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Abstract

By carrying out appropriate continuous quantum measurements
with a family of projection operators, a unitary channel can be ap-
proximated in an arbitrary precision in the trace norm sense. In par-
ticular, the quantum Zeno effect is described as an application. In the
case of an infinite dimension, although the von Neumann entropy is
not necessarily continuous, the difference of the entropies between the
states, as mentioned above, can be arbitrarily made small under some
conditions.

1 Introduction

The quantum Zeno effect (QZE) is a quantum effect which was shown by
Misra and Sudarshan in [5]. This effect demonstrates that, in quantum
mechanics, continuous measurements can freeze a state. Of course, this
effect is peculiar to quantum mechanics. Such an effect is not observed in
classical mechanics. The QZE has been extensively investigated by many
researchers since its discovery.

Recently, some general mathematical aspects of quantum Zeno effect
were investigated in [2]. In particular, continuous measurements of a state
along a certain curve in a Hilbert space were considered. Roughly speaking,
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continuous measurements made along a curve prescribed in advance change
the initial state to the final state with probability 1. This fact includes the
QZE as a special case. However, in the paper [2], it is assumed that states
under consideration are vector states.

In this paper, we show that a result similar to one in [2] holds with re-
spect to mixed states too. By considering a mixed state, its von Neumann
entropy can also be considered. In the case where the Hilbert space under
consideration is infinite dimensional, the von Neumann entropy is not nec-
essarily continuous with respect to the trace norm. Hence, by continuous
measurements, even if the initial state converges to the final state in the
trace norm sense, it does not always mean that the von Neumann entropy
converges too. Moreover, the set of density operators with finite entropy
is a first category [10]. Hence, it is meaningful to investigate convergence
conditions of the von Neumann entropy in our continuous measurements.

In Section 2, we begin with defining the “continuous quantum measure-
ments” as a certain type of quantum channel. We use two types of quantum
channels and a combination of them. By doing so, a concept of “contin-
uous quantum measurements” are defined clearly. We consider conditions
for pointwise convergence and trace norm convergence. We apply obtained
results to the QZE.

In Section 3, we consider the von Neumann entropy in infinite dimension.
We show that the convergence conditions of the von Neumann entropy in
continuous quantum measurement which considered in Section 2. Here,
Simon’s convergence theorem [4] plays a central role.

2 Continuous measurements for mixed states

2.1 Preliminaries

Let H be a separable Hilbert space of state vectors of a quantum system S.
We denote the inner product and the norm of H by 〈 · , · 〉 (anti-linear in the
first variable and linear in the second) and ‖ · ‖, respectively. Let d(≤ ∞) be
the dimension of H. We denote all bounded linear operators, all compact
operators, all trace-class operators, all density operators, and all unitary
operators on H by B(H),C(H),T(H),S(H), and U(H), respectively. A
mixed state of S is represented as an element of S(H). We denote the trace
norm by ‖ · ‖1 := Tr| · |. The Hamiltonian of the quantum system S is given
by a self-adjoint operator H which is time independent. The domain of H
is denoted as D(H).

Let us consider the following two maps on S(H):
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1. (Unitary channel)

Let U be a unitary operator on H and EU be a map on S(H) which
is given by

EUρ := UρU∗, ∀ρ ∈ S(H).

In particular, in the case U = e−itH (t ∈ R), we denote Ee−itH by Et.

2. (Projection channel)

Let P := {Pn}n be a family of projection operators on H with Pm ⊥
Pn (m 6= n), I =

∑

n Pn, and EP be a map on S(H) which is given by

EPρ :=
∑

n

PnρPn, ∀ρ ∈ S(H).

Now, consider a state ρ ∈ S(H) fixed and suppose that one of the
Schatten decompositions is given by

ρ =

d
∑

n=1

λn|Ψn〉〈Ψn|, (2.1)

where, for all Ψ,Φ ∈ H, we denote the operator 〈Ψ, · 〉Φ by |Φ〉〈Ψ|. In (2.1),
we allow λn = 0 to take Ψn such that {Ψn}

d
n=1 is a complete orthonormal

system (CONS). We remark that it is not necessarily λn ≥ λn+1 in this
representation.

Let us consider a time interval [0, τ ] with τ > 0. For the decomposition
(2.1), consider a CONS of H denoted by {Ψn(t)}

d
n=1 which is parametrized

by t ∈ [0, τ ] with Ψn(0) = Ψn (1 ≤ ∀n ≤ d). If n ∈ N is fixed, then Ψn(·) is
a map from [0, τ ] to H.

We define

P(t) := {|Ψn(t)〉〈Ψn(t)|}
d
n=1, (t ∈ [0, τ ]). (2.2)

Let ∆ : t0, t1, · · · , tN (tj ∈ [0, τ ], j = 0, · · · , N) be an arbitrary partition
of the interval [0, τ ]:

0 = t0 < t1 < · · · < tN−1 < tN = τ.

We set

∆k := tk − tk−1, (k = 1, · · · , N), |∆| := max
1≤k≤N

∆k,
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and define

ρ∆(τ) := EP(tN ) ◦ E∆N
◦ EP(tN−1) ◦ E∆N−1

◦ · · · ◦ EP(t1) ◦ E∆1ρ. (2.3)

In the context of quantum mechanics where ρ∆(τ) is interpreted as the
posterior state that, in the successive measurements at time t1, · · · , tN by
using the family of projection operators P(t1), · · · ,P(tN ), respectively. We
remark that ρ∆(τ) is dependent on the form of decomposition (2.1).

If ρ∆(τ) converges with respect to |∆| → 0 in a certain sense, we call
such a measurements of a series “continuous quantum measurements”.

By direct computations, we have

ρ∆(τ) =
∑

k

λ∆,k |Ψk(τ)〉〈Ψk(τ)| (2.4)

with

λ∆,k :=
∑

k0,··· ,kN−1

λk0

N
∏

j=1

∣

∣〈Ψkj (tj), e
−i∆jHΨkj−1

(tj−1)〉
∣

∣

2
, (kN = k). (2.5)

2.2 Pointwise convergence

Let us consider a convergence condition of λ∆,k in the case |∆| → 0.
Let

γ∆,k :=

N
∏

j=1

∣

∣〈Ψk(tj), e
−i∆jHΨk(tj−1)〉

∣

∣

2
, (2.6)

ǫ∆,k :=
∑

k0,··· ,kN−1

∃l∈{0,··· ,N−1},kl 6=k

λk0

N
∏

j=1

∣

∣〈Ψkj(tj), e
−i∆jHΨkj−1

(tj−1)〉
∣

∣

2
,(2.7)

so that
λ∆,k = λkγ∆,k + ǫ∆,k. (2.8)
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Theorem 2.1 Assume that there exists k ∈ N such that the following con-
ditions hold:

∀λ ∈ [0, τ ], Ψk(λ) ∈ D(H), (2.9)

ξk := sup
0≤λ≤τ

‖HΨk(λ)‖ < ∞, (2.10)

ηk := sup
λ,ν∈[0,τ ]

λ6=ν

‖Ψk(λ)−Ψk(ν)‖

|λ− ν|
< ∞, (2.11)

lim
|∆|→0

N
∑

j=1

Re 〈Ψk(tj)−Ψk(tj−1),Ψk(tj−1)〉 = 0. (2.12)

Then we have
lim

|∆|→0
λ∆,k = λk. (2.13)

Remark 2.2 Condition (2.11) implies that ‖Ψk(λ) − Ψk(ν)‖ ≤ ηk|λ −
µ|,∀λ, µ ∈ [0, τ ] (Lipschitz continuity). In particular, Ψk(·) is strongly con-
tinuous, so that the mapping Ψk(·) : [0, t] → H is a curve in H.

Proof. By using [2, THEOREM 4.2], the assumptions (2.9)–(2.12) imply
that

lim
|∆|→0

γ∆,k = 1. (2.14)

On the other hand, we can estimate ǫ∆,k as follows.

ǫ∆,k =

N−1
∑

l=0

∑

k0,··· ,kN−1
∀i>l,ki=k,kl 6=k

λk0

N
∏

j=1

∣

∣〈Ψkj (tj), e
−i∆jHΨkj−1

(tj−1)〉
∣

∣

2
(2.15)

=

N−1
∑

l=0







N
∏

j=l+2

∣

∣〈Ψk(tj), e
−i∆jHΨk(tj−1)〉

∣

∣

2 ∑

kl,kl 6=k

∣

∣〈Ψk(tl+1), e
−i∆l+1HΨkl(tl)〉

∣

∣

2

×
∑

kl−1

∣

∣〈Ψkl(tl), e
−i∆lHΨkl−1

(tl−1)〉
∣

∣

2
× · · · ×

∑

k0

∣

∣〈Ψk1(t1), e
−i∆1HΨk0(t0)〉

∣

∣

2
λk0







,

(2.16)
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in the case where l = 0, N − 1, { · · · } in (2.16) is given by

N
∏

j=2

∣

∣〈Ψk(tj), e
−i∆jHΨk(tj−1)〉

∣

∣

2 ∑

k0,k0 6=k

∣

∣〈Ψk1(t1), e
−i∆1HΨk0(t0)〉

∣

∣

2
λk0 , (2.17)

∑

kN−1,kN−1 6=k

∣

∣〈Ψk(tl+1), e
−i∆l+1HΨkl(tl)〉

∣

∣

2 ∑

kN−2

∣

∣〈ΨkN−1
(tN−1), e

−i∆N−1HΨkl−2
(tl−2)〉

∣

∣

2

· · · ×
∑

k0

∣

∣〈Ψk1(t1), e
−i∆1HΨk0(t0)〉

∣

∣

2
λk0 , (2.18)

respectively.
By the Schwarz inequality, we have

N
∏

j=l+2

∣

∣〈Ψk(tj), e
−i∆jHΨk(tj−1)〉

∣

∣

2
≤

N
∏

j=l+2

‖Ψk(tj)‖
2 · ‖e−i∆jHΨk(tj−1)‖

2

≤ 1, ∀l ∈ {0, · · · , N − 2}.

For all l ≥ 1,
∑

kl−1

∣

∣〈Ψkl(tl), e
−i∆lHΨkl−1

(tl−1)〉
∣

∣

2
× · · · ×

∑

k0

∣

∣〈Ψk1(t1), e
−i∆1HΨk0(t0)〉

∣

∣

2
λk0

≤
∑

kl−1

∣

∣〈Ψkl(tl), e
−i∆lHΨkl−1

(tl−1)〉
∣

∣

2
× · · · ×

∑

k0

∣

∣〈ei∆1HΨk1(t1),Ψk0(t0)〉
∣

∣

2

≤
∑

kl−1

∣

∣〈Ψkl(tl), e
−i∆lHΨkl−1

(tl−1)〉
∣

∣

2
× · · · × ‖ei∆1HΨk1(t1)‖

2

≤ · · · ≤ 1.

Thus (2.16) implies that

ǫ∆,k ≤

N−1
∑

l=0

∑

kl,kl 6=k

∣

∣〈Ψk(tl+1), e
−i∆l+1HΨkl(tl)〉

∣

∣

2
. (2.19)

In the case where kl 6= k, we have 〈Ψk(tl),Ψkl(tl)〉 = 0. Hence
∑

kl,kl 6=k

∣

∣〈Ψk(tl+1), e
−i∆l+1HΨkl(tl)〉

∣

∣

2

=
∑

kl,kl 6=k

∣

∣〈Ψk(tl+1), (e
−i∆l+1H − 1)Ψkl(tl)〉+ 〈Ψk(tl+1)−Ψk(tl),Ψkl(tl)〉

∣

∣

2

≤ 2
∑

kl,kl 6=k

{

∣

∣〈(ei∆l+1H − 1)Ψk(tl+1),Ψkl(tl)〉
∣

∣

2
+ |〈Ψk(tl+1)−Ψk(tl),Ψkl(tl)〉|

2
}

≤ 2
{

‖(ei∆l+1H − 1)Ψk(tl+1)‖
2 + ‖Ψk(tl+1)−Ψk(tl)‖

2
}

. (2.20)
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Let EH(·) be the spectral measure of Hamiltonian H. By the spectral the-
orem, we have

‖(ei∆l+1H − 1)Ψk(tl+1)‖
2 =

∫

R

|ei∆l+1x − 1|2d‖EH(x)Ψk(tl+1)‖
2

≤

∫

R

∆2
l+1x

2d‖EH(x)Ψk(tl+1)‖
2

≤ ∆2
l+1‖HΨk(tl+1)‖

2. (2.21)

The assumptions (2.9)–(2.11) imply that

‖HΨk(tl+1)‖
2 ≤ ξ2k, ‖Ψk(tl+1)−Ψk(tl)‖

2 ≤ ∆2
l+1η

2
k. (2.22)

Therefore, (2.19), (2.20), (2.21) and (2.22) implies that

ǫ∆,k ≤ 2

N−1
∑

l=0

{

‖(ei∆l+1H − 1)Ψk(tl+1)‖
2 + ‖Ψk(tl+1)−Ψk(tl)‖

2
}

≤ 2

N−1
∑

l=0

{

∆2
l+1‖HΨk(tl+1)‖

2 + ‖Ψk(tl+1)−Ψk(tl)‖
2
}

≤ 2(ξ2k + η2k)
N
∑

l=1

∆2
l . (2.23)

By [2, LEMMA 2.2],

lim
|∆|→0

N
∑

l=1

∆2
l = 0.

Thus (2.23) implies that lim|∆|→0 ǫ∆,k = 0. Hence, by (2.8) and (2.14), we
obtain (2.13)

Remark 2.3 Assume that the conditions of Theorem 2.1 hold. Let a > 1
be a constant and take |∆| such that

(ξ2k + 2ξkηk)|∆|2 + 2ηk|∆| ≤
log a

a
. (2.24)

By the proof of [2, THEOREM 4.2],

exp

[

−a

{

(ξ2k + 2ξkηk)

N
∑

l=1

∆2
l − 2

N
∑

l=1

Re 〈Ψk(tl)−Ψk(tl−1),Ψk(tl−1)〉

}]

≤ γ∆,k ≤ 1. (2.25)
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Then, by (2.23) and (2.25), we have

|λ∆,k − λk| = |λk(γ∆,k − 1) + ǫ∆,k| ≤ λk(1− γ∆,k) + ǫ∆,k

≤ λk

(

1− exp

[

−a

{

(ξ2k + 2ξkηk)

N
∑

l=1

∆2
l − 2

N
∑

l=1

Re 〈Ψk(tl)−Ψk(tl−1),Ψk(tl−1)〉

}])

+2(ξ2k + η2k)

N
∑

l=1

∆2
l . (2.26)

The following corollary can be easily proven by using [2, COROLLARY
4.4].

Corollary 2.4 Assume that there exists k ∈ N such that the following con-
ditions hold:

Ψk(·) : [0, τ ] → H is a strongly differentiable mapping, (2.27)

∀λ ∈ [0, τ ], Ψk(λ) ∈ D(H), (2.28)

ξk < ∞, (2.29)

sup
0≤λ≤τ

‖Ψ′
k(λ)‖ < ∞, (2.30)

where Ψ′
k(·) denotes the strong derivative of Ψk(·).

Then (2.9)–(2.12) hold. Therefore, by Theorem 2.1, (2.13) holds.

Example 2.5 Let A be a self-adjoint operator on H. Assume that there
exists k ∈ N such that the following conditions hold:

Ψk ∈ D(A) ∩
⋂

0≤λ≤τ

D(He−iλA), (2.31)

sup
0≤λ≤τ

‖He−iλAΨk‖ < ∞, (2.32)

∀λ ∈ [o, τ ], Ψk(λ) = e−iλAΨk. (2.33)

In this case, by [2, EXAMPLE 4.5], (2.27)–(2.30) hold. Then by using
Corollary 2.4, (2.9)–(2.13) hold.
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2.3 Trace norm convergence

For the decomposition (2.1), we define

ρ(t) :=
∑

n

λn|Ψn(t)〉〈Ψn(t)|, ∀t ∈ [0, τ ]. (2.34)

Let us consider conditions of convergence from ρ∆(τ) to ρ(τ) in the trace
norm sense.

Theorem 2.6 Assume that the conditions (2.9)–(2.12) hold for all k ∈ N

satisfying λk > 0.
Then we have

lim
|∆|→0

‖ρ∆(τ)− ρ(τ)‖1 = 0. (2.35)

Proof. By definition of ρ∆(τ), ρ(τ), and equation (2.8), we have

‖ρ∆(τ)− ρ(τ)‖1 =
∑

k

〈Ψk(τ), |ρ∆(τ)− ρ(τ)|Ψk(τ)〉

=
∑

k

|λ∆,k − λk|

=
∑

k

|λk(γ∆,k − 1) + ǫ∆,k|

≤
∑

k

λk(1− γ∆,k) +
∑

k

ǫ∆,k

=
∑

k

λk(1− γ∆,k) +
∑

k

(λ∆,k − λkγ∆,k)

= 2− 2
∑

k

λkγ∆,k. (2.36)

Note that
|λkγ∆,k| ≤ λk (∀k ∈ N),

∑

k

λk = 1.

The assumptions (2.9)–(2.12) imply that

lim
|∆|→0

λkγ∆,k = λk (∀k ∈ N).

Hence, by using Lebesgue’s dominated convergence theorem, we have

lim
|∆|→0

∑

k

λkγ∆,k = 1.
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Therefore, by (2.36), we obtain (2.35).

Remark 2.7 Assume that the conditions of Theorem 2.6 hold and that
supk,λk 6=0 ξk < ∞ and supk,λk 6=0 ηk < ∞ hold. Then, for a > 1, we can
take |∆| such that (2.24) holds for all k with λk 6= 0. Then we have (2.25)
for all k ∈ N with λk 6= 0. Hence, by (2.36), for all k ∈ N, we obtain the
following estimation:

|λ∆,k − λk| ≤ ‖ρ∆(τ)− ρ(τ)‖1

≤ 2− 2
∑

k

λk exp

[

−a

{

(ξ2k + 2ξkηk)

N
∑

l=1

∆2
l − 2

N
∑

l=1

Re 〈Ψk(tl)−Ψk(tl−1),Ψk(tl−1)〉

}]

.

(2.37)

The following corollary and example can be easily proven by using Corol-
lary 2.4, Example 2.5, and Theorem 2.6.

Corollary 2.8 Assume that the conditions (2.27)–(2.30) hold for all k ∈ N

with λk > 0. Then we have (2.35).

Example 2.9 Let A be a self-adjoint operator on H. Assume that the con-
ditions (2.31)–(2.33) hold for all k ∈ N with λk > 0. Then we have (2.35).

In Example 2.9, let us consider the case of d < ∞. It is easy to see that
the assumptions (2.31)–(2.32) are satisfied. On the other hand, by Stone’s
theorem, for all U ∈ U(H), there exists a self-adjoint operator A such that
U = e−iτA. Since ρ(τ) = UρU∗, we have lim|∆|→0 ‖ρ∆(τ) − UρU∗‖1 = 0.
This fact shows that, in the case d < ∞, an arbitrary state in {UρU∗ | U ∈
U(H)} can be approximated (in the trace norm sense) by states obtained
after an appropriate continuous measurements. In other words, in this case,
we can approximate an arbitrary unitary channel by continuous quantum
measurements.

2.4 Application to quantum Zeno effect for mixed states

Let Ψk ∈ D(H) and Ψk(λ) = Ψk (∀λ ∈ [0, τ ]) holds for all k ∈ N with
λk > 0.

This is the case where A = 0 in Example 2.9. Then (2.9)–(2.12) hold for
all k ∈ N with λk > 0. Hence, we have (2.35).
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This means that, by the series of measurement with respect to the family
of the projection operators {|Ψk〉〈Ψk|}k, transitions to states different from
the initial state are hindered. This can be interpreted as a quantum Zeno
effect for mixed states.

3 Convergence condition of the von Neumann en-

tropy

Let ϕ : [0,∞) ∋ λ 7→ −λ log λ ∈ [0,∞), where ϕ(0) := 0. Then ϕ is
continuous, concave, and subadditive. Let S(ρ) be the von Neumann entropy
of ρ ∈ S(H). i.e.

S(ρ) := Trϕ(ρ).

In the case d < ∞, by Fannes’ inequality, we have for all ρ1, ρ2 ∈ S(H)

‖ρ1 − ρ2‖1 ≤ 1/e =⇒ |S(ρ1)− S(ρ2)| ≤ ‖ρ1 − ρ2‖1 log d+ ϕ(‖ρ1 − ρ2‖1).

Therefore the von Neumann entropy is continuous with respect to the trace
norm.

On the other handin the case d = ∞ although the von Neumann entropy
is lower semi-continuous with respect to the trace norm i.e. limn→∞ ‖ρn −
ρ‖1 = 0 ⇒ S(ρ) ≤ lim infn→∞ S(ρn)), it is not necessarily continuous.
Moreover, it is known that the set {ρ ∈ S(H) | S(ρ) < ∞} is of the first
category [10].

In what follows, we deal with the case where d = ∞ only.
For ρ∆(τ) and ρ considered in the section 2, conditions of the convergence

S(ρ∆(τ)) → S(ρ) are given by the following theorem.

Theorem 3.1 Assume that the conditions (2.9)–(2.11) hold for all k ∈ N,
and that the condition (2.12) holds for all k ∈ N with λk > 0. Suppose that
the following conditions hold:

ξk → 0, ηk → 0 (k → 0), (3.1)

S(ρ) < ∞, (3.2)
∑

k

ϕ(ξ2k) < ∞,
∑

k

ϕ(η2k) < ∞. (3.3)

Then

lim
|∆|→0

S(ρ∆(τ)) = S(ρ(τ)) = S(ρ). (3.4)
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Remark 3.2 The function ϕ is monotone increasing on [0, 1/e] and

ξ2k = sup
0≤λ≤τ

‖HΨk(λ)‖
2 = sup

0≤λ≤τ

∫

R

x2d‖EH(x)Ψk(λ)‖
2.

Hence, ξk → 0 (k → ∞) implies that there exists N0 ∈ N such that, for all
k > N0,

ϕ(ξ2k) ≥ sup
0≤λ≤τ

ϕ

(
∫

R

x2d‖EH(x)Ψk(λ)‖
2

)

.

By Jensen’s inequality, we have

ϕ

(
∫

R

x2d‖EH(x)Ψk(λ)‖
2

)

≥

∫

R

ϕ(x2)d‖EH(x)Ψk(λ)‖
2.

Hence, for all k > N0,

ϕ(ξ2k) ≥ sup
0≤λ≤τ

∫

R

ϕ(x2)d‖EH (x)Ψk(λ)‖
2.

Then, we have

∀k > N0, ∀λ ∈ [0, τ ], Ψk(λ) ∈ D(
√

ϕ(H2)), ϕ(ξ2k) ≥ sup
0≤λ≤τ

‖
√

ϕ(H2)Ψk(λ)‖
2.

Moreover, using the estimate that

∑

k

ϕ(ξ2k) =

N0
∑

k=1

ϕ(ξ2k) +
∞
∑

k=N0+1

ϕ(ξ2k) ≥

N0
∑

k=1

ϕ(ξ2k) +
∞
∑

k=N0+1

sup
0≤λ≤τ

‖
√

ϕ(H2)Ψk(λ)‖
2

≥

N0
∑

k=1

ϕ(ξ2k) + sup
0≤λ≤τ

∞
∑

k=N0+1

‖
√

ϕ(H2)Ψk(λ)‖
2,

we obtain

ξk → 0 (k → ∞),
∑

k

ϕ(ξ2k) < ∞ =⇒ ∃N0 ∈ N, sup
0≤λ≤τ

∞
∑

k=N0+1

‖
√

ϕ(H2)Ψk(λ)‖
2 < ∞.

(3.5)
Particularly, in the case H ∈ B(H), we have, for all Φ ∈ H,

∫

R

ϕ(x2)d‖EH (x)Φ‖2 ≤ sup
x∈σ(H)

ϕ(x2)

∫

R

d‖EH(x)Φ‖2 = sup
x∈σ(H)

ϕ(x2)·‖Φ‖ < ∞.
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Hence, we obtain
√

ϕ(H2) ∈ B(H). Therefore, by (3.5), we have

ξk → 0 (k → ∞),
∑

k

ϕ(ξ2k) < ∞ =⇒ ϕ(H2) ∈ T(H). (3.6)

We remark that, in this case, if Hamiltonian H is represented as a density
operator, then ϕ(H2) ∈ T(H) means S(H2) < ∞.

Proof. The assumption of this theorem and Theorem 2.6 imply that
lim|∆|→0 ‖ρ∆(τ) − ρ(τ)‖1 = 0. Hence we have w- lim|∆|→0 ρ∆(τ) = ρ(τ),
where w- lim means weak limit.

By (2.8), (2.23) and γ∆,k ≤ 1, we have

λ∆,k ≤ λk + 2(ξ2k + η2k)

N
∑

l=1

∆2
l .

By lim|∆|→0

∑N
l=1∆

2
l = 0, there exists δ > 0 such that, for all ∆, |∆| < δ ⇒

∑N
l=1 ∆

2
l < 1/2. Thus

λ∆,k ≤ λk + ξ2k + η2k (|∆| < δ). (3.7)

We set

σ :=
∑

k

(λk + ξ2k + η2k)|Ψk(τ)〉〈Ψk(τ)|. (3.8)

By the assumption of this theorem, σ ∈ C(H). On the other hand, (3.7)
implies that

ρ∆(τ) ≤ σ (|∆| < δ). (3.9)

Moreover, by the assumption of this theorem and subadditivity of ϕ, we
have

S(σ) =
∑

k

ϕ(λk + ξ2k + η2k) (3.10)

≤ S(ρ) +
∑

k

ϕ(ξ2k) +
∑

k

ϕ(η2k) < ∞. (3.11)

Hence, by Simon’s dominated convergence theorem for entropy [4, THEO-
REM A.3], we have

lim
|∆|→0

S(ρ∆(τ)) = S(ρ(τ)).

It is obvious that S(ρ(τ)) = S(ρ) holds.
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Remark 3.3 In the proof of Theorem 3.1, we used that

S(ρ) < ∞,
∑

k

ϕ(ξ2k) < ∞,
∑

k

ϕ(η2k) < ∞ =⇒
∑

k

ϕ(λk + ξ2k + η2k) < ∞.

(3.12)
Conversely, we can show that, under condition (3.1),

∑

k

ϕ(λk + ξ2k + η2k) < ∞ =⇒ S(ρ),
∑

k

ϕ(ξ2k),
∑

k

ϕ(η2k) < ∞ (3.13)

as follows. By λk + ξ2k + η2k → 0 (k → ∞), we have

∃N0 ∈ N,∀k > N0,max{λk, ξ
2
k, η

2
k} ≤ λk + ξ2k + η2k < 1/e.

Hence, by the fact that ϕ is a monotone increasing function on [0, 1/e], we
obtain

max







∞
∑

k=N0+1

ϕ(λk),
∞
∑

k=N0+1

ϕ(ξ2k),
∞
∑

k=N0+1

ϕ(η2k)







≤
∞
∑

k=N0+1

ϕ(λk + ξ2k + η2k).

Therefore, we have (3.13). Thus, in Theorem 3.1, we can replace the con-
dition (3.2) and (3.3) with

∑

k ϕ(λk + ξ2k + η2k) < ∞.

Example 3.4 Let A be a self-adjoint operator on H. Assume that A,H ∈
C(H), and that A and H are strongly commuting. Moreover, we assume that

∀k ∈ N, ∀λ ∈ [0, τ ], Ψk(λ) = e−iλAΨk, (3.14)

S(ρ) < ∞,
∑

k

ϕ(‖HΨk‖
2) < ∞,

∑

k

ϕ(‖AΨk‖
2) < ∞. (3.15)

Then, the compactness, the strong commutativity of A and H, and (3.14) im-
ply that ξk = ‖HΨk‖ → 0, ηk = ‖AΨk‖ → 0 (k → ∞). Hence, the assump-
tion of Theorem 3.1 is satisfied. Hence, we have S(ρ∆(τ)) → S(ρ) (|∆| →
0).

In Example 3.4, let us consider the case of A = 0. The following fact
can be easily seen:

H ∈ C(H), Ψk(λ) = Ψk (∀k ∈ N, ∀λ ∈ [0, τ ]), S(ρ) < ∞,
∑

k

ϕ(‖HΨk‖
2) < ∞

=⇒ lim
|∆|→0

S(ρ∆(τ)) = S(ρ). (3.16)

This is the case of QZE. We remark that, if {Ψk}k is a sequence of eigen-
vectors of H, we have

∑

k ϕ(‖HΨk‖
2) = Trϕ(H2) < ∞. Then, in (3.16), we

can replace the condition
∑

k ϕ(‖HΨk‖
2) < ∞ with ϕ(H2) ∈ T(H).
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