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GLOBAL GEOMETRIC DIFFERENCE BETWEEN SEPARABLE

AND POSITIVE PARTIAL TRANSPOSE STATES

KIL-CHAN HA AND SEUNG-HYEOK KYE

Abstract. In the convex set of all 3 ⊗ 3 states with positive partial transposes, we
show that one can take two extreme points whose convex combinations belong to the
interior of the convex set. Their convex combinations may be even in the interior of
the convex set of all separable states. In general, we need at least mn extreme points
to get an interior point by their convex combination, for the case of the convex set
of all m ⊗ n separable states. This shows a sharp distinction between PPT states
and separable states. We also consider the same questions for positive maps and
decomposable maps.

1. Introduction

Distinguishing entanglement from separability is one of the most important question

in the theory of quantum entanglement, and the positive partial transpose (PPT)

criterion [8, 30] gives a simple but strong necessary condition for separability. The

PPT condition is actually equivalent to the separability if the rank of a given PPT

state is sufficiently low by [19]. In the case that the rank is not so high, it turns

out that the local geometry is quite useful to distinguish and construct entanglement

among PPT states. Basic idea is to consider the smallest faces determined by a given

separable state in the convex sets of all separable states and all PPT states respectively,

and compare those. See [14, 16] for recent progresses in this direction.

In this paper, we turn our attention to the global geometries for separable and PPT

states, and look for the differences. We denote by Sm,n the convex set of all m ⊗ n

separable states, and by Tm,n the convex set of all m⊗ n PPT states. For the convex

set Sm,n, it is easy to see that a convex combination of two extreme points is always on

the boundary of the convex set. Actually, the line segment between two extreme points

of S2,2 is already a nontrivial face of the convex set, in most cases. See [25] for more

details for the convex geometry of S2,2. More generally, the convex hull of max{m,n}

extreme points of Sm,n is a face of the convex set, in most cases by [1, 22]. Therefore,

it is natural to ask how these properties are retained for the convex set Tm,n.

1991 Mathematics Subject Classification. 81P15, 15A30, 46L05.
Key words and phrases. states with positive partial transposes, separable states, extreme points,

boundary, positive maps, decomposable maps.
KCH is partially supported by NRFK 2013-020897. SHK is partially supported by NRFK 2009-

0083521.
1

http://arxiv.org/abs/1308.0952v1


For a convex compact set C in a finite dimensional real vector space, we introduce

the number ν(C) the smallest natural number k such that the convex combination of

k extreme points of C may be an interior point of C. We recall that the interior of a

convex set is defined by the interior with respect to the relative topology induced by

the affine manifold generated by itself. Sometimes, it is more convenient to consider

the convex cone C̃ generated by the convex compact set C. For example, S̃m,n (T̃m,n,

respectively) is the convex cone of all m⊗n unnormalized separable (PPT, respectively)

states. In this case, we may replace extreme points by extreme rays to get the same

number ν(C). Recall that a point x of a convex compact set C is an extreme point

of C if and only if x generates an extreme ray of the convex cone C̃, whenever the

hyperplane generated by C does not contain the origin.

It is easy to see that

ν(Sm,n) = mn,

for every m,n = 2, 3, . . . . The main purpose of this note is to show that

ν(T3,3) = 2,

to see the geometric difference between S3,3 and T3,3. In other words, we can take just

two extreme points of T3,3 whose convex combinations belong to the interior of T3,3.

To do this, we consider the following 3 ⊗ 3 states

̺b,θ =



























pθ · · · −eiθ · · · −e−iθ

· 1
b

· −e−iθ · · · · ·
· · b · · · −eiθ · ·
· −eiθ · b · · · · ·

−e−iθ · · · pθ · · · −eiθ

· · · · · 1
b

· −e−iθ ·
· · −e−iθ · · · 1

b
· ·

· · · · · −eiθ · b ·
−eiθ · · · −e−iθ · · · pθ



























for a given positive number b > 0 and a real number θ, where · denotes zero and

pθ = max{ei(θ−
2

3
π) + e−i(θ− 2

3
π), eiθ + e−iθ, ei(θ+

2

3
π) + e−i(θ+ 2

3
π)}

is the smallest positive number a so that the following 3 × 3 matrix




a −eiθ −e−iθ

−e−iθ a −eiθ

−eiθ −e−iθ a





is positive, as it was discussed in Section 2 of [13]. We note that 1 ≤ pθ ≤ 2. Therefore,

it is immediate to see that ̺b,θ is a PPT state. These PPT states have been constructed

in [26] for −π/3 < θ < π/3. The main point is to extend this construction for the full

range of θ.
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We check that they are extreme points of T3,3 in most cases, with a few exceptions.

Note that the case of b = 2 and θ = π/6 has been checked to be extreme in [4]. If we

divide the parameter eiθ into three arcs and take any two extreme points from different

arcs then their convex combinations lie in the interior of T3,3. We see that some of

them turn out to be even in the interior of S3,3. It had been asked in [6] whether

the sum of two PPT entangled extreme states can be separable, and the authors [14]

gave an affirmative answer. More precisely, it was shown that sum of two extreme PPT

entangled states with rank four may be separable. Our construction in this paper shows

that sum of two extreme PPT entangled states with rank five may be even diagonal

matrices with positive diagonal entries.

Let Mn be the C∗-algebra consisting of all n × n matrices over the complex field.

We also consider the same question for the convex cone Pm,n (respectively Dm,n) of all

positive maps (respectively decomposable positive maps) from Mm into Mn, to show

that ν(Dm,n) ≥ m + n − 2. In the case of n = m = 3, we have ν(D3,3) = 4 and

ν(P3,3) = 2. By the Jamio lkowski-Choi isomorphism [7, 20], the cones Pm,n and Dm,n

are considered as subsets of Mm ⊗Mn, and we have the relation

S̃m,n ⊂ T̃m,n ⊂ Dm,n ⊂ Pm,n.

We also recall [9] that S̃m,n and Pm,n (respectively T̃m,n and Dm,n) are dual to each

others with respect to the bilinear pairing

(1) 〈ρ, φ〉 = Tr(ρCt
φ), ρ ∈ S̃m,n, φ ∈ Pm,n,

where Cφ is the Choi matrix of φ defined by
∑

|i〉〈j| ⊗ φ(|i〉〈j|), and interior points of

these convex sets can be characterized by the above duality:

• ρ is an interior point of Sm,n if and only if 〈ρ, φ〉 > 0 for all nonzero φ ∈ Pm,n.

• φ is an interior point of Pm,n if and only if 〈ρ, φ〉 > 0 for all ρ ∈ Sm,n.

In this characterization of interior points of convex sets, we note that it suffices to

check the positivity of the pairing only for extreme points (rays) of the dual convex set

(convex cone). See Proposition 5.1 and 5.4 of [24].

In the next section, we examine the properties of the states ̺b,θ and how to choose

two of them to get an interior point by their convex combination. In Section 3, we

show that they are extreme points in T3,3, in most cases. We consider the convex cones

P3,3 and Dm,n in Section 4, and close this note with discussions in Section 5.

2. Separable states and PPT states

The facial structures for the convex set Tm,n are well understood [11]. Every face

of Tm,n is of the form

τ(D,E) = {̺ ∈ Tm,n : R̺ ⊂ D, R̺Γ ⊂ E},
3



for subspaces D and E of Cm ⊗ Cn, and its interior is given by

int τ(D,E) = {̺ ∈ Tm,n : R̺ = D, R̺Γ = E},

where R̺ denotes the range space of ̺, and ̺Γ is the partial transpose of ̺. Especially,

a PPT state ̺ is an interior point of Tm,n if and only if the ranges of ̺ and ̺Γ are full

spaces.

Extreme points of the convex set Sm,n are nothing but product states by the defi-

nition of separability. If we take k product states with k < mn and form a separable

state ̺ ∈ Sm,n with their convex combination then the range space of ̺ is never the full

space, and so ̺ is on the boundary of Tm,n. By the relation Sm,n ⊂ Tm,n, we conclude

that ̺ is also on the boundary of Sm,n. Therefore, we have ν(Sm,n) ≥ mn. Since the

identity matrix is in the interior of Sm,n, we conclude that ν(Sm,n) = mn. In fact,

it is easy to see that every diagonal matrix with nonzero positive diagonal entries is

an interior point of the convex set Sm,n, by the duality between separable states and

positive maps.

Now, we proceed to examine the properties of the states ̺b,θ. We also consider the

PPT states defined by

σb,θ =



























pθ · · · −eiθ · · · −e−iθ

· 1
b

· · · · · · ·
· · b · · · · · ·
· · · b · · · · ·

−e−iθ · · · pθ · · · −eiθ

· · · · · 1
b

· · ·
· · · · · · 1

b
· ·

· · · · · · · b ·
−eiθ · · · −e−iθ · · · pθ



























.

If 0 < |θ| < π
3

then σb,θ is nothing but PPT entangled edge states of type (8, 6)

constructed in [26]. We recall that a PPT state ̺ is said to be of type (p, q) if the

ranks of ̺ and ̺Γ are p and q, respectively. We note that the state ̺b,θ defined in

Introduction is given by

̺b,θ = σb,θ + σΓ
b,θ − Diagσb,θ,

which is block-wise symmetric.

If θ = 0 then σb,0 was shown to be separable for each b > 0 in [26]. On the other

hand, if θ = π then σb,π was shown [12] to be separable if and only if b = 1. When

b 6= 1, we note that σb,π is nothing but PPT entangled state given by Størmer [31] in

the early eighties. We also know that both σb,θ and ̺b,θ are PPT entangled edge states

for 0 < |θ| < π
3

by [26].
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Now, we turn our attention to the state ̺b,π. We note that ̺1,π is the separable

state given by the following four product vectors

(1, 1, 1)t ⊗ (1, 1, 1)t, (1, 1,−1)t ⊗ (1, 1,−1)t,

(1,−1, 1)t ⊗ (1,−1, 1)t, (−1, 1, 1)t ⊗ (−1, 1, 1)t,

as it was shown in [14]. The states ̺b,π with b 6= 1 appear in the construction [17] of

PPT entangled states of type (4, 4) using the duality between positive linear maps and

separable states. The special case ̺2,π is just the first example of 3⊗ 3 PPT entangled

state given by Choi [8]. In short, we see that ̺b,π is separable if and only if b = 1.

If we take the diagonal unitary U = Diag(1, e−
2

3
πi, e

2

3
πi), then we have

U−1





pθ −eiθ −e−iθ

−e−iθ pθ −eiθ

−eiθ −e−iθ pθ



U =





pθ −ei(θ−
2

3
π) −e−i(θ− 2

3
π)

−e−i(θ− 2

3
π) pθ −ei(θ−

2

3
π)

−ei(θ−
2

3
π) −e−i(θ− 2

3
π) pθ



 ,

and so it follows that

(2) (I ⊗ U)−1̺b,θ(I ⊗ U) = ̺b,θ− 2

3
π, (I ⊗ U)−1σb,θ(I ⊗ U) = σb,θ− 2

3
π.

Therefore, the separability and PPT properties of ̺b,θ and σb,θ are invariant under

the translation of θ by 2
3
π, as well as the types of the states. Therefore, we have the

following:

Theorem 2.1. For states σθ and ̺θ, we have the following:

(i) If θ 6= n
3
π for any integer n, then σb,θ and ̺b,θ are PPT entangled edge states of

type (8, 6) and (5, 5), respectively.

(ii) If θ = n
3
π for an even integer n, then σb,θ and ̺b,θ are separable states of type

(8, 6) and (5, 5), respectively.

(iii) If θ = n
3
π for an odd integer n and b = 1, then σb,θ and ̺b,θ are separable states

of type (7, 6) and (4, 4), respectively.

(iv) If θ = n
3
π for an odd integer n and b 6= 1, then σb,θ and ̺b,θ are PPT entangled

states of type (7, 6) and (4, 4), respectively.

The separability and entangledness of the states ̺b,θ and σb,θ are summarized in

Figure 1. We note that the circle {eiθ : θ ∈ R} is divided by three arcs by the range of

the variable θ:
(

−π, −
π

3

)

,
(

−
π

3
,
π

3

)

,
(π

3
, π

)

.

We also note that the following three vectors

w1(θ) =(0, b, 0 ; eiθ, 0, 0 ; 0, 0, 0),

w2(θ) =(0, 0, 0 ; 0, 0, b ; 0, eiθ, 0),

w3(θ) =(0, 0, eiθ ; 0, 0, 0 ; b, 0, 0),
5



b¹1 b=1

Figure 1. The points on the arcs represent PPT entangled states, and
the small circles represent separable states.

belong to the kernel of ̺b,θ, regardless of the values of b and θ. There are extra kernel

vectors:

w− = (1, 0, 0 ; 0, e
2

3
πi, 0 ; 0, 0, e−

2

3
πi), −π <θ < −

π

3
,

w0 = (1, 0, 0 ; 0, 1, 0 ; 0, 0, 1), −
π

3
<θ < +

π

3
,

w+ = (1, 0, 0 ; 0, e−
2

3
πi, 0 ; 0, 0, e

2

3
πi),

π

3
<θ < π.

If we take (b, θ) and (c, τ) so that eiθ and eiτ belong to the different arcs, then it is

clear that the kernels of ̺b,θ and ̺c,τ have the trivial intersection. This means that the

nontrivial convex combination ρ of these two states has the full range space, as well

as the partial conjugate. Therefore, we conclude that this PPT state ρ belongs to the

interior of the convex set T3,3. In the next section, we will show that each state ̺b,θ is

an extreme point in the convex set T3,3 consisting of all 3 ⊗ 3 PPT states, whenever

θ 6= n
3
π for an integer n. From this, we conclude that ν(T3,3) = 2. If we take (b, θ)

and (c, τ) so that eiθ and eiτ belong to the same arc, then we note that the convex

combinations of ̺b,θ and ̺c,τ are on the boundary.

For a given eiθ, we take the antipodal point ei(θ+π) = −eiθ then we see that

1

2
(̺b,θ + ̺c,θ+π)

is a diagonal matrix, and so it is separable. Actually, it is an interior point of S3,3,

since there is no zero entry in the diagonal. This shows that the convex combination

of two extreme PPT states may be in the interior of the convex set S3,3 of all separable

states. We note that pθ + pθ+π > 2 for each θ, and so we may take b > 0 so that

b+ 1
b

= pθ + pθ+π. Then we see that the sum ̺b,θ + ̺1/b,θ+π of two extreme PPT states

is a scalar multiple of the identity matrix.
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3. Extremeness

First, we briefly explain the method [27, 10, 2] to check if a given face τ(D,E) is an

extreme point or not, where D and E are subspaces of Cm ⊗ Cn. Let (Mm ⊗Mn)h be

the real Hilbert space of all mn×mn hermitian matrices in Mm ⊗Mn with the inner

product 〈X, Y 〉 = Tr(Y Xt), and orthogonal projections PD and PE in (Mm⊗Mn)h onto

D and E, respectively. We define real linear maps φD and φE between (Mm⊗Mn)h by

φD(X) = PDXPD −X, φE(X) = (PEX
ΓPE)Γ −X, X ∈ (Mm ⊗Mn)h.

Then we see that τ(D,E) ⊂ KerφD∩Ker φE, where KerφD denotes the kernel space of

φD. Therefore, if KerφD∩Ker φE is one-dimensional then τ(D,E) must be an extreme

point. It is not so difficult to see that the converse does hold. Thus, we can conclude

that τ(D,E) is an extreme point if and only if the condition

dim(KerφD ∩ KerφE) = 1

holds.

Now, we proceed to show that ̺b,θ is an extreme point in the convex set T3,3,

whenever 0 < |θ| < π
3
. Let D = R̺b,θ and E = R̺Γb,θ. We note that ̺b,θ = ̺Γb,θ, so

we see that PD = PE. Applying the Gram-Schmidt process to linearly independent

vectors of R̺b,θ, we can compute the orthogonal projection PD as follows:

PD = PE =

































2
3

0 0 0 −1
3

0 0 0 −1
3

0 1
1+b2

0 − be−iθ

1+b2
0 0 0 0 0

0 0 b2

1+b2
0 0 0 − beiθ

1+b2
0 0

0 − beiθ

1+b2
0 b2

1+b2
0 0 0 0 0

−1
3

0 0 0 2
3

0 0 0 −1
3

0 0 0 0 0 1
1+b2

0 − be−iθ

1+b2
0

0 0 − be−iθ

1+b2
0 0 0 1

1+b2
0 0

0 0 0 0 0 − beiθ

1+b2
0 b2

1+b2
0

−1
3

0 0 0 −1
3

0 0 0 2
3

































.

By a direct computation, we can show that both KerφD and KerφE are twenty-five

dimensional real linear subspaces. Let {Eij} be the usual matrix units in M9. Then,

we can find a basis {Xi : 1 ≤ i ≤ 25} of real linear space KerφD, which consists of
7



hermitian matrices including the following vectors:

X1 = E11 + E55 − E15 −E51

X2 = E11 + E99 − E19 −E91

X3 = E55 + E99 − E59 −E95

X4 = i(E19 − E15 −E59) − i(E91 − E51 − E95)

X5 = e−iθE24 + eiθE42 − bE44 −
1

b
E22,

X6 = e−iθE68 + eiθE86 − bE88 −
1

b
E66,

X7 = e−iθE73 + eiθE37 − bE33 −
1

b
E77.

We also see that KerφE = span{Yi : 1 ≤ i ≤ 25} with hermitian matrices Yi’s. Here,

we just write down the list of Yi for i = 1, 2, · · · , 7, as follows:

Y1 = E11 + E55 −E24 −E42,

Y2 = E11 + E99 −E37 −E73,

Y3 = E55 + E99 −E68 −E86,

Y4 = i(E37 + E42 + E86) − i(E73 + E24 + E68),

Y5 = e−iθE19 + eiθE91 − bE33 −
1

b
E77,

Y6 = e−iθE51 + eiθE15 − bE44 −
1

b
E22,

Y7 = e−iθE95 + eiθE59 − bE88 −
1

b
E66.

,

For the full list of vectors Xi and Yi for 8 ≤ i ≤ 25, see the appendix. By solving the

linear equation
∑25

i=1 xiXi =
∑25

j=1 yjYj with respect to xi’s and yj’s, we see that the

subspace Ker ΦD ∩ Ker ΦE is generated ̺b,θ. In fact, we have

̺b,θ = cos θ(X1 + X2 + X3) + sin θX4 −X5 −X6 −X7

= cos θ(Y1 + Y2 + Y3) − sin θY4 − Y5 − Y6 −X7.

Therefore, we see that ̺b,θ is an extreme point in T3,3 for 0 < |θ| < π
3
.

We note that ̺b,θ− 2

3
π is extreme if and only if ̺b,θ is so by the relation (2). Conse-

quently, we may conclude that ̺b,θ is extreme whenever θ 6= n
3
π for an integer n.

4. Decomposable and positive maps

In order to see that ν(P3,3) = 2, we recall the positive linear map Φθ(t) considered

in [15], which maps a 3 × 3 matrix X = (xij) to the following 3 × 3 matrix




a(t)x11 + b(t)x22 + c(t)x33 −eiθx12 −e−iθx13

−e−iθx21 c(t)x11 + a(t)x22 + b(t)x33 −eiθx23

−eiθx31 −e−iθx32 b(t)x11 + c(t)x22 + a(t)x33



 ,

8



where

a(t) = 1 −
(pθ − 1)t

1 − t + t2
, b(t) =

(pθ − 1)t2

1 − t + t2
, c(t) =

(pθ − 1)

1 − t + t2
,

with 0 < t < ∞. It was shown that Φθ(t) generates an exposed ray of the convex cone

P3,3, and so generates an extreme ray of P3,3, whenever the condition

θ 6=
2n− 1

3
π, (θ, t) 6=

(

2n

3
π, 1

)

holds. It is now clear that if we take the convex combination of two antipodal maps

Φθ(t) and Φθ+π(s) then we get a positive map whose Choi matrix is a diagonal matrix

with positive diagonal entries, and so we see that this map is an interior point of P3,3

by duality.

It remains to consider the convex cone Dm,n consisting of all decomposable maps

from Mm into Mn. We first note that every decomposable map is the convex combina-

tion of the maps

φV : X 7→ V ∗XV, φW : X 7→ W ∗XtW, X ∈ Mm,

for m× n matrices V and W , where Xt denotes the transpose of X . Therefore, every

decomposable map from Mm into Mn is of the form

(3) φV + φW =
∑

i

φVi
+
∑

j

φWj ,

for a finite sets V = {Vi} and W = {Wj} of m× n matrices. We also note that if the

map (3) is on the boundary of the cone Pm,n then it is also on the boundary of the

cone Dm,n. For a product vector |z〉 = |ξ〉 ⊗ |η〉, the pairing in (1) is given by

〈|z〉〈z|, φV + φW〉 =
∑

i

|〈ξ|Vi|η̄〉|
2 +

∑

j

|〈ξ̄|Wj|η̄〉|
2.

Therefore, the map (3) is on the boundary of Pm,n if and only if the equation

〈ξ|Vi|η̄〉 = 0, 〈ξ̄|Wj|η̄〉 = 0

has a common solution |ξ〉 ⊗ |η〉 ∈ Cm ⊗ Cn. If we put k = dim spanV and ℓ =

dim spanW then it was shown in [21] that

(i) If k + ℓ < m + n− 2, then there exists a solution

(ii) If k + ℓ = m + n− 2 and

∑

r+s=m−1

(−1)r
(

k

r

)(

ℓ

s

)

6= 0,

then there exists a solution.

(iii) If k + ℓ > m + n− 2, then the existence of solutions is not guaranteed.

Therefore, we have the following:
9



Theorem 4.1. For given natural numbers m,n = 2, 3, . . . , consider the equation

(4) k + ℓ = m + n− 2,
∑

r+s=m−1

(−1)r
(

k

r

)(

ℓ

s

)

= 0

with unknowns k and ℓ. Then, we have the following:

(i) We have ν(Dm,n) ≥ m + n− 2 in general.

(ii) If the equation (4) has no solution then ν(Dm,n) ≥ m + n− 1.

The polynomial in the Diophantine equation (4) is called the Krawtchouk polyno-

mial which plays an important role in coding theory. See [28] and [32]. The equation

(4) has not yet completely solved.

In order to get an upper bound for ν(Dm,n), we have to construct decomposable

maps in the interior of the cone Dm,n. By the duality between decomposable maps

and PPT states with respect to the pairing (1), we see that the map in (3) lies on the

boundary of the cone Dm,n if and only if there exists a PPT states σ such that the

ranges of σ and the partial transpose σΓ coincide with V⊥ and W⊥, respectively.

We consider the case with m = 2, to take an n − 1 dimensional subspace D of

C2 ⊗ Cn with no product vectors [33, 29]. Then it is clear that there is no PPT state

σ such that Rσ = D and RσΓ = C2 ⊗ Cn. Indeed, if we assume that there is such

a state σ then σ must be separable by [23], but this state violates the range criterion

[18]. Therefore, if we take a basis V in D⊥ then the map φV is an interior point of the

cone D2,n. This shows that ν(D2,n) ≤ n+ 1. In the case of m = 2, it was shown in [21]

that the equation (4) has a solution if and only if n is an even number. This proves

the odd case of the following:

(5) ν(D2,n) =

{

n + 1, n is odd,

n, n is even.

When n = 2µ is an even integer then the equation (4) has the unique solution (k, ℓ) =

(µ, µ), and one can construct V = {V1, . . . , Vµ} and W = {W1, . . . ,Wµ} so that the

decomposable map (3) is an interior point of D2,n, following the argument in [21]. To

do this, we consider the 2 × 2µ matrix Vi whose i-th 2 × 2 block is the identity matrix

and other entries are all zero. We also consider the 2× 2µ matrix Wi whose i-th block

is

(

0 −1
1 0

)

and other entries are all zero. Then we see that

µ
∑

i=1

φVi
+

µ
∑

i=1

φWi

is just the trace map sending X ∈ M2 to Tr(X)I ∈ M2µ, which is an interior point of

D2,2µ. This shows the above equality (5) when n is even. For the 2 ⊗ 2 system, the

whole facial structures of the cone D2,2 have been characterized in [3].
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In the case of m = 3, we know that the equation (4) has a solution if and only if n

is of the form n = µ(µ+ 2), with the solution (k, ℓ) = (
(

µ+1
2

)

,
(

µ+2
2

)

). Especially, in the

3 ⊗ 3 case, we have the solution (k, ℓ) = (1, 3). In this case, we see that the map

φI + φE12−E21 + φE23−E32 + φE31−E13

is exactly the trace map, which is an interior point of D3,3. Therefore, we have

ν(D3,3) = 4.

5. Discussion

For a given convex set, we have considered the smallest number of extreme points

with which we may get an interior point by their convex combinations. For 3⊗ 3 PPT

states and positive maps, these numbers turned out to be just 2. This means that there

exist ‘antipodal’ extreme points. Poor knowledge on extreme PPT states and extreme

positive maps prevent the authors to extend these results to higher dimensions.

For the cases of separable states and decomposable maps, these numbers exceed 2.

This means that there exist no ‘antipodal’ extreme points, and might reflect the facts

that the notions of separability and decomposability are defined by convex hulls of

prescribed given extreme points, and that there are no easy intrinsic characterizations

for these notions.

The equality ν(Sm,n) = mn tells us that the number mn is the minimum of the

lengths of interior points of Sm,n. Recall that the length of a separable state ̺ is given

by the minimum number of product states with which ̺ can be expressed as a convex

combination. It seems to be an interesting question to ask if every interior point of

Sm,n has the length mn. The authors [14, 16] have recently constructed separable

states in Sm,n whose lengths exceed the number mn, for the cases (m,n) = (3, 3) and

(2, 4). All of those are boundary points of the convex set Sm,n. See also [5]. For some

faces of Sm,n, it is possible to characterize the interior by lengths. For example, this

is clearly the case if a face of Sm,n is affinely isomorphic to a simplex. See [14, 16] for

constructions of such faces in the 3 ⊗ 3 or 2 ⊗ n cases. This is also the case [25] for a

face of S2,n which is affinely isomorphic to the convex set generated by trigonometric

moment curve.
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6. Appendix

In this appendix we list up the remaining vectors Xi and Yi constituting bases of

real spaces Ker(φD) and Ker(φE), respectively, as follows:

X8 = e−iθ(E29 −E21) + eiθ(E92 −E12) + b(E14 + E41 − E49 −E94),

X9 = e−iθ(E71 −E75) + eiθ(E17 −E57) + b(E35 + E53 − E13 −E31),

X10 = e−iθ(E79 −E71) + eiθ(E97 −E17) + b(E13 + E31 − E39 −E93),

X11 = e−iθ(E61 −E65) + eiθ(E16 −E56) + b(E58 + E85 − E18 −E81),

X12 = e−iθ(E69 −E61) + eiθ(E96 −E16) + b(E18 + E81 − E89 −E98),

X13 = −e−iθ(E21 + E25) − eiθ(E12 + E52) + b(E14 + E41 −E45 −E54),

X14 = e−iθ(E13 −E53) + eiθ(E31 −E35) +
1

b
(E57 + E75 − E17 −E71),

X15 = e−iθ(E13 −E93) + eiθ(E31 −E39) +
1

b
(E97 + E79 − E17 −E71),

X16 = e−iθ(E14 −E54) + eiθ(E41 −E45) +
1

b
(E25 + E52 − E12 −E21),

X17 = e−iθ(E14 −E94) + eiθ(E41 −E49) +
1

b
(E29 + E92 − E12 −E21),

X18 = e−iθ(E18 −E98) + eiθ(E81 −E89) +
1

b
(E69 + E96 − E16 −E61),

X19 = e−iθ(E58 −E18) + eiθ(E85 −E81) +
1

b
(E16 + E61 − E56 −E65),

X20 = e−iθ(E63 + E78) + eiθ(E36 + E87) − b(E38 + E83) −
1

b
(E67 + E76),

X21 = −e−iθ(E23 + E74) − eiθ(E32 + E47) + b(E34 + E43) +
1

b
(E27 + E72),

X22 = −e−iθ(E28 + E64) − eiθ(E82 + E46) + b(E48 + E84) +
1

b
(E26 + E62),

X23 = e−iθ(E67 + b2E83 − be−iθE63) + eiθ(E76 + b2E38 − beiθE36) − b(E78 + E87),

X24 = e−iθ(E48 +
1

b2
E26 −

1

b
e−iθE28) + eiθ(E84 +

1

b2
E62 −

1

b
eiθE82) −

1

b
(E46 + E64),

X25 = −e−iθ(E43 +
1

b2
E27 −

1

b
e−iθE23) − eiθ(E34 +

1

b2
E72 −

1

b
eiθE32) +

1

b
(E47 + E74),
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Y8 = e−iθ(E21 − E83) + eiθ(E12 − E38) + b(E67 + E76 − E14 − E41),

Y9 = e−iθ(E21 − E52) + eiθ(E12 − E25) + b(E45 + E54 − E14 − E41),

Y10 = e−iθ(E34 − E65) + eiθ(E43 − E56) + b(E58 + E85 − E27 − E72),

Y11 = e−iθ(E34 − E96) + eiθ(E43 − E69) + b(E89 + E98 − E27 − E72),

Y12 = e−iθ(E48 − E17) + eiθ(E84 − E71) + b(E13 + E31 − E26 − E62),

Y13 = e−iθ(E79 − E17) + eiθ(E97 − E71) + b(E13 + E31 − E39 − E93),

Y14 = e−iθ(E26 − E13) + eiθ(E62 − E31) +
1

b
(E17 + E71 −E48 − E84),

Y15 = e−iθ(E39 − E13) + eiθ(E93 − E31) +
1

b
(E17 + E71 −E79 − E97),

Y14 = e−iθ(E26 − E13) + eiθ(E62 − E31) +
1

b
(E17 + E71 −E48 − E84),

Y15 = e−iθ(E39 − E13) + eiθ(E93 − E31) +
1

b
(E17 + E71 −E79 − E97),

Y14 = e−iθ(E26 − E13) + eiθ(E62 − E31) +
1

b
(E17 + E71 −E48 − E84),

Y15 = e−iθ(E39 − E13) + eiθ(E93 − E31) +
1

b
(E17 + E71 −E79 − E97),

Y16 = e−iθ(E41 − E54) + eiθ(E14 − E45) +
1

b
(E25 + E52 −E12 − E21),

Y17 = e−iθ(E67 − E41) + eiθ(E76 − E14) +
1

b
(E12 + E21 −E38 − E83),

Y18 = e−iθ(E72 − E85) + eiθ(E27 − E58) +
1

b
(E56 + E65 −E34 − E43),

Y19 = e−iθ(E72 − E98) + eiθ(E27 − E89) +
1

b
(E69 + E96 −E34 − E43),

Y20 = e−iθ(E36 + E78) + eiθ(E63 + E87) − b(E29 + E92) −
1

b
(E49 + E94),

Y21 = −e−iθ(E64 + E82) − eiθ(E46 + E28) + b(E57 + E75) +
1

b
(E35 + E53),

Y22 = e−iθ(be−iθE36 − E94 − b2E29) + eiθ(beiθE63 − E49 − b2E92) + b(E78 + E87),

Y23 = e−iθ(
e−iθ

b
E82 −

1

b2
E53 − E75) + eiθ(

eiθ

b
E28 −

1

b2
E35 −E57) +

1

b
(E46 + E64),

Y24 = e−iθ(e−iθE23 − bE16 −
1

b
E81) + eiθ(eiθE32 − bE61 −

1

b
E18) + (E47 + E74),

Y25 = e−iθ(e−iθE47 − bE61 −
1

b
E18) + eiθ(eiθE74 − bE16 −

1

b
E81) + (E23 + E32).
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