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We study the information dynamics in a network of spin-1/2 particles when edges representing
XY interactions are randomly added to a disconnected graph accordingly to a probability distri-
bution characterized by a “weighting” parameter. In this way we model dissipation of information
initially localized in single or two qubits all over the network. We then show the dependence of this
phenomenon from weighting parameter and size of the network.
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I. INTRODUCTION

A quantum network consists of spin-1/2 particles (qubits) attached to the nodes of a graph and interacting according
its adjacency matrix (edges distribution) [1]. This quantum model allows to accomplish information manipulation
tasks that are impossible in the classical realm and it can be regarded as prototype model for a future quantum internet
[2–5]. Within such a quantum network model information processing is usually described by assuming perfect control of
the underlying graph. However this is not much realistic since randomness is often present and it leads to decoherence
effects [6]. In contrast, the conservation of coherence is essential for any quantum information process [7], hence there
is a persistent interest in decoherence of pure states. To describe it the master equation approach is widely used. This
employes Lindblad superoperators to phenomenologically add the decoherence process to Hamiltonian dynamics [6].
Recently random matrices, originally introduced by Wigner [8] and then used to study spectral statistics of dynamical
systems (both classical and quantum) [9], have been also employed to describe decoherence processes [10–12].

Here we proceed along a similar line by assuming randomness of the graph (adjacency matrix) underlying the
quantum network. We study the simplest task, namely information storage (in single and two qubits), when the
graph underlying a network randomly changes in time. More specifically we consider the evolution of a quantum
state in single and two qubits on nodes of initially disconnected graph when edges, representing XY interactions, are
randomly added. To this end we employ a standard model for random graphs, that of Gilbert characterized by a
binomial distribution with a weighting parameter [13]. By means of tools like fidelity, concurrence and von Neumann
entropy [7] we see how information spreads all over the quantum network, i.e. dissipated. We then show the dependence
of this quantum information dissipation phenomenon from weighting parameter and size of the network.

The article is organized as follows. In Sect. 2 we introduce the random network model relying on XY -type spin-spin
interaction confining our attention to the single excitation subspace. In Sect. 3 we discuss information dissipation
from a single qubit, while in Sect. 4 we investigate the two qubit entanglement dissipation. Conclusions are drawn in
Sect. 5.

II. NETWORKS MODEL

Let G = (V,E) be a simple undirected graph (that is, without loops or parallel edges), with set of vertices V (G)
and set of edges E(G). We take V (G) = {1, ..., N}, being N the number of nodes. The adjacency matrix of G is
denoted by A(G) and defined by [A(G)]ij = 1, if i j ∈ E(G); [A(G)]ij = 0 if ij /∈ E(G). The adjacency matrix is a
useful tool to describe a network of N spin-1/2 quantum particles. The particles are usually attached to the vertices
of G, while the edges of G represent their allowed couplings. For the XY interaction model (isotropic Heisenberg
model), ij ∈ E(G) means that the particles i and j interact by the Hamiltonian [H(G)]ij = (XiXj + YiYj), where Xi

and Yi are the Pauli operators of the i-th particle. The Hamiltonian of the whole network then reads

HXY (G) =
∑
i6=j

[A(G)]ij(XiXj + YiYj). (1)
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Here, the number of edges n ∈ [0, nmax], where nmax = N(N − 1)/2, will be chosen randomly. A standard way for
doing that is given by the Gilbert’s random graphs model characterized by a binomial probability distribution

p(n) =

(
nmax
n

)
ξn (1− ξ)nmax−n, (2)

where
(
nmax

n

)
is the binomial coefficient and ξ is a parameter such that 0 ≤ ξ ≤ 1 [13].

Notice that all configurations with a given number n of edges are considered equally probable. The parameter ξ
can be thought as a weighting parameter; by increasing its value the model becomes more and more likely to include
graphs with more edges and less and less likely to include graphs with fewer edges. The case of ξ = 0.5 corresponds
to the situation where all graphs are chosen with equal probability.

This can be turned into the adjacency matrix A(G) in the following way

Pr[Aii = 1] = 0,

P r[Aii = 0] = 1,

P r[Aij = 1] = ξ, for i > j,

Pr[Aij = 0] = 1− ξ, for i > j,

Pr[Aij ] = Pr[Aji], for i < j. (3)

Thus A(G) is symmetric and the average number of edges (number of ones in the upper or lower triangular part of
the adjacency matrix) will results nmaxξ accordingly to the distribution p(n) of Eq.(2).

The Hamiltonian HXY in Eq.(1), constructed according to the adjacency matrix A(G) of Eq.(3), results an operator
on the complex Hilbert space H ' (C2)N of N spin particles and can be represented by a 2N × 2N matrix. However,
since such Hamiltonian conserves the number of excitations, the effective Hilbert space where the dynamics take place
will be determined by the initial number of excitations. Below we will restrict our attention to cases with network
initially having at maximum one excitation. Hence, we are legitimate to consider the subspace K ' CN spanned by

{|1〉1|0〉2 . . . |0〉N , |0〉1|1〉2 . . . |0〉N , . . . , |0〉1|0〉2 . . . |1〉N}. (4)

We will use the short hand notation

|j〉 ≡ |0〉1 . . . |0〉j−1|1〉j |0〉j+1 . . . |0〉N , j = 1, . . . , N. (5)

The representation of the Hamiltonian HXY in the basis {|j〉}Nj=1 exactly coincides with the adjacency matrix A(G).
Below we will also consider the vector |j = 0〉, which corresponds to the state of the network with no excitations.
Hence the space of states becomes K

⊕
{|0〉}.

In order to describe the evolution of an initial network state |ψ(0)〉 ∈ K
⊕
{|0〉}, we will consider time discretized

by steps of width ∆t labeled by a natural number k ∈ N. At each time step we randomly generate the adjacency
matrix according to Eq.(3), i.e. the Hamiltonian HXY which then becomes dependent on the time step label k. Hence
within the k-th time step we have the unitary evolution given by

U(tk, tk−1) = e−iHXY (k)∆t, (6)

with tk = k∆t. Then, let us consider the composition of such unitaries as follows

U(tk) = U(tk, tk−1) . . . U(t2, t1)U(t1, t0). (7)

It results, thanks to Eqs.(6) and (1), that

U(tk)|0〉 = |0〉, (8)

U(tk)|i〉 =

N∑
j=1

uij(tk)|j〉, (9)

with uij entries of a unitary matrix such that uij(t0) ≡ uij(0) = δij . Writing

|ψ(0)〉 =

N∑
i=0

ci|i〉. (10)
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with ci ∈ C such that
∑N
i=0 |ci|2 = 1, we will have

|ψ(tk)〉 = c0|0〉+

N∑
i,j=1

ciuij(tk)|j〉. (11)

This gives one “realization” of a stochastic state evolution (say a quantum trajectory). The average state of the
network will be a density operator

%(tk) = E(|ψ(tk)〉〈ψ(tk)|), (12)

where E represents the ensemble average over all possible realizations according to the probability distribution of
Eq.(3).

III. INFORMATION DISSIPATION

In this section, we will see how the information interchange between the spin particles and spread in the entire
network, thus dissipating from one node to the others. Let us consider the single spin particle labeled by 1 in a generic
superposition of ground and excited states and all the other spin particles in ground state. Then the initial state of
the network reads

|ψ(0)〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉, (13)

with θ ∈ [0, π] and φ ∈ [0, 2π]. The evolution will be described by Eq.(11) where now

c0 = cos
θ

2
, (14)

c1 = eiφ sin
θ

2
, (15)

ci>1 = 0. (16)

Being interested in the information dissipation of spin particle 1, we trace Eq.(12) over-all other particles

%1(tk) = TrN,N−1,N−2,3,2 [%(tk)] . (17)

It results

%1(tk) =

[
cos2 θ

2
+ sin2 θ

2

(
1− E(|u11(tk)|2)

)]
|0〉1〈0|

+ cos
θ

2
sin

θ

2
e−iφE(u∗11(tk))|0〉1〈1|

+ cos
θ

2
sin

θ

2
eiφE(u11(tk))|1〉1〈0|

+ sin2 θ

2
E(|u11(tk)|2)|1〉1〈1|. (18)

Since fidelity is a standard tool used to study how different are two states [7], we consider it between %1(tk) and the
initial state of Eq.(13)

F(tk; θ, φ) =

∣∣∣∣∣
(

cos
θ

2
1〈0|+ e−iφ sin

θ

2
1〈1|

)
%1(tk)

(
cos

θ

2
|0〉1 + eiφ sin

θ

2
|1〉1

) ∣∣∣∣∣. (19)

Then, we determine the average (over all possible initial pure states) fidelity as

F(tk) =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ F(tk; θ, φ). (20)
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Using Eqs.(11), (12) into Eq.(19) and performing the integrals of Eq.(20) we get

F(tk) =
1

2
+

1

3
< [E (u11(tk))] +

1

6
E
(
|u11(tk)|2

)
. (21)

For numerical calculations we have performed the ensemble average over 400 realizations. We show in Fig.1 the
average fidelity versus time tk, for a network of 32 spin particles at different values of ξ. For ξ close to zero the
dynamics results frozen with F = 1 at any time in agreement with the fact that the most likely graph is the fully
disconnected one. By increasing the value of ξ it can be clearly seen a decreasing behavior of the average fidelity
versus time. Nevertheless oscillations appear and they tend to have a less damped amplitude. Finally, for ξ close to
1 we have a purely oscillatory behavior (see inset). This comes from the fact that in this situation the most likely
graph is the fully connected one, which causes a periodical back flow of information onto spin particle (qubit) 1.

FIG. 1: The average fidelity F versus (dimensionless) time tk for N = 32 and ∆t = 0.015.

An effect similar to that of the increase of ξ, namely the appearance of oscillations of more and more marked
amplitudes, becomes evident by reducing the size of the network (the number N) while keeping fixed the value of ξ
as shown in in Fig.2.

FIG. 2: The average fidelity F versus (dimensionless) time tk for ξ = 0.3 and ∆t = 0.015.

The initial pure state of Eq.(13) for qubit 1 evolves into a mixed state (see Eq.(17)). Its degree of mixedness can
be evaluated by means of the linearized von Neumann entropy

SL1 (tk; θ, φ) = 1− Tr
[
(%1(tk))

2
]
, (22)
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ranging from zero for pure state to 1/2 for a maximally mixed state I1/2 (being I1 the identity operateor for the qubit
1. Likewise Eq.(20) the average (over all possible initial pure states) linear entropy reads

SL1 (tk) =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ S(tk; θ, φ). (23)

Using Eqs.(11), (12) into Eq.(19) and performing the integrals of Eq.(23) we finally get

SL1 (tk) = E
(
|u11(tk)|2

)
− 1

3

∣∣∣E (u11(tk))
∣∣∣2 − 2

3

[
E
(
|u11(tk)|2

)]2
. (24)

FIG. 3: The average linear entropy SL
1 (tk) versus (dimesnionless) time tk for N = 32 and ∆t = 0.015.

We show in Fig.3 the average linear entropy SL1 (tk) versus time tk for a network of 32 spin particles. We can see
that for small values of ξ the entropy rises up more slowly and persists to an higher value for longer time. On the
contrary, for larger values of ξ, due to higher connectivity, the dissipation (mixing) is faster, but the chances to have
back flow of information is higher. Thus after an initial bump the entropy decreases faster. Finally for ξ → 1 also
the entropy becomes purely oscillatory in time with minima approaching zero, meaning that the state is cyclically
purified (see inset). By comparison of the insets of Figs.1 and 3 we see that the oscillations of entropy are much more
frequent. This means that the dissipated information most of the times bounces back in a state different from the
initial one. Clearly maxima of fidelity occur in correspondence of some minima of entropy.

IV. ENTANGLEMENT DISSIPATION

In this section, we will see how the entanglement of an initially entangled pair of particles will spread all over the
network. We then consider to initially have particles labeled by 1 and 2 in a Bell state and all the other in the ground
state. That is, the initial state of the network is

|ψ(0)〉 =
1√
2

(|1〉+ |2〉). (25)

Notice that this state is a superposition of states containing a single excitation. Hence, we can still use Eq.(11) where
now

c0 = 0, (26)

c1 = c2 =
1√
2
, (27)

ci>2 = 0, (28)
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and then consider the density operator of Eq.(12). We are interested in the entanglement evolution between particles
1 and 2 whose state is obtained by

%12(tk) = TrN,N−1,....4,3(%(tk)). (29)

It results

%12(tk) =
1

2

[
2− E

(
|u11(tk) + u21(tk)|2

)
− E

(
|u12(tk) + u22(tk)|2

)]
|00〉12〈00|

+
1

2
E
(
|u11(tk) + u21(tk)|2

)
|10〉12〈10|

+
1

2
E
(
|u12(tk) + u22(tk)|2

)
|01〉12〈01|

+
1

2
E ((u11(tk) + u21(tk))(u∗12(tk) + u∗22(tk))) |10〉12〈01|

+
1

2
E ((u∗11(tk) + u∗21(tk))(u12(tk) + u22(tk))) |01〉12〈10|. (30)

A useful tool to measure the amount of entanglement is the concurrence defined as [14]

C12(tk) = max
(

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

)
, (31)

where λ1, λ2, λ3 and λ4 are the eigenvalues of %12(tk)%̆12(tk) in the decreasing order. Here

%̆12(tk) = (I1 ⊗ Y2)ρ∗12(tk)(I1 ⊗ Y2), (32)

where %∗12(tk) is the complex conjugate of %12(tk).
Also in this case for numerical calculations we have performed the ensemble average over 400 realizations. We show

in Fig.4 the concurrence C12(%) versus time tk, for a network of 32 spin particles at different values of ξ. It can be
seen a decaying behavior of C12(%) versus time. Pronounced oscillations appear by increasing the value of ξ until the
behavior becomes purely oscillator for ξ close to 1 (similarly to what happen for the average fidelity).

FIG. 4: The concurrence C versus (dimensionless) time tk for N = 32 and ∆t = 0.015.

In addition we have considered the evolution of the state between particles 1 and 3

%13(tk) = TrN,N−1,...,4,2(%(tk)), (33)
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resulting as

%13(tk) =
1

2

[
2− E

(
|u11(tk) + u21(tk)|2

)
− E

(
|u13(tk) + u23(tk)|2

)]
|00〉13〈00|

+
1

2
E
(
|u11(tk) + u21(tk)|2

)
|10〉13〈10|

+
1

2
E
(
|u13(tk) + u23(tk)|2

)
|01〉13〈01|

+
1

2
E ((u11(tk) + u21(tk))(u∗13(tk) + u∗23(tk))) |10〉13〈01|

+
1

2
E ((u∗11(tk) + u∗21(tk))(u13(tk) + u23(tk))) |01〉13〈10|, (34)

as well as the evolution of the state between particles 3 and 4

%34(tk) = TrN,N−1,...,5,2,1(%(tk)), (35)

resulting as

%34(tk) =
1

2

[
2− E

(
|u13(tk) + u23(tk)|2

)
− E

(
|u14(tk) + u24(tk)|2

)]
|00〉34〈00|

+
1

2
E
(
|u13(tk) + u23(tk)|2

)
|10〉34〈10|

+
1

2
E
(
|u14(tk) + u24(tk)|2

)
|01〉34〈01|

+
1

2
E ((u13(tk) + u23(tk))(u∗14(tk) + u∗24(tk))) |10〉34〈01|

+
1

2
E ((u∗13(tk) + u∗23(tk))(u14(tk) + u24(tk))) |01〉34〈10|. (36)

Then the concurrences C13 and C34 can be evaluated in a similar way to Eq.(31). It results that Cij with i = 1 ∨ 2,
j 6= 1 ∧ 2 is the same of C13, while Cij with i 6= 1 ∧ 2, j 6= 1 ∧ 2 is the same of C34. By numerical evaluation, the
concurrences C13 becomes significantly different from zero (up to ≈ 0.1) only at short times and then decays. On the
contrary, the concurrence C34 always results almost negligible. Essentially this means that entanglement (information)
is not coherently transferred to any other pair.

We also evaluate the linearized von Neumman entropy for the spin particles 1 and 2 initially in the pure state of
Eq.(25) as

SL12(tk) = 1− Tr [%12(tk)]
2
. (37)

It ranges from zero for pure state to 3/4 for a maximally mixed state I12/4 (being I12 the identity operateor for the
qubit 1 and 2). Using Eq.(30) we obtain

P12(tk) = E
(
|u11(tk) + u21(tk)|2

)
+ E

(
|u12(tk) + u22(tk)|2

)
− 1

2
E
(
|u11(tk) + u21(tk)|2

)
E
(
|u12(tk) + u22(tk)|2

)
− 1

2

[
E
(
|u11(tk) + u21(tk)|2

)]2 − 1

2

[
E
(
|u12(tk) + u22(tk)|2

)]2
− 1

2
|E ((u11(tk) + u21(tk))(u∗12(tk) + u∗22(tk)))|2 . (38)

We show in Fig.5 the linear entropy SL12(tk) versus time tk, for a network of 32 spin particles. It has a qualitative
behavior similar to that of Fig.3, namely there is a bump (with superimposed small oscillations) occurring sooner for
higher values of ξ. Also, analogously to Fig.3 by increasing ξ close to 1 we get an oscillatory behavior with minima
approaching zero. This means that the state %12 is periodically purified. Furthermore, in this case the oscillations
of the entropy follow those of concurrency C12 (in contrast to Fig.3 and average fidelity of Fig.1). In fact, as a
consequence of the symmetry of the initial state in Eq.(25) and of the Hamiltonian in Eq.(1) with respect to the qubit

1 and 2 exchange, each time the state %12 is purified it must be (|01〉+ |10〉)/
√

2, hence C12 reaches a maximum.
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FIG. 5: The linear entropy SL
12(tk) versus (dimensionless) time tk for N = 32 and ∆t = 0.015.

V. CONCLUSION

We have studied information dynamics in a quantum network with underlying graphs where edges have been added
in a random way to mimic unwanted interactions. We employed the Gilbert model of random graphs characterized
by a weighting parameter ξ [13]. We have found that by increasing it the dynamics of relevant quantities like fidelity,
entropy or concurrence, gradually transforms from damped to damped oscillatory and finally to purely oscillatory.
Actually, the larger is the network size, the wider is the range of ξ from zero for which we have a dissipatory behavior.

It is worth remarking that the weighting parameter ξ could be regarded as a fictitious temperature. In fact we
expect that at low temperature a small number of spin particles interact, i.e. few edges will be present in the graph,
while at high temperature a large number of spin particles interact and consequently the underlying graph tends to
become fully connected. Then, the presented model encompasses a “thermal” model for which p(n) ∝ exp[− n

T ], with

T the temperature, instead of p(n) ∝ ξn(1 − ξ)nmax−1 in Eq.(2). In fact with the thermal distribution there is no
way to favor the more connected graphs with respect to the less connected ones and we could only obtain the same
qualitative results obtainable in the presented model for ξ < 0.5.

For future one could consider other models of random graphs besides the Gilbert’s one. For instance, exponential
random graphs models [15] describe a general probability distribution of graphs on N nodes given a set of network
statistics and various parameters associated to them. Moreover, there are models of random graphs that figure out
“hubs” that can be interpreted as sinks for information.

The proposed model and related results might be relevant for physical implementation of quantum networks with
various mesoscopic systems, like photonic crystals [16], ion traps [17], superconducting circuits [18], and planar arrays
of trapped electrons used for quantum information processing [19]. Furthermore, they could be also useful for theories
affording quantum gravity by means of random graphs [20].
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