we consider the following relations,

(O [R7Ao110|OL) = W7 (1r [R7Ao110]11) =0,
(0L [RsAo101|0r) + (1L [RsAoto1] 12) = 7(1\[;7) +0= W7
(0 |RoA1010|0r) + (1L [RoA1010] 12) = 7(1\/_57) +0= W7
(0r, |R10A1001|0L) + (11 |R10A1001] 1) = '7(1\[;7) +0= W (114)

We notice that the six enlarged error operators Ai100, Aoo11, 41110, A1011, Ao111, A1101 do not contribute to the

computation of the entanglement fidelity ]-'[([J 4Pi]r]ecovery (7). Finally, we obtain

[(17+f)+(17)]2+(7722)2+2(7;)2+4[(27) WZWTJF

~T' vVer, 1
]:[([341,)1]]%0 ¢ y( ) = E ,
2
y(1—v)
+ [0
7 3
%1—17 +0(+?), (115)
that is,
-T Ver 7

Foa ™ () = 1- 17 +0 (). (116)

From Egs. (103) and (116]), it turns out that as far as the entanglement fidelity concerns, the CP recovery scheme is
more successful than the standard QEC recovery scheme.

8. An analytically-optimized Fletcher’s-type channel-adapted recovery operation

In addition to the standard QEC and CP recovery schemes, it is possible to consider additional recovery schemes
such as an analytically-optimized version of a channel-adapted recovery scheme as proposed by Fletcher et al. in [I5].

Consider the CP recovery scheme in Eq. (106) where, however, the recovery operators R; and Rs are defined as
151,

e 1 1
Ry % |0L) (a (0000] + b (1111]) + [17) < (0011] + —= <1100|>

V2 V2
= |02) (a (0000| + b (1111]) + |11) (1], (117)
and,
Ry % 10L) (5" (0000] — a* (1111]) + [1,) (;E (0011| — % <1100|) , (118)

respectively, where a, b € C with |a|2 + \b|2 = 1. The remaining eight recovery operators are defined just as in Eq.
(106)). The set of all ten recovery operators forms the Fletcher et al. recovery operation Rpjetcher- INOte that,

R} = a"[0000) (0| + b* [1111) 0| + [12) (1], (119)
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and,
1
RT = 11]0000) (01| — a|1111) (0| + —= |0011) (11| — —= |1100) (1] . (120)
7 V2
Using (119) and ( .7 we get
RIRy + R} Ry =10000) (0000| 4 [0011) (0011| + [1100) (1100] + [1111) (1111]. (121)
It turns out that for the Fletcher et al. recovery (F-recovery) operations,
> Pe =" R Ry, = [0000) (0000] + ... + [1111) (1111] = Tpayza. (122)
k
In this case, the entanglement fidelity F, ilrf HOVeY reads,
F-recovery def
Py = ZZ ‘TT (RiAy) \c ) (123)
=1

2
k=0

def .
where Rl S RFletcher and A = Aoooo, All = Alooo,..., A/15 = A1111. Notice that,

a+b(1 2
(0z [R1Ag000| Or) = 1-7) , (12 [R1Agoool 1) =1 -7,
V2
b* —a* (1 —~)°
(0 |R2Ao000| Or) = #, (11 |R2Agooo| 1) = 0,
V2
42
0 |R1A 0p) = a 1, |R1A 1) =0,
0z |[R1A1111|0r) = ok (1z |R1Ann|1n) =
2
(0r [R2A1111|0) = b (1z |[R2A1111|11) = 0, (124)
V2
while the remaining terms are the same as obtained in the previous analysis performed with the traditional QEC recov-
ery scheme. Following the line of reasoning provide in the former computations, we get fﬁ 4rf YY) = Faa (a, b, )
with,
1 |- L eea-?f : 2,
Fi a,b,y)=- |—————+(1— Y 4291 =) 2=+ 22—+ &
fa.1)) (a: b, 7) = NG (1=7) 7 TA=NE="+27 A=)+ 5
(125)

We wish to maximize Fjy 1) (@, b, 7). The problem is to find @ and b (perhaps v-dependent quantities) such that
Flia,]] (d7 b, 7) denotes the searched maximum,

Fla1y (@,

b,7) = max F(a, b, 7). (126)
Jal+]b2=1

It can be shown that (for details, see Appendix C),

. 3
-F[[4,1]] (CL, ba 7) =1- 5’72 +0 (73) ) (127)
with
. 1 1—~)2
a(y) % and, b () & (1-v) (128)
1+(1—7) 1+(1—7)
Finally,
-recover 3
Flan ™ () =157+ 0 (7). (129)

From Egs. (103), (116) and (129), it turns out that as far as the entanglement fidelity concerns, the analytically-
optimized F-recovery scheme is better than both the standard QEC and CP recovery schemes. The comparison of
the three recovery schemes employed can be visualized in Fig. 1.
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FIG. 1: The truncated series expansion of the entanglement fidelity F () vs. the amplitude damping parameter v with
0 < v <1072 for the Leung et al. four-qubit code for amplitude damping errors; the Fletcher-type recovery (dashed line), the
code-projected recovery (thin solid line) and, the standard QEC-recovery (thick solid line).

IV. FINAL REMARKS

In this article, we presented a comparative analysis of exact and approximate quantum error correction by means
of simple unabridged analytical computations. For the sake of clarity, using primitive quantum codes, we showed
a detailed study of exact and approximate error correction for the two simplest unital (Pauli errors) and nonunital
(non-Pauli errors) noise models, respectively. The similarities and differences between the two scenarios were stressed.
In addition, the performances of quantum codes quantified by means of the entanglement fidelity for different recovery
schemes were taken into consideration in the approximate case.

Our main findings, some of which appear in the appendices to ease the readability of the article, can be outlined
as follows:

1. We have explicitly constructed one of the recovery operators as originally proposed by Leung et al. in [13]. As
a by-product, we also found the correct version of Eq. (41) in [I3]. Our version is represented by Eq. (A10]) in
Appendix A.

2. We have explicitly discussed the similarities and differences between exact and approximate-QEC schemes for
very simple noise models and very common stabilizer codes. Our analysis is purely analytical and no numerical
consideration is required. Thus, it is straightforward to follow and, we believe, has considerable pedagogical and
explanatory relevance. In particular, the points to be stressed in the exact case are:

e The two eigenvalues Apax and Apin of the (2 x 2)-matrix associated with the operators PcAlTAmPc (with Ay
correctable errors) on the codespace C coincide;

e The projector on the codespace Pc belongs to the standard QEC recovery R;
e All the recovery operators in R are p-independent;
e The correctable errors are fully recoverable. No off-diagonal contribution arises.

On the other side, the main points to be stressed in the approzimate case are:

e The two eigenvalues A\pax and Ay, of the (2 x 2)-matrix associated with the operators PcAlTAmPC (with Ay
correctable errors) on the codespace C do not coincide;

e The discrepancy between the two eigenvalues is a fingerprint of the non-unitarity of ApPe where Ag is a
correctable error;

e The non-tracelessness of the operators PCA;(AmPc with [ # m is an indicator of the non-orthogonality between
AmPc and AZPC;

e The projector on the codespace Pz does not belong to the standard QEC recovery R;
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e There exist recovery operators in R that are v-dependent;

e The correctable errors are not fully recoverable. Off-diagonal contributions do arise.

3. We have explicitly shown that there are only three possible self-complementary quantum codes characterized
by a two-dimensional subspace of the sixteen-dimensional complez Hilbert space Hj capable of error-correcting
single-AD errors. Thus, in this regard, the Leung et al. four-qubit code is not unique. Our three codes appear

in Egs. (B7), (B8) and in Appendix B.

4. In the approximate-QEC case, we have explicitly computed the entanglement fidelity for three different recovery
schemes. In particular, Eq. for the standard QEC recovery has, to the best of our knowledge, never
appeared in the literature (neither numerically nor analytically); furthermore, Eq. for the code-projected
recovery is the analytical counterpart of the numerical finding presented in [I5]; finally, Eq. represents
our analytical contribution to the understanding of the numerical result presented in [19].

Although our investigation is limited to very simple noise models and very simple codes, we hope that it will inspire
other researchers to pursue novel analytical studies of more realistic noise models and higher-dimensional quantum
codes. After all, for such type of investigations, analytical computations can become considerably messy (as pointed
out in [29]) and understanding in an analytical fashion recovery maps numerically computed can become quite a tricky
task as well (as stressed in [20]).

In conclusion, also in view of these very last considerations, we are very confident about the relevance of the
pedagogical nature of our analytical investigation carried out in this article.
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Appendix A: Unabridged computation of the recovery operation

For the sake of clarity, we limit our analysis to the explicit computation of the Leung et al. recovery operator
for the enlarged error operator Agggo. In principle, the remaining recovery operators can be computed in the same
manner. Observe that in general we should be dealing with operators acting on the 16-dimensional complex Hilbert
space Hj. However, in what follows, we shall take into consideration only lower-dimensional matrix-representations
of operators where the dimension is limited to nontrivial contributions. For instance, for Agggo and Pz, we consider
their matrix-representation restricted to the four-dimensional subspace of H3 spanned by the orthonormal vectors,

{/0000) , |0011), [1100), |1111)}. (A1)
We obtain,
1001 1 0 0 0
et [0 ) e | D0 o
1001 0 0 0 (1—+~)7°

From Eq. 1) it follows that the two eigenvalues of PcAgoovoooopc are given by,

e e 1 1 - 4
M 2 (1) and, A 2 L2 (43)

while \/ PCA(T)()O()AOOOOPC reads,

[N

o

(17'y4)4+1 0

T 0 = (=’ 0
PeAgoooAvoooFe = 0 (1_27)2 (1-7)? 0 : (A4)

2
1-9)*+1 1—)%+1
e

(1=)*+1
1

&)

[
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After some algebra, we have

\/ PeAloooAooooPe = A [v1) (v1] + Az [v2) (va| + As [vs) (vs| + Aa [va) (val (A5)

where,
e e e o [1+(1-=y"
)\1 d:f 1- s )\2 d:f 07 A3 d:f 07 )\4 d:f ¥7 (A6)
and,
0 0 -1 1
def 1 1 def 1 -1 def 1 0 def 1 0
V1) = — , ) = — , |vg) = — , |vg) = — A7
| 1> \/§ 1 | 2> \/§ 1 | 3> 5 0 | 4> 5 0 ( )
0 0 1 1
Substituting (A7) and (A6]) into (A5), we get
[ (1—~)*+1 1—y)*+1
) ( ’YQ) 0 0 ( ’YQ)
/ 1 _ 1 0 l—v1-7v 0
PCAOOOOAOOOOPC - 2 1— ~y 1— ~ (AS)

0 0 ’
1—y)%41 1—y)*+1
\ /% 0 0 ,/%

Recall that the residue operator myogo is given by,

o000 \/ PCAI)OOOAOOOOPC — vV AminPe, (A9)

that is,
sV s( D -5 00 By a5 DT
0 00 0
0000 = 0 00 0 (A]'O)
730D 3500 dy+gy/300-D +5 -3
Observe that for v < 1, mggpg becomes
1001
1 500000 4
m0000 =37 | 9 0 0 0 +0(+Y). (A11)
1001
Let us focus now on the computation of the unitary operator Upgoo. From Egs. (A2)) and (A7), we get
0 0 0
def 1-— 1 def 0 def 0
AooooPe |v1) = WW 1 |+ AooooFe lva) = E AooooPe |vs) = E
0 0 0
1
def 1 0
A Peluy) = — . A12
0000 P |va) 2 0 . ( )
(1=1)

Consider the following basis given by,

{len), le2), les), [eq)}, (A13)
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with,
0 0 —1
o) %f Ao Pe o) 1 [ 1 o) f 1 -1 o) %I 110
1 )\1 \/i 1 ) 2 5 1 3 \/5 0 )
0 0 1
1
det AooooPe |v 1 1 0
|€4> 1cl 0000 C| 4> _ 0 (A14)
A4 \f 4+a-y* 9
2 (1=1)
Applying the Gram-Schmidt orthonormalization procedure to {|e1), |ea), |es), |es)}, we get
! 0 —(1 =)
def AgoooFc lvi) 1 [ 1 def 1 [ —1 def 1 1 0
Ey) df ZooooZe 191/~ By & RN ,
| 1> M\ \/§ 1 | 2> \/§ 1 ‘ 3> \/‘ 1+1—)* 0
0 0 2 1
1
of A P, 1 1
B def Aooootc lva) 8 ’ (A15)
A4 V2 ire 14+(01-n* )
2 (1=7)
with (F; |Ey) = 0. Finally, the unitary operator Upggg reads,
def
Uoooo = |E1) (v1| + | E2) (va| + | E3) (v3| + | E4) (v4] (A16)
that is, using Egs. (A7) and (A15)),
1 1+(01—y)? 00 -+ 1-(1—)?
V2 /141yt V2 \/1+(1-y)*
def 0 10 0
Uoooo = 0 01 0 (A17)
_1 =07 o L _40-v*
V2 /141t V2 \/1+(1-y)*
Finally, the Leung et al. recovery operator associated with the enlarged error operator Agggg is given by,
Roooo = PeUogo. (A18)

with Pe in Eq. (A2)) and Upggo in Eq. (A17).

Appendix B: Self-complementary codes
1. Part1l

Let C be a [[n, k,d]] quantum stabilizer code that spans a 2¥-dimensional subspace of a 2"-dimensional Hilbert
space. Two quantum codes C(V) and C® are locally permutation equivalent if C? = 7C(Y) with 7 4f T where T is

a local unitary transformation in U (2)®" and 7 is a permutation of the qubits. When €2 = 7C(V) with 7 def T, we
say that the two quantum codes are locally equivalent. Finally, we say that the two codes are globally equivalent, or
simply equivalent, if C(!) is locally equivalent to a code obtained from C®) by a permutation on qubits.

Assuming single-qubit encoding, how many pairs ([0), |15)) [17],

def |u) + |u) def |v) + |7)
(|0L> B ) > B1)
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of orthonormal self-complementary codewords can we construct in the compler Hilbert space H3? To be explicit,
recall that the canonical computational basis of Hj reads,

def

def def def
|€0000> = |OOOO> s |€1000> = |1000>, ‘60100> = |0100>, |€0010> = |0010>,

def def def def def
f |€0001> = ‘0001>7 |61100> = |1100>,|61010> = |1010>, |€1001> = ‘1001>7 |60110> = |0110>,

B’H% e def def def def def (B2)
|€0101> = |0101>,|60011> = |0011>,|€1110> = |1110>, |€1101> = ‘1101>7 |€0111> = |0111>,
def def
|€1011> = |1011>, |61111> = |].].].].>
The number of possible pairs is,
. . s 82-8
# pairs of orthonormal self-complementary codewords in Hs = g = 28, (B3)
and they are given by,

(v§+)>, v](-+)>),i<j€{1, 2,..., 8}, (B4)

where,

e 1111
o) 10000) + J1111)

(+)> def [1000) 4 |0111)
s (] = -
V2

(+)> def |0100) + |1011) ‘ (+)> def |0010) + |1101)
2 RS 7= |l —
V2

V2 V2 ’

of [0001) 4 [1110
’v§+>>d:f| )+ [1110)

(+)> def [1100) 4 |0011)
s () = -
V2

(+)> def |1010> + |0101> ‘ (+)> def |1001> + |0110>
6 o) = ———— v = —r
V2

V2 ; V2

(B5)

Thus, the possible combinations are

). ). (). [47))
). ). (457,

(
(
(7). 7). (). s
(

o

(). )
) () )

) (7). )
) ) (o) ) () )
(B ) () ) o) ) (e ) () )

It turns out that among the (2) = 28-pairs of possible self-complementary orthogonal codewords in H3, only three
pairs are indeed good single-AD error correcting codes. For more details, see Part 2 of Appendix C. They are given
by:

)
)
)
)

)
)
7
)
)

oThe(

),

vé+)>)—pair that represents the Leung et al. [[4, 1]]-code. The non-normalized codewords read,

102) % 10000) + [1111) and, |1) % 0011) + [1100) . (B7)

(+)

e The (‘v§+)> , |vg >)—pair that represents the Grassl et al. perfect quantum erasure code. The non-normalized

codewords read,

10) % 10000) + [1111) and, |1.) % [1001) + [0110) . (BS)
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(+)

e The (‘v§+)>, vy >)—pair has no specific mention in the literature, to the best of our knowledge. The non-

normalized codewords read,

def

10) % 10000) + [1111) and, |17) % |0101) + |1010). (B9)

The three codes spanned by the codewords in (B7), (B8) and (B9) are indeed globally equivalent. We point out

that the codeword |01) = Lef |0000) + |1111) is the only codeword in these 28-pairs that is invariant under any cyclical
permutation of qubits. This property of |0L) turns out to be very useful when checking out the global equivalence
among the three good single-AD error correcting codes. In particular, the Leung et al. [[4, 1]]-code is globally
equivalent to the Grassl et al. perfect quantum erasure code encoding one qubit and correcting one arbitrary erasure.

2. Part 2

Observe that for the Leung et al. four-qubit code (normalization factors are omitted), we have

Aoooo [0) = [0000) 4 (1 —~)? [1111), Agooo |12) = (1 —~) [0011) + (1 — ~) [1100)
Ao [02) = V7 (1= )2 [0111), Argeo [11) = /7 (1 — 7) 0100} ,
Aotoo [02) = 7 (1= 7)2 [1011), Agroo|12) = /7 (1 — ) [1000),
) =7 (1 —7)2|1101), Agoio [12) = /7 (1 —7)|0001),
) = VA (1= )% [1110), Apoor [12) = /7 (1~ 7)[0010) (B10)

For the Grassl et al. four-qubit code (normalization factors are omitted), we get

vl

Aoo10 |0z

Agoo1 |0z,

Agooo [02) = [0000) + (1 — 7)* [1111), Aggoo [12) = (1 —~) [1001) + (1 — ) |0110),

Avoo [02) = 7 (1 = 7)? 0111, Asooo 1) = /7 (L — 7) [0001),

Aoo0[0) = /7 (1 — V)% |1011) , Ap1o0 |12) = v/ (1 —)]0010),

Aooro |02) = 7 (1 —7)% [1101), Agoro |12) = \/17_|o1oo> ,

Apoo1 [0L) = ﬁ(l—’y)% [1110), Agoo1 |11) = /7 (1 — ) |1000) . (B11)

Finally, for the third four-qubit code defined in Eq. (normalization factors are omitted), we obtain

Aoooo |0L) = 0000) + (1 —~)*|1111), Agooo |1) = (1 — ) [0101) + (1 — ~) [1010)

Avooo [0z) = v/7 (1~ >% 0111), Avono [12) = v/7 (1 — 7)]0010) ,

Ap1000L) = /7 (1 — 'y) [1011), Ao100 1) = /7 (1 —~)|0001),

Aot [0z) = v/7 (1= )% [1101), Agoro |12) = /7 (T — ) [1000),

Apoot |OL> \Fy( 'y)% |1110> , Agoot |1L> Vi 1 — |0100> (B12)
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v§+)>)

From Egs. (B10)), (B11) and (B12) it is straightforward to show that the pairs (}v§+)> ,

7)) (),
and (‘v§+)>, (+)

vy ), respectively, lead to good codes for the AD errors. Finally, it can be checked that,

v£+)> 7 v§+)>) is not good because {Agogo, A1000} is not correctable;
yé” , is not good because {Aoooo, Ao1oo} is not correctable;
, is not good because {Agooo, Aoo1o} is not correctable;

, is not good because {Agooo, Aooo1} is not correctable;

, is not good because {Ai000, Ao1oo} is not correctable;

, is not good because {A1000, Aooo1} is not correctable;
, is not good because {Aoooo, Ao1oo} is not correctable;

, is not good because {Agooo, Aoo1o} is not correctable;

(

(|47)- 7))

(l£7)- 147))

(7). 57))

(57)- 5))

( U§+)> , y§+)>) , is not good because {A1000, Ago1o} is not correctable;
(57) - 5))

(57)- [26+))

(57 157))

(7). [57))

, is not good because {Agooo, Aooo1} is not correctable, (B13)
and,

, is not good because {Ap100, Aoo10} is not correctable;
, is not good because {Aop100, Aooo1} is not correctable;
, is not good because {Agooo, A1000} is not correctable;
, is not good because {Anooo, Aooo1} is not correctable;
, is not good because {Aoooo, Aoo1o} is not correctable;
, is not good because {Ago10, Aooo1} is not correctable;
, is not good because {Aoooo, Aooo1} is not correctable;

, is not good because {Aoooo, A1000} is not correctable;

<
[N
z
S~ ST T T S S T S
<
00~
z
S~ T S T S T T S
S—— N N N N N N N

, is not good because {Agooo, Ao1oo} is not correctable. (B14)

Finally, we have that

( ’Ué+)> , vé+)>) , is not good because {Agooo, Aoo1o} is not correctable;
( vé+)> , v§+)>) , is not good because {Anooo, Ao100} is not correctable;
( vé+)> : U§+)>) , 18 not good because {Agooo, A1000} is not correctable;
( ’Ué+)> , v§+)>) , is not good because {Ao100, Aoo10} is not correctable;
( vé+)> , vé+)>) , is not good because {Ap100, Aooo1} is not correctable;
( v§+)> , v§+)>) , is not good because {Agg10, Aooo1} is not correctable. (B15)
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Appendix C: The complex optimization problem

In this Appendix, we use the notation @ = a and b = 3. The problem is to find & and B (perhaps 7-dependent
quantities) such that F (&, 3, v) denotes the searched maximum,

F(a, B,7) = max Fl(a,p, 7). (C1)
la?+18]>=1

Let us precede by brute force in an analytical fashion. Assume that,
a=Rea+ilma=ar+iarand, 3=RefS +iImpB = Br + i6;. (C2)

Therefore, the two complex-variables complex optimization problem may be defined in terms of four real-variables
optimization problem,

f QY ) o ) 3 b 3 ) = ‘F ) ) ) ) * C3
(aR ar, Br, Br 7) @%+&§T%g+3?:1 (ar, ar, Br, Br, ) (C3)

Observe that Fji4,1)) (a, B, 7y) can be rewritten as,

1 2 2 2 ’74
Fiaap () @, 8.1 = {A+ B3 - @=2) 422 1=+ T}, (1)
where,
Ad:ef a+5\(/1§—’7) +(17,,}/) — (aR'FlaI)"_(/f;%—*—ZﬁI)(l_’Y) +(]_7,,}/)
2 2 2\ 2
_ (amﬁRf;l—v) +(1—7)> +<a1+5i/(§1—7) ) (o)
and,

B —a*(1-7)
V2

def

2 512
_|(5Ri51)(0¢Ri041)(1’Y) | _

Br—ar(1-7) 71.51*041(1*7)2 :
V2

V2 V2

2 2
B Br—ag(l—7) Br—ar(1—7)°
) (ot
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After some algebraic manipulation of Egs. (C6|) and (C5]), we get

B ar+Br(1—7) ’ ar+ B (1—7)° ’ Br —agr(1—~)° ’ Br—ar(1—7)° ?
A+B—< at +<1_7>> +<ﬁ ) +< il ) +<ﬁ

N (artsra - Y (Br—an(1—7))
‘[( ) (e )]*

B 2 2
ar+B8r(1-7)° Br—ar(1-7)°
[feesgey (s

- 4 2
_(ag+ﬂ;)<”“ﬂ>+<1v>2+2<17>0‘“%1”) +

+ | (a7 +57) <1+(12_7)>]

SR k) N PP .Y Rt/ (€ k) (C7)

2 V2

Therefore, substituting (C7) into (C4)), F4,17 (@, B, v) becomes

HOEE 4 (1= ) 4 21— ) 220l oy (1 - ) (2 )

1
Fiiany (ar, ar, Br, Br, v) = 1
22 (1—)2 4+ 2

20R (1—7) +28r (1 —9)°
0 (’7) 4\/5 ( )
where,
det 1 (14 (1 —7)* o
Fo) <(2)+(17)2+2V(17)(2v)2+2v2(1v)2+2 . (o)
Therefore, the compler optimization problem becomes
Fany (@r, ar, Br, Br,v) = max Fiiay (ar, ar, Br, Br, )

a%+a?+pE+87=1

2ag (1 —7) +2Br(1 —7)3]. (C10)

42

We note that Fjs1) (ar, ar, Br, Br, v) does not depend on ay and f;. Setting ay = B; = 0, the maximization
problem becomes

ap+aj+hp+h7=1

= max l]:o (v) +

az+p%=1

3
Fiaay (@r, Br,v) = max lfo (v) + 20 (1~ 7)41_/;6}?’ 1-7) ] - (C11)



We observe that,

S

2 _ 3
d ]:0(7)+2aR(1—’y)+24(\;§—aR) (1—7) _o,

implies that,

ar —2agy —1/1—a% +agry? =0,

that is,
_ def 1 > def 1-7)?
(1) and, B () L
V1+(1=7) 1+ (1-7)
Finally, we obtain
— Y1 3
Fia) (@r, Br.v) = 1= +0 (7).

2

More precisely, we should set a% + 8% < 1 or, a% + % = r? with r < 1. In this case we have,

d [2ar(1—7)+2(2—a2)? (1—~)° 1 -1
R(1=7) ( )" (1-1) 21\677 > (OZR—\/TQ—Q%—?V&R“F'YZO&R):Oa

dag 44/2 r? —af

that is,

O and, Br (v) o A Gl )

ar (7) - ) :
Vi+ (- 1+ (1-y)"

Observe that,

Fiay (@r, Br, v) = _max []:0 (v) +

&% +By=r?

2ap (1-7)+28r(1-19)°
42 ’

that is,

I _ _r(-y)? _ )3
2aR<1—v>+2ﬁR<1—v>32(m)“ ”“(m)“ K

~
= ~

4+/2 4/2

| —

thus,
Fiay (@r, Br, 7) = %(1 +r)+ @ =r)y- (; - TQ) Y +0 ().
It then turns out that for r = 1 we obtain the optimal fidelity,
Flaay (G, B n) % 1= 592+ 0(27).
In conclusion, setting a; = fr = 0 and ag, Br given in Eq. (C16), Fja1) (o, B, 7) in becomes
FErecovery (1 o §72 o) (73) .

[[4,1]] 2
The derivation of Eq. (C22) concludes our optimization problem.

r—ry+r?+0(v),

28

(C12)

(C13)

(C14)

(C15)

(C16)

(C16)

(C18)

(C19)

(C20)

(C21)

(C22)

We emphasize that after completing this work, we have become aware that Eq. (C22)) has also appeared in [30].

However, the derivation presented in [30] is by no means as explicit as the one provided in our work.
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