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Abstract
We postulate a master equation, written in the language of creation and annihilation operators, as

a candidate for unambiguous quantum mechanical description of unstable particles. We have found

Kraus representation for the evolution driven by this master equation and study its properties.

Both Schrödinger and Heisenberg picture of the system evolution are presented. We show that the

resulting time evolution leads to exponential decay law. Moreover, we analyse mixing of particle

flavours and we show that it can lead to flavour oscillation phenomenon.
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I. INTRODUCTION

One of important difficulties in quantum mechanical description of unstable particles is
irreversibility of time-evolution. The complete system consists of decaying particle as well
as of decay products. Only this complete system undergoes unitary evolution, described
by quantum field theory. However, in many applications of quantum mechanics (e.g., in
analysis of correlations experiments) we would like to neglect the evolution of decay products
and consider the decaying particles only. This is usually achieved by introducing a non-
Hermitian Hamiltonian, as it was done in the classical works of Weisskopf and Wigner
[1, 2]. The non-Hermitian Hamiltonian, however, leads inevitably to the non-conservation
of trace of the density operator of the system. Although such description gives decreasing
probability of detecting the particle, it does not provide unambiguous way of calculating the
probability of finding the system consisting of a few such particles in a given state after the
measurement (see e.g. [3] for a discussion of other ambiguities caused by various approaches
to the description of such a system). Indeed, one needs to use probability theory rather
than quantum mechanics for this purpose. Since the calculations of conditional probabilities
are extremely important for analysis of correlation experiments, especially of those done for
systems of neutral kaons [4–12] or B-mesons [13–15], it would be desirable to find a quantum
mechanical description of decaying particles preserving unit trace and positivity [16–22] of
the density operator for the system. Recent papers (e.g. [23, 24]) show that there is still a
great interest in the unambiguous quantum-mechanical description of neutral kaon system.

This is the point where the theory of dynamical semigroups and open quantum systems
[25–27] can be helpful. Let us recall (cf. [28–30]) that the dynamical semigroup in the
Schrödinger picture is a one-parameter family of linear maps Λ∗

t , acting on the space of
trace class operators on Hilbert space of the system, preserving for every t ≥ 0: (i) positivity,
(ii) trace, (iii) strong continuity and such that (iv) Λ∗

t1Λ∗
t2 = Λ∗

t1+t2 for every t1, t2 ≥ 0. These
properties can be translated into Heisenberg picture as requirements for the map Λt acting
on the space of bounded operators on the Hilbert space of the system, which for every t ≥ 0:
(i) preserves the positive cone, (ii) leaves the identity operator invariant, (iii) is continuous
on states in the trace-norm sense, (iv) is normal and (v) Λt1Λt2 = Λt1+t2 for t1, t2 ≥ 0.

The idea that the theory of open quantum system would be useful for the description
of unstable particles appeared quite early [31–33] (see also [34] for a review). Recently, the
open quantum system approach was also applied to the systems of particles with flavour
oscillations (like in the case of neutral kaons) [35, 36], and it has been used successfully in

the description of EPR correlations and evolution of entanglement in K0K
0

system [37, 38].

Here, we follow the approach presented in [35, 37, 38]. However, in these works the
considerations were restricted to systems of at most two particles, and transition from one-
particle to two-particle theory was done by means of tensor product construction. In the
present paper we will show that it is possible to describe systems with arbitrary number of
particles using the second quantization formalism, which is the most natural language for
system with varying number of particles. Moreover, such approach would be an advantage
if we study the behaviour of the system from uniformly moving or accelerated frame, due to
the well established transformation properties of annihilation and creation operators.

The paper is organized as follows. In Sect. II, we postulate a master equation in
Schrödinger picture for a single kind of free particles, and then find the solution of this
equation in the form of the Kraus representation of the evolution of the density operator
of the system. The next section is devoted to the Heisenberg picture of the evolution of
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the same system. In Sect. IV, we analyse the system of particles of different types and the
flavour oscillation phenomenon.

II. SCHRÖDINGER PICTURE

In [35] it was shown that the time evolution of a free unstable scalar particle can be described
by a master equation in the Lindblad–Gorini–Kossakowski–Sudarshan form [26, 27]:

dρ(t)

dt
= −i[H, ρ(t)] + {K, ρ(t)} + Lρ(t)L† , (1)

where

H = m |1〉 〈1| , L =
√

Γ |0〉 〈1| , K = −1

2
L†L . (2)

Here |1〉 denotes the state of presence of the particle and |0〉 denotes the state of its absence;
m is the mass of the particle and Γ is its decay width. Despite the fact that the state |0〉
is usually called vacuum, it is not the vacuum in the sense of quantum field theory, but
rather in the sense used in [39], i.e., it is an absence of a particle. This equation leads
to the probability density of finding the particle evolving according to the Geiger–Nutall
exponential law.

However, the most natural quantum-mechanical description of systems with variable num-
ber of particles is the second quantization formalism. For systems governed by (1) the tran-
sition to second quantization is straightforward, since the operators (2) can be interpreted
as the vacuum–one-particle sector of the second quantized operators

Ĥ = mâ†â ≡ mN̂ , L̂ =
√

Γâ , (3)

where â and â† are bosonic annihilation and creation operators, respectively:

[â, â†] = 1 , â |0〉 = 0 , |n〉 =
(â†)n√
n!

|0〉 ; (4)

vectors |n〉 form the so-called occupation number basis. With this substitution we have

K̂ = −1

2
ΓN̂ .

If we substitute (3) into (1), we arrive to the master equation in the form

d

dt
Λ∗
tρ = L∗(Λ∗

tρ) , (5a)

where

L∗(ρ) = −im[N̂ , ρ] − Γ

2
{N̂, ρ} + Γâρâ† . (5b)

In the above we can recognize the equation introduced and studied in [29, 31, 32, 34]. Similar
equations lead to evolution given by quasi-free semigroups, see eg. [34, 40–47] and are also
studied in the context of quantum optics [48–51].
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If we write down explicitly annihilation and creation operators in occupation number
basis, namely âkl =

√
k + 1δk+1,l, â

†
kl =

√
l + 1δk,l+1, so N̂kl = kδkl (k, l = 0, 1, . . .), then we

can view (5) as the following infinite system of equations for matrix elements of the density
operator Λ∗

tρ ≡ ∑

kl ρkl(t) |k〉 〈l|:
dρkl(t)

dt
=
[

i(k − l)m− 1
2
(k + l)Γ

]

ρkl(t) +
√

(k + 1)(l + 1)Γρk+1,l+1(t) , (6)

for k, l = 0, 1, . . . . Thus we get infinite, in principle, system of linear differential equations
of first order.

Notice, that the system (6) seems to be highly non-trivial — the solution for ρkl(t) depends
on a solution for ρk+1,l+1(t), what apparently leads to infinite chain of dependencies. What
makes the system (6) solvable is the proper choice of initial conditions. Indeed, for every
reasonable initial physical state, the number of particles must be finite, so all matrix elements
of ρ(0) corresponding to higher number of particles must vanish. Mathematically, it means
that there exist indices r and s, such that

ρkl(0) = 0 for k > r and l > s . (7)

One can easily check that the system (6) with initial condition (7) gives us the well posed
Cauchy’s problem.

Now, instead directly solving the equation (5) for some interesting choices of initial state
we concentrate on finding and studying the Kraus representation [52] of the evolution of the
system.

Although Kraus operators for the evolution of the density operator governed by the
master equation (5) was found in [53], here we give its another formulation, now written in
terms of annihilation/creation operators. It can be easily checked that these two choices of
Kraus operators coincide up to the phase factors. Despite this, we give the formal proof that
proposed Kraus operators lead to the evolution of the system undergoing the equation (5),
since we will employ the technique used in the proof later on.

Proposition 1. If for k = 0, 1, . . .:

Ek(t) =
1√
k!
e−iM̂t

(
√

1 − e−Γtâ

)k

, (8)

where M̂ = (m− i
2
Γ)N̂ , then

Λ∗
tρ =

∞
∑

k=0

Ek(t)ρE
†
k(t) (9)

is the solution of the master equation (5), where ρ is the density operator given at initial
time t = 0.

Proof. First, let us note that for any k

Ek(t)â = e(im+ 1

2
Γ)tâEk(t) , (10)

what follows immediately from canonical commutation relations. Using (10) we can show
by straightforward calculation that

dE0(t)

dt
= −iM̂E0(t) , (11a)

dEk(t)

dt
= −iM̂Ek(t) +

√
kΓe(im+ 1

2
Γ)t

2
√

1 − e−Γt
âEk−1(t) (11b)
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(for k = 1, 2, . . .).
Next, one can easily check that the following recurrence relations hold for k = 1, 2, . . .

Ek(t) =

√
1 − e−Γt

√
k

e(im+ 1

2
Γ)tâEk−1(t) . (12)

Combining (12) and (11b) we can write (11) in the form

dEk(t)

dt
=

(

−iM̂ +
k

2

Γe−Γt

1 − e−Γt

)

Ek(t) , k = 0, 1, . . . (13)

Now, let us compute the time derivative of the density operator Λ∗
tρ given by (9):

d

dt
Λ∗
tρ =

∞
∑

k=0

(

dEk(t)

dt
ρE

†
k(t) + Ek(t)ρ

dE
†
k(t)

dt

)

= −i
[

M̂(Λ∗
tρ) − (Λ∗

tρ)M̂
†
]

+
Γe−Γt

1 − e−Γt

∞
∑

k=1

kEk(t)ρE
†
k(t) . (14)

Taking into account (12) the last term in (14) can be written as

Γe−Γt

1 − e−Γt

∞
∑

k=1

kEk(t)ρE
†
k(t) = Γâ

∞
∑

k=1

Ek−1(t)ρE
†
k−1(t)â† = Γâ(Λ∗

tρ)â
† . (15)

Thus, the density operator obeys the master equation (5).
To complete the proof, we have to show that at the time t = 0 the density operator Λ∗

tρ

given by (9) is ρ. This is trivial point, because obviously E0(0) = id and Ek(0) = 0 for
k = 1, 2, . . .

It is easy to see that after writing out annihilation operators in occupation number basis
the Kraus operators (8) differ only by phase factors from those found in [53, 54]. These
phase factors become important when you try to study a flavour oscillation phenomenon
(see Sect. IV).

Proposition 2. If Ek(t) are given by (8), then

∞
∑

k=0

E
†
k(t)Ek(t) = id . (16)

Proof. We start with the observation that for any element of occupation number basis |n〉
and any non-negative integer k

âk |n〉 =















√

n!

(n− k)!
|n− k〉 , n ≥ k ,

0 , n < k ,

(17a)

and

(â†)k |n〉 =

√

(n+ k)!

n!
|n+ k〉 . (17b)
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Since

E
†
k(t)Ek(t) =

1

k!

(

1 − e−Γt
)k

(â†)ke−ΓN̂tâk ,

then, from (17), for any element of the occupation number basis

E
†
k(t)Ek(t) |n〉 =

(

n

k

)

(

1 − e−Γt
)k
e−(n−k)Γt |n〉 , (18)

when n ≥ k, and E
†
k(t)Ek(t) |n〉 = 0, when n < k. Thus,

∞
∑

k=0

E
†
k(t)Ek(t) |n〉 =

n
∑

k=0

E
†
k(t)Ek(t) |n〉 =

n
∑

k=0

(

n

k

)

(

1 − e−Γt
)k
e−(n−k)Γt |n〉 = |n〉 . (19)

Since
∑∞
k=0E

†
k(t)Ek(t) acts as identity on any element of the basis, it must be the identity

operator.

Proposition 3. Vacuum state |0〉 〈0| is stable under the evolution given by (8) and (9).
Moreover, limt→∞ Λ∗

tρ = |0〉 〈0| for any density operator ρ.

Proof. Indeed, E0(t) |0〉 = |0〉 and Ek(t) |0〉 = 0 for k = 1, 2, . . ., so the density operator
|0〉 〈0| is stable during the time evolution.

For the proof of the second statement, one can find that

Ek(t) |n〉 =

√

√

√

√

(

n

k

)

e−(im+ 1

2
Γ)(n−k)t

(
√

1 − e−Γt

)k

|n− k〉 , (20)

when n ≥ k, and vanishes otherwise. Next, observe that for Γ > 0

lim
t→∞

e− 1

2
Γ(n−k)t

(
√

1 − e−Γt

)k

=















0 , n > k ,

1 , n = k ,

∞ , n < k ,

(21)

so,

lim
t→∞

Ek(t) |n〉 =







0 , n 6= k ,

|0〉 , n = k ,
(22)

and, consequently,

lim
t→∞

Ek(t) |n〉 〈n′|E†
k(t) =







0 , n 6= n′ ,

δnk |0〉 〈0| , n = n′ .
(23)

Thus, for any density operator ρ, limt→∞ Λ∗
tρ = tr(ρ) |0〉 〈0| = |0〉 〈0|.

Explicit solutions of (1) with operators (3) can be deduced from the relation

Λ∗
t |n〉 〈n′| =

min{n,n′}
∑

k=0

√

√

√

√

(

n

k

)(

n′

k

)

e−im(n−n′)t

× e− 1

2
Γ(n+n′−2k)t

(

1 − e−Γt
)k |n− k〉 〈n′ − k| . (24)
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If we impose the superselection rule which forbids the superpositions of states with different
number of particles, then the density operator for a system consisting of at most n particles
is of the form

Λ∗
tρ =

n
∑

k=0

pk(t) |k〉 〈k| ,
n
∑

k=0

pk(t) = 1 .

Thus, it is enough to solve the equation (1) for an initial state of the form ρ = |n〉 〈n| for
n being some non-negative integer (arbitrary, but finite), because any density operator for
the initial state is a linear combination of such states.

If the system is initially in the n-particle pure state, ρ = |n〉 〈n|, then the solution of the
equation (1) is

Λ∗
tρ =

n
∑

k=0

(

n

k

)

e−(n−k)Γt
(

1 − e−Γt
)k |n− k〉 〈n− k| .

The average number of particles changes in time as

〈N(t)〉 = tr
[

(Λ∗
tρ)N̂

]

= ne−Γt .

We have thus recovered the Geiger–Nutall exponential decay law. It is worth noting that
the probability that at a time t one finds exactly k particles from initally n ones, has a
binomial distribution B(n, e−Γt) with probability e−Γt of finding a single particle, as it can
be expected.

III. HEISENBERG PICTURE

In Heisenberg picture, master equation for the evolution of an observable Ω is of the form

d

dt
ΛtΩ = L(ΛtΩ) , (25a)

where

L(Ω) = i[H,Ω] +
1

2

{[

L†,Ω
]

L+ L† [Ω, L]
}

. (25b)

Note that
1

2
{[L†,Ω]L+ L†[Ω, L]} = {K,Ω} + L†ΩL ,

but the form used in (25b) is usually more convenient when performing calculations in the
Heisenberg picture involving creation and annihilation operators.

Having a family of Kraus operators (8), the evolution of observable Ω can be written as
the series

ΛtΩ =
∞
∑

k=0

E
†
k(t)ΩEk(t) . (26)

This representation is especially useful if we can find the decomposition of the observable
into its matrix elements in occupation basis:

Ω =
∑

n,n′

ωn,n′ |n〉 〈n′| . (27)
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Λt |n〉 〈n′| =
∞
∑

k=0

√

√

√

√

(

n+ k

n

)(

n′ + k

n′

)

eim(n−n′)t

× e− 1

2
Γ(n+n′)t

(

1 − e−Γt
)k |n+ k〉 〈n′ + k| . (28)

Using projectors onto n-particle states, Π̂n ≡ |n〉 〈n|, the last equation can be rewritten in
a more convenient form

ΛtΠ̂n =
1

(eΓt − 1)n

∞
∑

k=n

(

k

n

)

(

1 − e−Γt
)k

Π̂k . (29)

Proposition 4. limt→∞ ΛtΠ̂0 = id.

Proof. From (29) it follows that

ΛtΠ̂0 =
∞
∑

k=0

(

1 − e−Γt
)k

Π̂k ,

so limt→∞ ΛtΠ̂0 =
∞
∑

k=0

Π̂k ≡ id.

Physically, Proposition 4 tells us that after substantially long (mathematically infinite) pe-
riod of time, the probability of finding vacuum reaches one, irrespectively of the state of the
system. In other words, at infinite time all the Fock spaces collapse to the vacuum subspace.

The evolution of creation and annihilation operators can be easily find with use of rela-
tion (10):

Λtâ = e−(im+ 1

2
Γ)tâ , (30a)

Λtâ
† = e(im− 1

2
Γ)tâ† . (30b)

Moreover, it is easy to check that in this case ΛtN̂ = Λtâ
†Λtâ (what, in general, does not

hold). Indeed, using (10) we have

ΛtN̂ =
∞
∑

k=0

E
†
k(t)â

†âEk(t) =

(

∞
∑

k=0

E
†
k(t)â

†Ek(t)

)

e−i(m+ 1

2
Γ)tâ = Λtâ

†Λtâ . (31)

Consequently, the evolution of the particle number observable is

ΛtN̂ = e−ΓtN̂ ; (32)

we can get this result by solving (25a) for N̂ , too.
It is easy to find the mean number of particles for a given state with help of (32). Here,

we consider two examples: the pure state of exactly n particles and a coherent state with
given mean number of particles n̄.

Example 1. If the system is in the pure state of n particles, then the mean number of particles
is simply

〈N(t)〉 = ne−Γt . (33)
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Thus we get the exponential decay law again. Time evolution of the probability of finding
exactly k particles follows from (29) and reads

pn(k, t) =

(

n

k

)

e−kΓt
(

1 − e−Γt
)n−k

, (34)

i.e., it is given by the binomial distribution B(n, e−Γt).

Example 2. Let us assume that the system is in a coherent state |α〉,

a |α〉 = α |α〉 ,

α ∈ C, i.e.

|α〉 = e−
|α|2

2

∞
∑

k=0

αk√
k!

|k〉 , (35)

then
〈N(t)〉 = n̄e−Γt , (36)

where n̄ ≡ |α|2 is the mean number of particles in the coherent state |α〉. Probability of
finding exactly k particles evolves in time according to

pn̄(k, t) =
1

k!

(

n̄e−Γt
)k
e−n̄e−Γt

, (37)

which is the Poisson distribution P (n̄e−Γt).
Let us note that, if we consider the state being a mixture of k-particle states with prob-

ability that k-particle state occurs given by the Poisson distribution with mean number of
particles n̄, i.e.,

ρ =
∞
∑

k=0

e−n̄n̄k

k!
|k〉 〈k| , (38)

then the mean number of particles in this state and probability of finding exactly k particles
are given by the formulae (36) and (37), respectively (despite the fact, that in this case we
must find the traces of the product of observables with the density operator).

IV. PARTICLES OF DIFFERENT TYPES

Let us consider a system of particles of r different types (or carrying a quantum number
with r possible values), each type with mass mj and width Γj for j = 1, . . . , r. For such a
system we have

[âj, âk]∓ = 0 , [âj, â
†
k]∓ = δjk , (39)

for j, k = 1, . . . , r, where [·, ·]∓ denotes commutator/anti-commutator, respectively, and anti-
commutators apply only if both jth- and kth-particles are fermions. The states spanning the
occupation number representation are generated from the vacuum state via the formula

|n1, n2, . . . , nr〉 =
(â†

1)
n1(â†

2)
n2 · · · (â†

r)
nr

√
n1!n2! · · ·nr!

|0〉 (40)

where we identify |0, 0, . . . , 0〉 ≡ |0〉.

9



The master equation for the system takes the following forms

d

dt
Λ∗
tρ = −i[Ĥ,Λ∗

tρ] + {K̂,Λ∗
tρ} +

r
∑

j=1

L̂j(Λ
∗
tρ)L̂

†
j , (41a)

d

dt
ΛtΩ = i[Ĥ,ΛtΩ] +

r
∑

j=1

{

[L̂†
j,ΛtΩ]L̂j + L̂

†
j [ΛtΩ, L̂j ]

}

, (41b)

in the Schrödinger and Heisenberg picture, respectively, where Ĥ is the Hamiltonian of the
system and

L̂j =
√

Γj âj , K̂ = −1

2

r
∑

j=1

L̂
†
jLj , M̂ = Ĥ + iK̂ . (42)

If [M̂, âj ] = −(mj− i
2
Γj)âj for j = 1, . . . , r, then we can easily construct the Kraus operators

solving (41)

Ek(t) = e−iM̂t
∏

k1,...,kr

k1+···+kr=k

(√
1 − e−Γjtâj

)kj

√

kj!
, (43)

where the product is taken over all possible partitions of k into exactly r addends, such that
k1 + k2 + · · · + kr = k, where

kj ∈ N0 , jth-particles are bosons , (44a)

kj ∈ {0, 1} , jth-particle is a fermion . (44b)

for j = 1, . . . , r.

Example 3. Let us consider the evolution of a system of two flavour particles (e.g., particles

and their anti-particles). We denote the creation operators for these particles by â†
1 and â†

2.
The basis for the system is built up from the states of the form

|n1, n2〉 =
(â†

1)n1(â†
2)n2

√
n1!n2!

|0〉 . (45)

Let these states be the common eigenstates of two observables, N̂ = â
†
1â1 + â

†
2â2 (number of

particles) and Ŝ = â
†
1â1 − â

†
2â2 (say strangeness or lepton number), i.e.,

N̂ |n1, n2〉 = (n1 + n2) |n1, n2〉 ,
Ŝ |n1, n2〉 = (n1 − n2) |n1, n2〉 .

If the states (45) are not eigenstates of the time evolution the phenomenon known as the
flavour oscillation may occur.

To describe such a situation, let us assume that the Hamiltonian and Lindblad operators
for the system are of the form

Ĥ = m1ĉ
†
1ĉ1 +m2ĉ

†
2ĉ2 , (46a)

L̂1 =
√

Γ1ĉ1 , (46b)

L̂2 =
√

Γ2ĉ2 , (46c)
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where ĉ†
1, ĉ

†
2 are connected with â

†
1, â

†
2 by unitary transformation:

ĉ
†
1 = eiχ

(

ei(φ+ψ)/2 cos
θ

2
â

†
1 + e−i(φ−ψ)/2 sin

θ

2
â

†
2

)

, (47a)

ĉ
†
2 = eiχ

(

−ei(φ−ψ)/2 sin
θ

2
â

†
1 + e−i(φ+ψ)/2 cos

θ

2
â

†
2

)

. (47b)

Since M̂ =
(

m1 − i
2
Γ1

)

ĉ
†
1ĉ1 +

(

m2 − i
2
Γ2

)

ĉ
†
2ĉ2, we can easily find the evolution of ĉj:

Λtĉj = e−(imj+ 1

2
Γj)tĉj , j = 1, 2 . (48)

Using (47) we get the evolution of âj :

Λtâ1 =
1

2
e−(im1+ 1

2
Γ1)t

[

â1(1 + cos θ) + â2e
iφ sin θ

]

+
1

2
e−(im2+ 1

2
Γ2)t

[

â1(1 − cos θ) − â2e
iφ sin θ

]

, (49a)

Λtâ2 =
1

2
e−(im1+ 1

2
Γ1)t

[

â2(1 + cos θ) − â1e
−iφ sin θ

]

+
1

2
e−(im2+ 1

2
Γ2)t

[

â2(1 − cos θ) + â1e
−iφ sin θ

]

(49b)

The time evolution of the observables can be obtained either by solving (41b) or directly
from relations (49), using argumentation analogous to (31). For example, for the number of
particles we get

ΛtN̂ =
e−Γ1t + e−Γ2t

2
N̂ +

e−Γ1t − e−Γ2t

2
[Ŝ cos θ + Q̂+ sin θ] , (50)

where Q̂+ = â
†
1â2e

iφ + â
†
2â1e

−iφ, so the mean value in the state |n1, n2〉 is the following

〈N(t)〉 =
e−Γ1t + e−Γ2t

2
(n1 + n2) +

e−Γ1t − e−Γ2t

2
(n1 − n2) cos θ (51)

and is depicted in the Fig. 1.
Similarly, for the strangeness (or lepton number) we get

ΛtŜ =
e−Γ1t − e−Γ2t

2
N̂ cos θ + e−Γt sin(∆mt)Q̂− sin θ

+

[

e−Γ1t + e−Γ2t

2
cos2 θ + e−Γt cos(∆mt) sin2 θ

]

Ŝ

+

[

e−Γ1t + e−Γ2t

2
− e−Γt cos(∆mt)

]

Q̂+ sin θ cos θ , (52)

where Q̂− = i(â†
1â2e

iφ − â
†
2â1e

−iφ), Γ = 1
2
(Γ1 + Γ2) and ∆m = m2 −m1. The mean value of

this observable in the state |n1, n2〉 is

〈S(t)〉 =
e−Γ1t − e−Γ2t

2
(n1 + n2) cos θ

+

[

e−Γ1t + e−Γ2t

2
cos2 θ + e−Γt cos(∆mt) sin2 θ

]

(n1 − n2) (53)
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FIG. 1. Number of particles for system with two flavours for mixing angles θ = 0, π4 , π2 , 3π
4 , π (from

right to left) with n1 = 2 and n2 = 1, and Γ1 < Γ2 (time unit is τ = 1/Γ).

and is shown in the Fig. 2.
Let us pay our attention on the two extreme cases: θ = 0 (no flavour mixing) and θ = π

2
(maximal mixing). For θ = 0 we have ĉi = âi, so the time evolution of the observables is

ΛtN̂ =
1

2
e−Γ1t(N̂ + Ŝ) +

1

2
e−Γ2t(N̂ − Ŝ) , (54a)

ΛtŜ =
1

2
e−Γ1t(Ŝ + N̂) +

1

2
e−Γ2t(Ŝ − N̂) . (54b)

Their mean values in the state |n1, n2〉 are

〈N(t)〉 = e−Γ1tn1 + e−Γ2tn2 , (55a)

〈S(t)〉 = e−Γ1tn1 − e−Γ2tn2 . (55b)

For θ = π
2
, φ = 2π, ψ = π and χ = 3π

2
we have

ĉ
†
1 =

1√
2

(â†
1 + â

†
2) ,

ĉ
†
2 =

1√
2

(â†
1 − â

†
2) ,

and the time evolution of the observables is given by

ΛtN̂ =
1

2

(

e−Γ1t + e−Γ2t
)

N̂ +
1

2

(

e−Γ1t − e−Γ2t
)

Q̂+ , (56a)

ΛtŜ = e−Γt cos(∆mt)Ŝ + e−Γt sin(∆mt)Q̂− . (56b)
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FIG. 2. Strangeness of system with two flavours for different values of mixing angle with n1 = 2

and n2 = 1, and Γ1 < Γ2 (time unit is τ = 1/Γ).

The mean values of these observables in the state |n1, n2〉 are

〈N(t)〉 =
1

2

(

e−Γ1t + e−Γ2t
)

(n1 + n2) , (57a)

〈S(t)〉 = e−Γt cos(∆mt)(n1 − n2) , (57b)

so we get oscillations of the quantum number S. It is worth noting, that for the particles
such as K or B mesons we can use this result only as a first approximation, since for these
particles the transformation which “diagonalizes” the master equation is non-unitary due to
CP -violation. For the sake of brevity, we do not discuss the violated CP -symmetry here
but preliminary calculations show the agreement with values for masses and life-times of
neutral K or B mesons estimated on the basis of traditional Wigner–Weisskopf approach.

V. CONCLUSIONS

We have analyzed a class of master equations built up from creation and annihilation op-
erators which generate dynamical semigroups that can describe the exponential decay and
flavour oscillations for system of many particles. We have shown, in this case, how this
dynamical semigroup can be written in the Schrödinger as well as Heisenberg picture. This
allowed us to choose the picture which seems to be more convenient for the description of
the system under consideration. Moreover, we have found the solution for a free particle
master equation in the form of Kraus representation in the language of annihilation and

13



creation operators. Although, this Kraus representation is given by an infinite series, in the
Schrödinger picture it reduces to a finite sum, whenever the initial state has a finite number
of particles. On the other hand, in the Heisenberg picture the commutation relations be-
tween observables and Kraus operators sometimes allows us to find the observable evolution
in closed form without explicit summation of the series.

Notice that if we cut the presented approach to the one-zero particle sector we get the
theory given in [35] (neglecting the decoherence).

In the present paper we restrict our analysis only to states labeled by a discrete index,
and not by continuous parameter (like e.g. momentum). Despite the fact that introducing a
continuous parameter causes creation and annihilation operators to become operator-valued
distributions, it seems to us that the approach introduced here should also be applicable.

We left open the question whether it is possible to apply our approach to describe the
processes other than exponential decay, like e.g. decoherence or different decay laws. The
preliminary investigations suggest that there exists a positive answer.
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[39] P. Caban, J. Rembieliński, K. A. Smoliński, and Z. Walczak, J. Phys. A: Math. Gen. 35,

3265 (2002).

[40] B. Demoen, P. Vanheuverzwijn, and A. Verbeure, Lett. Math. Phys. 2, 161 (1977).

[41] D. E. Evans and J. T. Lewis, J. Funct. Anal. 26, 369 (1977).

[42] P. Vanheuverzwijn, Ann. Inst. Henri Poincaré (A) 29, 123 (1978).
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