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Abstract

In the present paper we propose a new system of algebraic and statistical axioms
as working hypotheses, from which Born rule can be seen to emerge. In this process
the concept of sectors defined as quasi-equivalence classes of factor states plays a
crucial role.

1 Introduction

Entities in atomic scale have intrinsic indeterminancy and “statistical” description is more
or less inevitable in quantum theory. So it is natural to think that the use of statistics
as an “Ars Conjectandi (art of conjecturing)”[1] is essential for physics. However, one
cannot obtain any fruitful viewpoints for quantum theory by just reading the textbooks
on statistics. For instance, it seems almost impossible at first sight to relate mathematical
statistics and “statistical” aspects of quantum theory such as the Born rule [2]. Does it
mean statistics is useless for fundamental study for physics? In the present paper we will
show that the answer is NO: Statistical description naturally emerges out of the algebraic
framework for quantum theory.

Statistics is not an isolated science from other sciences. As C.R.Rao [23] says, statis-
tics “cannot be used in a routine way; the user must acquire the necessary expertise to
choose the right technique in a given situation and make modifications, if necessary”.
The appropriate question is that how we can formulte statistics for Physics, and dually,
Physics as Statistical Science. Why, and in which point, do statistical descriptions become
crucial for quantum theory?

Here let us fix the meaning of statistical to be based on the generic concept of ran-
dom variables, i.e., variables whose fluctuation is subject to a situation. Kolmogorov
[9] formulated the notion of random variables as functions on some sample spaces. In-
tuitively speaking, the set of all possible choices is determined “in advance”. However,
the development of quantum theory have unveiled that the Kolmogorovian formulation
of random variables is too narrow to cover the quantities of atomic entities whose fluc-
tuation is subject to a physical situation. In quantum theory the quantities with which
we are concerned are often noncommutative and there exist no sample space on which all
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the quantities are defined as functions. Sample spaces for physical quantities should be
considered as objects emerging out of each situations and determined a posteriori.

In the present paper we propose a new axiomatic system for quantum theory from
the algebraic and statistical viewpoint. Here the term “axiom” should be interpreted
as “working hypothesis.” The authors believe that this is similar to the original idea
of Hilbert’s[7]. The essence of this original meaning of axioms was nicely shared by the
pioneers of axiomatic quantum field theory, whereas its common understanding has been
deformed in such a wrong way as worshiping a kind of “sacred canons”.

We adopt the following three axioms:

Axiom 1. All the statistical aspects of a physical system are registered in a C*-probablity
space.

Axiom 2 (Sector). For a state ω ∈ EA and a Borel set ∆ ⊂ EA, dω(∆) gives the
probability that a sector belongs to ∆ under the situation described by ω. When avail-
able observables are restricted, the coarse-grained probability is given by dBω(∆) for some
subalgebra B of Zω(A).

Axiom 3. The observable algebra for the composite system of an object system and a
measuring apparatus is given by A ⊗ C0(M)(⊂ πω(A)′′ ⊗ L∞(M)), M = ÛA or R. A
measurement process is described by a pair m = (αm, ψm) of αm ∈ Aut(πω(A)′′ ⊗ L∞(M))
and of a state ψm of the measuring apparatus. The state of the composite system “after
measurement” is given by

ϕm(X) := (ϕ̃⊗ ψm)(αm((πω ⊗ id)(X))).

From our axiomatic system the Born rule below can be seen to emerge in parallel with
the above picture1:

Theorem 1.1 (Born rule). Assume that the state of the object system is ϕ = ϕ̃ ◦ πω.
Then the probabilty Pr{A ∈ ∆‖ϕ} with which the value of A ∈ πω(X )′′ is in ∆ ∈ B(R) is
given by

ϕ̃(EA(∆)) = 〈ξϕ̃, E
A(∆)ξϕ̃〉.

The notions and notations above are given in the following sections. In section 2
the generic concepts of random variable and a situation are formulated as elements of
a (noncommutative) algebra and a linear functional on it, respectively (Axiom 1). The
concept of sectors, which is crucial in the derivation of Born rule, is defined in Section
3 as “quasi-equivalence class” of factor states. Sectors can be understood as labels for
macroscopic classification of microscopic structure and be considered as a generalized no-
tion of “phase.” Any state can be decomposed into sectors weighted by a natural measure
called “central measure”, whose existence is ensured by Tomita decomposition theorem
[3]. On this basis we propose the second axiom that the central measure determines the
probability for a pure phase to emerge in actual space(-time) out of the mixed phase.
The latter is to be understood as probabilitistic mixture in the probability space consist-
ing of sectors as “elementary events”. For a concrete formulation, we introduce a new

1The original form of this formulation was reported in [16, 17]. The idea of this investigation can be
traced back to the efficient use of sector in “Large Deviation Strategy” [13, 14].
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concept “instrument functional” which is a generalization of several notions in quantum
measurement theory such as instruments [4, 18, 20]. In section 4 we propose the third
axiom for a measurement process in terms of an automorphism on the composite system
of the observed system and the apparatus, equipped with a state of the apparatus “before
measurement”. We derive a generalization of Born rule from these axioms in Section
5 and the usual Born rule in terms of “spectral equivalence” (originally formulated by
Ozawa [21, 22] under the name of “perfect correlation” and generalized by KO in [15]) in
Section 6.

2 Quantum Probability

In quantum theory, observables can be considered as random variables which are not
necessarily commutative. One of the most natural and general formulation of the systems
of such quantities is based on the notion of *-algebras.

Definition 2.1. Let A be an algebra. A map ∗ : A → A is called an involution if the
following equalities

(A∗)∗ = A, (A+B)∗ = A∗ +B∗, (λA)∗ = λ̄A∗, (AB)∗ = B∗A∗

hold for any a ∈ A and λ ∈ C. An algebra equipped with an involution is called a *-algebra.
A map between two (unital) *-algebras is said to be a *-morphism if it is a homomorphism
between algebras and preserves the involution.

We assume that algebras have units, otherwise mentioned. It is known that units can
be added if necessary. Then the concept of states as expectations fuctionals is defined as
follows.

Definition 2.2. Let A be a unital *-algebra. A linear functional ω : A → C is called a
state on A if

ω(A∗A) ≥ 0

holds for any A ∈ A and
ω(1) = 1.

Definition 2.3. A pair (A, ω) of a *-algebra A and a state ω on A is called an algebraic
probability space.

Although this quite simple concept of “probability space” is already useful to deal
with many interesting aspects in mathematics and physics [8], we will focus on a subclass
of algebraic probability spaces to discuss the topological aspects such as approximation.

Definition 2.4. A *-algebra A equipped with a norm ‖ · ‖ is called a C*-algebra if it is
complete with respect to ‖ · ‖ and

‖A∗A‖ = ‖A‖2

holds for any A ∈ A. An algebraic probability space (A, ω) is called a C*-probability space
if A is a unital C*-algebra.
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Axiom 1. All the statistical aspects of a physical system are registered in a C*-probablity
space.

When a C*-algebra algebra is commutative, the assosiated C*-probability space can be
represented as a usual probability space (Riesz-Markov-Kakutani theorem [8]). In other
words, for the commutative case a C*-probability space has the same information as a
(measure theoretic) probability space. Apart from this aspect, the essential ingredient of
the “information” of probability space should be representable by the concept of “events.”
To recover such a fundamental concept in the noncommutative algebraic context, we need
projections as “Yes-No questions,” which, in commutative case, corresponds to indicator
functions. They are provided by means of representations of C*-algebras on Hilbert spaces
constructed from C*-probability spaces.

Let B(H) be the *-algebra of all bounded operators on a Hilbert space H, where the
involution is Hermitian conjugate and the norm is given by the operator norm.

A typical example of C*-probablity space is (B(H), 〈Ω, (·)Ω〉), where Ω is a unit vector
in a Hilbert space H. On the other hand, every C*-probability space can be formulated
in a similar manner by “GNS representation” as follows.

Definition 2.5. Let A be a unital *-algebra and H a Hilbert space. A *-morphism π :
A → B(H) is called a *-representation of A on H.

Theorem 2.1 (Gelfand-Naimark-Segal representation theorem). Let (A, ω) be a C*-
probability space. There exist a *-representation πω of A on a Hilbert space Hω and a
vector Ωω ∈ Hω such that

ω(A) = 〈Ωω, πω(A)Ωω〉

and πω(A)Ωω := {π(A)Ωω|A ∈ A} is dense in Hω.

The *-representation πω : A → B(Hω) equipped with Ωω ∈ Hω stated in the theorem
above, or equivallently, the triple (πω,Hω,Ωω), is called GNS representation of (A, ω). A
GNS representation is “unique up to unitaries”.

In contrast to the previous comparison in the commutative case, general C*-probability
spaces can be viewed as “noncommutative measure spaces” represented in Hilbert spaces.
Indeed, a von Neumann algebra defined below as a σ-weakly closed (or equivalently,
weakly closed) *-subalgebra of B(H) is known to provide a generalized measure theoretic
structure in terms of projections.

Definition 2.6. The σ-weak topology on B(H) is the weakest topolgy which makes all the
linear functionals of the form Σ〈yn, (·)xn〉 (Σ‖xn‖

2,Σ‖yn‖
2 <∞).

Definition 2.7. A unital *-subalgebra of B(H) is called a von Neumann algebra over H
if it is closed with respect to the σ-weak topology.

The class of states inherent in von Neumann algebra is normal ones defined below.

Definition 2.8. A state ω on a von Neumann algebra A is said to be normal if it is
continuous with respect to σ-weak topology.

A von Neumann algebra can be characterized algebraically as follows.
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Definition 2.9. Let S be a subset of B(H). A subset S ′ of B(H) defined as

S ′ = {A ∈ B(H)| ∀X ∈ S AX = XA}

is called the commutant of S.

Theorem 2.2. (von Neumann’s double commutant theorem) A unital *-subalgebra A of
B(H) is a von Neumann algebra if and only if A′′ = A.

3 The Concept of Sector

Let A be a C*-algebra. We denote the set of all states on A by EA. A state ω ∈ EA is
called a factor state when the center Zω(A) of the von Neumann algebra πω(A)′′ is trivial,
i.e., Zω(A) := πω(A)′′ ∩ πω(A)′ ∼= C. The set of all factor states on A is denoted by FA.

Let π : A → B(H) be a representation of A. A state ω ∈ EA is called π-normal if
there exists a normal state ρ on π(A)′′ and

ω(A) = ρ(π(A)) (1)

holds for any A ∈ A. We denote such ρ as ω̃.

Definition 3.1.

1. Two representations π1 and π2 are said to be quasi-equivalent and denoted as π1 ≈ π2
when any π1-normal state is π2-normal and vice versa. Two states are said to be
quasi-equivalent if the GNS representations are quasi-equivalent.

2. Two representations π1 and π2 are said to be disjoint if there is no nontrivial inter-
twiner T , that is,

Tπ1(X) = π2(X)T ⇒ T = 0 (X ∈ A).

Two states are said to be disjoint if the GNS representations are disjoint.

Two factor states are disjoint if they are not quasi-equivalent [3, 5].

Definition 3.2 ([11]). We call a quasi-equivalence class of factor states on C∗-algebra A
as a sector for A.

As disjointness of states corresponds to macroscopic distinguishability, a sector plays
a role of a label for macroscopic classification and should be considered as a generalized
notion of “phase”.

The following is a collorary of the fundamental theorem on state decomposition [3,
Theorem 4.1.25].

Theorem 3.1 (Collorary of Tomita Decomposition Theorem). Let A be a C∗-algebra and
ω a state on A. There is a one-to-one correspondence between the two sets below:

(1) {Borel measures µ such that
∫
∆
ρ dµ(ρ) and

∫
EA\∆

ρ dµ(ρ) are disjoint for any

Borel set ∆ ⊂ EA};
(2) {commutative von Neumann algebras B ⊂ Zω(A)}.
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The above B is *-isomorphic to the image of the map κµ : L∞(µ) := L∞(EA, µ) ∋ f 7→
κµ(f) ∈ Zω(A) defined by

〈Ωω, κµ(f)πω(A)Ωω〉 =

∫
dµ(ρ)f(ρ)Â(ρ).

Definition 3.3. The measures characterized in the theorem above are called subcentral
measures for ω. The subcentral measure for ω corresponding to B is denoted by dBω. The
subcentral measure corresponding to B = Zω(A) itself is called the central measure for ω
and also denoted as dω.

Sectors belonging to the support of the central measure for ω are distingushed by
Spec(Zω(A)), the spectrum of Zω(A), which are macroscopically observable in the form
of order parameters. In other words, they are labeled by the spectrum of observables in
the center.

Since any state can be decomposed into sectors by the theorem above, we propose the
following axiom:

Axiom 2 (Sector). For a state ω ∈ EA and a Borel set ∆ ⊂ EA, dω(∆) gives the
probability that a sector belongs to ∆ under the situation described by ω. When avail-
able observables are restricted, the coarse-grained probability is given by dBω(∆) for some
subalgebra B of Zω(A).

This means that the central measure corresponding to a state determines the proba-
bility for a pure phase to emerge in actual space(-time) out of the mixed phase, the latter
of which is to be understood as probabilitistic mixture in the probability space consisting
of sectors as “elementary events”. Each sector is directly associated with the choice of a
state just after measurement as we will see below. This means that classical probability
emerges out of quantum probability in the composite system of the object system and
the measuring apparatus.

For the concrete formulation we introduce a new concept, instrument functional:

Definition 3.4 (Instrument functional). A map I((·); dBω)(·) defined as

I(f ; dBω)(X) =

∫
dBω(ρ) f(ρ) ρ(X), f ∈ L∞(dBω), X ∈ A,

is called the instrument functional for dBω.

By definition it holds that

I(f ; dBω)(X) = 〈Ωω, κdBω(f)πω(X)Ωω〉.

The concept of instrument functional is a generalization of several notions in quantum
measurement theory such as instruments [4, 18, 20], which describes simultaneously two
aspects in quantum measurement of distinguishing by f ∈ L∞(dBω) and outputs ofX ∈ A
in each sector.

Especially, in the case that B = Zω(A), X = 1 and f = χ∆ (indicator function of ∆),
it gives dBω(∆) and by the axiom above it is equal to the probability that a sector is in
∆.
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4 Measurement Process

We shall formulate measurement processes in terms of composite systems. A measurement
interaction is defined as an automorphism on an algebra of a composite system of an object
system and an apparatus, equipped with a reference state on the object system “before
measurement”. Then we define a measurement process as a pair of an automorphism and
a state on the apparatus.

Let A be an observable of an object system and ω be a reference state. (πω,Hω,Ωω)
denotes the GNS representation of A with respect to ω. For simplicity, we consider the
case of measuring A ∈ πω(A)′′.

The spectrum of an observable A of the appratus can be embedded into ÛA (or R)2,

where ÛA denotes the dual group of UA = {u ∈ πω(A)′′ | u = eitA, t ∈ R}. C0(ÛA) (or
C0(R)) can be chosen as the algebra for the apparatus, where C0(M) denotes the algebra
of continuous function on a locally compact (Hausdorff) space M vanishing at infinity.

We adopt A⊗C0(M)(⊂ πω(A)′′ ⊗ L∞(M))3, M = ÛA or R, as an observable algebra for
the composite system of the object system and the measuring apparatus.

Then we assume that a measurement interaction is described by α ∈ Aut(πω(A)′′ ⊗

L∞(M)), M = ÛA or R. For any X ∈ A ⊗ C0(ÛA), α((πω ⊗ id)(X)) gives “X after
measurement of A”.

To reinterpret this situation with X unchanged, it is more convenient to move to the
“dual” picture in terms of states, instead of focusing on observables.

Summing up our discussions, we propose

Axiom 3. The observable algebra for the composite system of an object system and a
measuring apparatus is given by A ⊗ C0(M)(⊂ πω(A)′′ ⊗ L∞(M)), M = ÛA or R. A
measurement process is described by a pair m = (αm, ψm) of αm ∈ Aut(πω(A)′′ ⊗ L∞(M))
and of a state ψm of the measuring apparatus. The state of the composite system “after
measurement” is given by

ϕm(X) := (ϕ̃⊗ ψm)(αm((πω ⊗ id)(X))).

In the case of M = R where a measuring pointer runs, a measurement process of the
ideal measurement of an observable A is nothing but the pair of the measuring interaction
Ad eiγ(A⊗P ) of von Neumann type [10, 19], and of the delta measure δ0 as a state on

L∞(R). On the other hand, in the case of M = ÛA, a measurement process of the ideal
measurement of an observable A is specified by the pair (τU(V ), δι), where δι is the Dirac

measure on a unit element ι of ÛA, and τU(V ) is an automorphism of πω(X )′′ ⊗ L∞(ÛA)
defined as follows: According to SNAG (Stone-Naimark-Ambrose-Godement) theorem
[24], there exists a projection-valued measure (PVM) EU of U(UA)

′′ with the value space

(ÛA,B(ÛA)) such that

Uu =

∫

ÛA

γ(u) dEU(γ), u ∈ UA,

for a unitary representation (Hω, Uu) of a locally compact abelian group ÛA defined by
Uuξ = uξ for every ξ ∈ Hω (u ∈ UA). Using EU , we define a unitary operator EU(V ) on

2Because of its universality, R can be chosen as the spectrum for convenience’ sake.
3L∞(ÛA) = L∞(ÛA, dγ), where dγ denotes the Haar measure of ÛA.
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Hω ⊗ L2(ÛA) by

EU(V ) =

∫

ÛA

dEU(γ)⊗ λ̂γ,

where λ̂γ is the regular representation of ÛA on L2(ÛA) defined by (λ̂γf)(γ
′) = f(γ−1γ′) for

every f ∈ L2(ÛA) (γ, γ
′ ∈ ÛA)

4. A measuring interaction τU(V ) of the ideal measurement
of A is then defined by

τU(V )(X) = EU(V )∗XEU(V ), X ∈ πω(X )′′ ⊗ L∞(ÛA).

5 Generalized Born Rule

In this section we consider the case M = ÛA.
The spectral distribution of an observable is crucial information of the state of the

system under an experimental situation, the latter of which is in nature macroscopic.
Hence it is quite natural and important to consider how and in which form we can deduce
the Born rule, the most fundamental rule for spectral distribution in quantum physics,
from mathematical framework even applicable to such a context with infinite degrees of
freedom. In the present section we formulate “generalized Born rule” on the basis of
measurement processes in terms of sectors.

Let m = (αm, ψm) be a measurement process, where ψm is a normal state. Consider

the GNS representation (πϕ,m,Hϕ,m,Ωϕ,m) of (A⊗ C0(ÛA), ϕm) given by

Hϕ,m = (πω ⊗ id)(A⊗ C0(ÛA))Um(ξϕ ⊗ ξψm
),

πϕ,m(X) = (πω ⊗ id)(X)|Hϕ,m, X ∈ A⊗ C0(ÛA),

Ωϕ,m = Um(ξϕ ⊗ ξψm
).

where Um and ξϕ, ξψm
are a unitary implementer of αm and ξϕ, ξψm

of vector representations
of ϕ, ψm, respectively, defined in the standard representation [3] of a von Neumann algebra

πω(A)′′ ⊗ L∞(ÛA).

The von Neumann algebra corresponding to this representation is πϕ,m(A⊗C0(ÛA))
′′,

for which
πϕ,m(C1⊗ C0(ÛA))

′′ ⊂ Zπϕ,m(A⊗ C0(ÛA))

holds. Moreover,
(1⊗ χ∆)|Hϕ,m ∈ πϕ,m(C1⊗ C0(ÛA))

′′

holds for any Borel set ∆ of states on A⊗ C0(ÛA).
Let us consider the subcentral decomposition

ϕm(X) =

∫
dBϕm(ρ) ρ(X)

4EU (V ) can be rewritten as the Fourier transform of the Kac-Takesaki operator WU defined by
(WUv)(u) := Uuv(u) for every v ∈ Hω ⊗ L2(UA) (u ∈ UA) : EU (V ) = (id ⊗ F)W ∗

U
(id ⊗ F−1). This

rewrite is essential for us to understand the Fourier analytic aspect of measurement processes, which is
emphasized in [6].
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for any von Neumann algebra B satisfying

πϕ,m(C1⊗ C0(ÛA))
′′ ⊂ B ⊂ Zπϕ,m(A⊗ C0(ÛA)).

Then the subcentral decomposition of ϕm for B becomes an extremal decomposition
(i.e. decomposition into pure states) of ϕm|C1⊗C0(ÛA), where ·|

C1⊗C0(ÛA) means the restric-

tion of states on A ⊗ C0(ÛA) into C1 ⊗ C0(ÛA). Hence each ρ ∈ supp dBϕm can be

represented as ϕ′ ⊗ δγ (ϕ′ ∈ EA, γ ∈ ÛA).
Then the instrument functional for the subcentral measure dBϕm corresponding to B

is defined as

I(f ; dBϕm)(X) =

∫
dBϕm(ρ) f(ρ) ρ(X)

for any X ∈ A⊗ C0(ÛA) and f ∈ L∞(dBϕm).
Especially, for the function χ̌∆ := χ{ρ∈E

A⊗C0(ÛA)
|ρ=ϕ′⊗δγ ,ϕ′∈EA,γ∈∆} corresponding to a

Borel set ∆ ⊂ ÛA
5,

I(χ̌∆; d
Bϕm)(X̃ ⊗ 1) =

∫
dBϕm(ρ) χ̌∆(ρ) ρ(X̃ ⊗ 1)

= (ϕ̃⊗ ψm)(αm(πω(X̃)⊗ χ∆)),

since the inner product is available in the standard representation. For the case X̃ = 1,
we obtain the following:

Theorem 5.1 (Generalized Born rule). Let ϕ = ϕ̃◦πω be a normal state for object system
and m = (αm, ψm) be a measurement of an observable A ∈ πω(A)′′. The probability that

the output belongs to a Borel set ∆ of ÛA (or R) is given by

(ϕ̃⊗ ψm)(αm(1⊗ χ∆)).

Remark 5.1. Our argument can be generalized for sigular states such as “neutral posi-
tion” (a delta measure on L∞(ÛA)), which is an ideal state of measurement apparatus.
Let {mj = (αm, ψmj

) be a net such that ψmj
→ ψm (in σ-weak topology). Then

lim
j

I(χ̌∆; d
Bϕmj

)(X ⊗ 1) = (ϕ̃⊗ ψm)[αm(πω(X)⊗ χ∆)]

Hence the generalized Born rule itself holds even for singular states, although σ-additivity
of (ϕ̃⊗ ψm)(αm(1⊗ χ∆)) may fail to hold in general.

6 Born Rule and Spectral Equivalence

In the present section we see how and under which condition the usual Born rule can be
derived.

5χ̌∆ can be considered as an indicator function on the state space by applying Gelfand-Naimark
theorem for non-unital C*-algebras and locally compact spaces.
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Let us first explain the mathematical concept of spectral equivalence, which is formu-
lated by Ozawa [21, 22] under the name of “perfect correration” and generalized by KO
in [15]. Consider a (σ-finite) von Neumann algebra M on a Hilbert space H.

Two projection-valued measures E1, E2 on a mesurable space (S,B(S)) are said to be
spectrally equivalent on a family S of states and denoted as E1 =S E2 if

ϕ(E1(∆)E2(Γ)) = 0 (2)

holds for any ϕ ∈ S and any pair of Borel sets ∆,Γ satisfying ∆ ∩ Γ = ∅. We also use a
simpler notation E1 =ϕ E2 when S = {ϕ}.

Self-adjoint elements X, Y ∈ M are also said to be spectrally equivalent on a family
S and denoted as X =S Y if so are the corresponding projection-valued measures.

Let S be a subset of normal states. In the standard representation there exists ξϕ in
the corresponding to a normal state ϕ such that

ϕ(A) = 〈ξϕ, Xξϕ〉 , X ∈ M.

In this case it is easy to see that spectral equivalence is indeed an equivalence relation;

(1) X =S X ; (2) X =S Y ⇒ Y =S X ; (3) X =S Y, Y =S Z ⇒ X =S Z.

(1) and (2) are obvious; (3) can be proved by appealing the fact that for any ϕ ∈ S there
exists ξϕ satisfying ϕ(A) = 〈ξϕ, Xξϕ〉 and (EX(∆)−EY (∆))ξϕ = 0 for any Borel set ∆.

Moreover the theorem below holds, which is a generalization of Theorem 5.3 in [22].

Theorem 6.1. X =ϕ Y if and only if for any pair of Borel sets ∆,Γ the joint probability
measure on R2 is supported by a closed subset of the diagonal set D = {(x, x) ∈ R2|x ∈ R}.

The theorem above is useful to clarify the meaning of spectral equivalence in the
context of measurement theory: For measurement (classical or quantum) it is desirable
that the spectrum of A ⊗ 1 before the measurement can be considered as a subset of
∆ when the spectrum detected by αm(1 ⊗ χ(·)) is equal to ∆ ∈ B(R). Moreover, the
spectrum of A⊗ 1 should be stable under the change of representation in a sector. These
assumptions are summarized as the equation below:

αm(1⊗ χ(·)) =πω(A)′′
∗,1⊗ψm

EA(·)⊗ 1.

where πω(A)′′∗,1⊗ψm = {ϕ⊗ψm|ϕ is a normal state on πω(A)′′}. When the equation above
holds we obtain the following fundamental theorem from Theorem 6.1.

Theorem 1.1 (Born rule). Assume that the state of the object system is ϕ = ϕ̃ ◦ πω.
Then the probabilty Pr{A ∈ ∆‖ϕ} with which the value of A ∈ πω(X )′′ is in ∆ ∈ B(R) is
given by

ϕ̃(EA(∆)) = 〈ξϕ̃, E
A(∆)ξϕ̃〉.
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