
ar
X

iv
:1

31
0.

59
41

v1
  [

qu
an

t-
ph

] 
 2

2 
O

ct
 2

01
3

Monotonicity of the von Neumann entropy

expressed as a function of Rényi entropies
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Abstract

The von Neumann entropy of a density matrix of dimension d, ex-

pressed in terms of the first d − 1 integer order Rényi entropies, is

monotonically increasing in Rényi entropies of even order and decreas-

ing in those of odd order.

This paper is about the monotonicity of the von Neumann entropy expressed
as a function of integer order Rényi entropies. As entropies are unitarily
invariant quantities associated with a single density matrix ρ, we can restrict
our attention to diagonal density matrices, i.e. probability vectors. The in-
teger Rényi entropy of order q = 2, 3, . . . is usually defined as [1, 2, 3]

Sq(ρ) := −
1

q − 1
log

(

Tr ρq
)

. (1)

and the von Neumann entropy equals formally the Rényi entropy of order 1

S(ρ) := −Tr ρ log ρ, (2)
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where 0 log 0 := 0.

Entropic quantities are relevant for translation-invariant many particle sys-
tems where the entropies of physically relevant states are typically propor-
tional to the number of particles. In such a situation the Rényi and von Neu-
mann entropies per particle sq and s are important quantities. It is known
that the average Rényi entropies don’t always exist and that they lack in
general good continuity or convexity properties. Still, for particular sub-
classes of states, e.g. states with good cluster properties, the Rényi densities
are meaningful. One of their major advantages is that the low order densi-
ties can sometimes be computed rather explicitly using multiple independent
copies of the system, this is the replica trick, see e.g. [4]. ‘Taking the limit
q → 0’ is a widely used approach in statistical physics. The general question
of relating Rényi and von Neumann entropies is therefore important [5, 6].
A number of interesting bounds obtained in finite dimensions don’t survive
the thermodynamic limit and there are quite few general relations available
between the densities, provided they exist. The aim of this note is to prove
in d dimensions, a monotonicity property of S, expressed as a function of S2,
S3, . . ., Sd.

We first recall some basic notions, see [7] for background material. Consider
sequences λ = (λ0, λ1, . . .) of complex numbers with only a finite number
of entries different from 0. The elementary symmetric polynomials ek, k =
0, 1, 2, . . . are defined as follows

e0 = 1, e1 =
∑

j

λj , e2 =
∑

j1<j2

λj1λj2, · · · (3)

The entries of λ are non-negative if and only if all ek are non-negative.
For the remainder of this note we restrict ourselves to probability vectors
λ of length d with non-increasing entries. It is then well-known that the
symmetric polynomials e2, e3, . . ., ed completely determine λ.

We also need the power sums of sequences of length d

r0 = d, r1 =
∑

j

λj , r2 =
∑

j

λ2

j , · · · (4)

Again, the power sums r2, r3, . . ., rd fully determine λ.

The powers sums can be expressed as polynomials in elementary symmetric
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invariants and vice versa:

2e2 = 1− r2, 6e3 = 1− 3r2 + 2r3, 24e4 = 1− 6r2 + 3r22 + 8r3 − 6r4, · · ·

and

r2 = 1− 2e2, r3 = 1− 3e2 + 3e3, r4 = 1− 4e2 + 2e22 + 4e3 − 4e4, · · ·

Also the entropies Sq and S can both be expressed, either as functions of
e2, e3, . . ., ed or of r2, r3, . . ., rd. It was shown in [8] that S is an increasing
function of the elementary symmetric invariants.

It is our aim to show that S is decreasing in the power sums of even order
and increasing in these of odd order. This is, in view of (1), equivalent to

∂S

∂Sq

≥ 0 for q even and
∂S

∂Sq

≤ 0 for q odd. (5)

We first provide an elementary proof of ∂S/∂ek ≥ 0, based on the integral
representation

− x log x = 1− x−

∫

∞

0

dt
{

log(t+ 1)− log(t+ x)−
1− x

t+ 1

}

, x ≥ 0. (6)

Applying this to a density matrix of dimension d yields

S = d− 1−

∫

∞

0

dt
{

d log(t+ 1)− log
(

det(t+ ρ)
)

−
d− 1

t+ 1

}

. (7)

Using the generating function for the elementary symmetric invariants

det(t + ρ) =
d

∑

j=0

td−j ej (8)

we obtain the monotonicity property

∂S

∂ek
=

∫

∞

0

dt
td−k

∑d

j=0
td−j ej

≥ 0 for k = 2, 3, . . . , d. (9)
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Next, we express the elementary symmetric invariants e2, e3, . . ., ed in func-
tion of the first d−1 power sums r2, r3, . . ., rd and show that for k = 2, 3, . . . , d

∂ek
∂rℓ

=







(−1)ℓ+1 1

ℓ
ek−ℓ for ℓ = 2, 3, . . . , k

0 for ℓ = k + 1, k + 2, . . . , d.
(10)

In matrix form this relation reads

∂(e2, e3, . . .)

∂(r2, r3, . . .)
=























−
1

2
0 0 · · ·

−
1

2

1

3
0

−
1

2
e2

1

3
−

1

4

−
1

2
e3

1

3
e2 −

1

4

−
1

2
e4

1

3
e3 −

1

4
e2

...
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(11)

The proof of (10) is actually quite simple if we start from the identity

d
∑

k=0

(−1)krked−k = 0 (12)

that can be verified by direct inspection after plugging in the definitions of
e and r, see (3) and (4). Partially differentiating (12) with respect to rj and
observing that ∂ek/∂rℓ = 0 for ℓ > k yields (10).

Combining (1), (9), and (10) we obtain

∂S

∂Sq

≥ 0 for q even and
∂S

∂Sq

≤ 0 for q odd. (13)

Actually a slightly more involved computation shows that also

∂rk
∂eℓ

≤ 0 for ℓ even and
∂rk
∂eℓ

≥ 0 for ℓ odd. (14)

This implies that (13) is actually equivalent to (9). In principle, (13) is better
adapted to a situation where a thermodynamic limit has to be taken as the
average elementary symmetric invariants don’t make sense in such a situation
while monotonicity is preserved.

In [9] an explicit reconstruction of the von Neumann average entropy in terms
of average Rényi entropies was obtained for quasi-free Fermionic states. Suc-
cessive approximations of s by linear combinations of sq exhibit an alternating
sign behaviour consistent with (5).
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