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The aim of this paper is to derive the global Hamiltonian form for a quantum system and bath,
or more generally a quantum network with multiple quantum input field connections, based on the
local descriptions. We give a new simple argument which shows that the global Hamiltonian for a
single Markov component arises as the singular perturbation of the free translation operator. We
show that the Fermi analogue takes an equivalent form provided the parity of the coefficients is
correctly specified. This allows us to immediately extend the theory of quantum feedback networks
to Fermi systems.

I. INTRODUCTION

The quantum stochastic calculus was introduced by
Hudson and Parthasarathy [1] in 1984 as a frame-
work to construct explicit dilations of quantum dynam-
ical evolutions (semigroups of completely positive norm-
continuous identity preserving maps) generalizing the
usual Itō theory. Here the system Hilbert space is ten-
sored with a Fock space over L2

Cn(R) where n enumerates
the number of input noise channels. In particular, they
showed that the most general form of a quantum unitary
stationary evolution was obtained as the solution to an
Itō quantum stochastic differential equation of the form

dU(t) =

{

(Sij − δij)dΛij(t) + LidBj(t)
∗

−L∗
iSijdBj(t)− (

1

2
L∗
iLi + iH)dt

}

U(t). (1)

(implied sum of repeated indices over the range 1, · · · , n)
with S = [Sjk] unitary on h ⊗ Cn, L = [Lj] arbitrary,
and H self-adjoint. These type of models are commonly
referred to as following the SLH formalism, see Section
ID 5 for details.
It was quickly realized [3] that the quantum evolutions

could in fact be interpreted as a singular perturbation of
the free dynamics corresponding to the second quantiza-
tion of the shift along L2

Cn(R). In particular, one could
take the line R to physically be an infinite transmission
line along which Bose quanta are propagating at con-
stant speed, and interacting with the system (located at
the origin) instantaneously as they pass through. It was
a long standing program to find the form of the associ-
ated Hamiltonian, which when viewed in the interaction
picture with respect to the free shift dynamics, gave the
general quantum open dynamics, as well as a large class
of classical stochastic models. This was first done by
Chebotarev [4] for the case of commuting coupling co-
efficients, and by Gregoratti [5] for the general bounded
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operator case. The requirement of boundedness was later
dropped [6]. The domain of the Hamiltonian is deter-
mined through a boundary condition at the origin on the
vectors.
The form of the Hamiltonian, K, obtained in [4] and

[5] is given by

− iKΨ = −iK̃0Ψ− (
1

2
L∗
iLi + iH)Ψ− L∗

iSijbj(0
+)Ψ,

(2)

where

K̃0 =

(
∫ 0

−∞

+

∫ +∞

0

)

bj(x)
∗

(

i
∂

∂x

)

bj(x) dx, (3)

is the Hamiltonian corresponding to free propagation of
the external noise field (basically its the generator of
translation, that is, the second quantisation of the mo-
mentum operator with the origin removed), and Ψ is
taken to belong to a domain of suitable functions sat-
isfying the boundary condition

bi(0
−)Ψ = LiΨ+ Sij bj(0

+)Ψ. (4)

with the suitable functions in question being those on
the joint system and Fock space that are in the domain
of the free translation along the positive and negative axis
(excluding the vertex at the origin), and in the domain
of the one-sided annihilators bi(0

±).
The expression for the associated Hamiltonian looks

strange because it is asymmetric in the formal creation
and annihilation operator densities bj and b∗j , and this
makes the interpretation non-obvious for physicists. One
of the aims of this paper is to show that there is a sym-
metric form of the Hamiltonian which is explicitly sym-
metric, and which is equivalent to the form (2) once the
boundary condition (4) is taken into account.
We remark that a similar approach has been pioneered

by von Waldenfels [7] which also exploits a quantum
white noise formulation, the corresponding kernel calcu-
lus (that is, a Bose version of the Berezin calculus due
to Maassen), and an explicit construction of deficiency
spaces needed to then construct the self-adjoint Hamil-
tonian. In particular he succeeds in calculating the resol-
vent of the Hamiltonian. The approach outlined in this
note is however more concise.

http://arxiv.org/abs/1409.3884v2
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We shall refer to this situation of a single system inter-
acting in a singular (=Markov) fashion with a quantum
field moving along a transmission line as a local Hamilto-
nian model. More generally we can consider several sys-
tems at various points on the transmission line, or more
generally a network of transmission lines with systems
at the vertices. The theory of quantum feedback net-
works has been developed recently to study such quan-
tum mechanical systems connected by various arrange-
ments of quantum field inputs [8]. Here the notion of a
global Hamiltonian was introduced in [8] in order to con-
struct tractable models of a quantum feedback network.
For a single component, this reduces to the Hamiltonian
obtained by Chebotarev [4] and Gregoratti [5], and we
present a simple derivation of this object in section II
below. The network theory has been applied to quantum
optics with a view to developing closed-loop quantum
control systems [9]- [17].

The separate components are modeled as quantum
open systems [1], see also [2], or equivalently as quantum
input-output systems [18]. In a network, connections are
made by feeding the output of one system in as input
to another, or even to the same component again. In
a physically realistic model, this will involve time-lags,
however it often useful to take the limit of instantaneous
connections. Moreover the components themselves are
assumed to be capable of scattering inputs, in particular
acting as beam-splitters.

The has been interest amongst theoreticians in recent
years in using solid-state devices as in place of optical
fields [19]-[25]. In suitable regimes the models resem-
ble the optical case with the obvious exception that the
fields are now Fermionic rather than Bosonic. In sec-
tion III, we give the Fermi analogue and show that the
global Hamiltonian method applies equally well to this
situation. Indeed, provided the various coupling terms
meet the physical conditions regarding Fermionic parity,
the essential rules governing the construction of networks
(the series product [9], the concatenation rule and feed-
back reduction rule [8]) are identical to the Bose input
case.

The outline of this paper is that we first review the
background theory of open quantum systems adopting
a quantum white noise convention. We make some ten-
tative links with the theory of singular perturbations of
unbounded below Hamiltonians (which is of relevance to
the free Hamiltonian generating the shift). In section II
we give an alternative rationale behind the form of the
associated local Hamiltonian, and outline how this may
be generalized to the case of a global Hamiltonian for a
quantum feedback network. In section III, we treat the
extension to Fermi noise models, and indicate that the
formal expressions should be the same as the Bose case
provided that the coefficients have specific parity with
respect to the Z2-grading of Fermi Fock space. Finally
in section IV we indicate how, in the limit of zero time
delay in a network edge, we obtain a modular reduction
in the models.

A. Dynamical Perturbations

Let K be a Hamiltonian of the form

K = K0 +Υ,

and define V0(t) to be the unitary dynamics generated by
the free Hamiltonian K0, and V (t) the perturbed unitary
generated by K. We may move to the Dirac picture
where we view V as a perturbed dynamics with respect
to the free dynamics of V0, and to this end introduce
the unitary transforming from to the interaction picture
(sometimes referred to as the wave operator)

U(t) = V0(t)
∗ V (t). (5)

The pair V0(t) and V (t) are strongly continuous one-
parameter groups, that is V0(t + s) = V0(t)V0(s) and
V (t+ s) = V (t)V (s), however, we family of wave opera-
tors satisfy the so-called cocycle property with respect to
V0

U(t+ s) = Θt(U(s))U(t), (6)

where we encounter the free dynamics

Θt(x) = V0(t)
∗X V0(t).

While the unitary groups satisfy the Schrödinger equa-
tions

iV̇0(t) = K0 V0(t), iV̇ (t) = K V (t).

we find that the wave operator satisfies the Dirac inter-
action picture equation

iU̇(t) = Υ(t)U(t)

where the time-dependent Hamiltonian is

Υ(t) = Θt(Υ).

Conversely, suppose we are given a strongly continuous
unitary group V0(t) with Hamiltonian generator K0, as
well as a strongly continuous cocycle U(t) with respect
to V0. We may define a unitary family V (·) by

V (t) = V0(t)U(t),

which is just (5) rearranged. The fact that U is a V0-
cocycle now implies that V defined in this manner will
be a unitary group -this follows in a purely algebraic way
from (6. Moreover, V will be strongly continuous by
construction.
According to Stone’s Theorem, V should then possess

a Hamiltonian generator K. We say that K is a regular
perturbation of K0 if the difference Υ = K −K0 defines
an operator with dense domain on the Hilbert space. In
this case, U(t) will be strongly differentiable and we are
lead to the interaction picture equation (7).
In situations where Υ is not densely defined, however,

we will have a singular perturbation. In this case, U(t)
will always be strongly continuous, but not generally
strongly differentiable.
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B. Stochastic Evolutions driven by Classical Noise

To understand better, let us consider some examples of
a quantum system with a fixed Hilbert space h of states,
driven by classical noise. For instance, let U(t) be given
by

U(t) = e−iEW (t)

where W (t) is a Wiener process and E is a self-adjoint
operator. We have the Itō rule that (dW (t))2 = dt, so
that the stochastic differential equation satisfied by V (t)
is

dU(t) =

{

−iEdW (t)− 1

2
E2dt

}

U(t) (7)

It is clear from the fact that U(t) solves a stochastic
differential equation and as such will not be strongly dif-
ferentiable.
To see how this fits in to our discussions on perturba-

tions, let us recall that the Wiener process is correctly
defined on the sample space ΩW = C0(R+) of continuous
paths parameterised by a continuous variable t ≥ 0 start-
ing at the origin at time t = 0. The set of measurable
subsets of paths are the cylinder sets, and a probabil-
ity measure on these subsets of paths is given by Wiener
measure PW . Let ω be a Wiener path, then W (t) (w) is
the evaluation ω(t) - the coordinate of the path at time t!
We then set U(t, ω) = e−iE ω(t) as the evaluation of the
random variable U(t) when the outcome is a particular
path ω ∈ ΩW .
We may now view the model as being on the total

Hilbert space h⊗H where the system is now coupled to
an environment whose Hilbert space is

H = L2(ΩW ,PW ).

As is well-known H is isomorphic to Bose Fock space
over L2(R+, dt): in other words, the Hilbert space on
which we define a single quantum input process. In effect,
we may think of W (t) as the quadrature of a quantum
field in the quantum input theory. We now introduce the
time-shift Θt on the classical Wiener probability space as

Θt(W (s)) ,W (t+ s),

for all t, s ≥ 0. We then have

U(t+ s) = e−iEW (t+s)

= e−iE [W (t+s)−W (s)] e−iEW (t)

= Θs

(

e−iE [W (t)−W (0)]
)

e−iEW (t)

= Θt (U(s)) U(t),

which states that the family of unitaries U(t) is a cocycle
with respect to the free translation of the Wiener noise.
A physical picture to have here is that of a quantum input
field propagating down a semi-infinite wire and interact-
ing with the system located at the origin of the wire, the
interaction involves only a quadrature of the field - W (t)

- and the unitary will be diagonal with respect to this
quadrature. Suppose the system is initiated in state de-
termined by a density matrix ̺0, then averaging over the
Wiener paths leads to the state

̺t =

∫

ΩW

U(t, ω)̺0U(t, ω)∗ P[dω].

From the Itō calculus we find the master equation

˙̺t = E̺tE − 1

2
{E, ̺t}.

A similar theory can be developed for quantum jumps.
Let N(t) we the Poisson process with rate ν so that we
have the rule (dN(t))p = dN(t) for p = 1, 2, 3, · · · and
E[dN(t)] = ν dt. Then a unitary process is defined by

U(t) = SN(t),

where S is a fixed unitary on the Hilbert space h of the
system. We obtain the stochastic differential equation

dU(t) = (S − I)U(t) dN(t), U(0) = I,

and due to the unitary kicks by the operator S occurring
at random times, the process is again strongly continu-
ous, but not strongly differentiable. The time shift map
on Poisson sample paths may once again be seen as a
free dynamics, with U(t) once more being a cocycle with
respect to this free dynamics. The corresponding master
equation may be obtained by averaging over all Poisson
paths and this corresponds to

˙̺t = ν{S̺tS∗ − ̺t}.

C. Classical SDEs

To see why this result is astonishing, let us consider
a purely classical problem of a particle with position x

moving in a deterministic vector field v(r), but subject
to classical Wiener noise.
We consider the classical diffusion process defined as

the solution to the stochastic differential equation

dx (t) = v (x (t)) dt+ σ (x (t)) dW (t) . (8)

The dynamics can be obtained from a quantum me-
chanical model by taking q to be position operator in
the Schrödinger picture and introducing a conjugate mo-
mentum p. Consider the stochastic unitary process de-
termined by the SDE

dU(t) =

{

−iE dW (t)− 1

2
E2 dt− iH dt

}

U(t) (9)

with the Hamiltonian

H =
1

2
p.w (q) +

1

2
w (q) .p
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and where we set

E =
1

2
p.σ (q) +

1

2
σ (q) .p

In the Heisenberg picture, qt = U (t)
∗
qU (t) is then seen

to satisfy the same SDE (8) as x (t) with drift vector

vi = wi +
1

2

∂σi
∂xj

σj .

The vector w is known as the Stratonovich drift, while v
is the Itō drift.

The somewhat surprising conclusion is that every clas-
sical diffusion process (or jump process, and by extension
any process driven by independent increment processes)
can be obtained as the interaction picture evolution of a
commuting set of position observables arising as a singu-
lar perturbation.

D. Quantum Stochastic Evolutions

As we have mentioned, Quantum stochastic evolutions
were introduced in [1], and physical models describing
quantum optics systems driven by quantum input pro-
cesses bi(t) were independently given by [18]. the latter
theory is more formal, but it is useful to view these quan-
tum input processes as singular operator densities.

1. Fock Space

Let us fix the appropriate Hilbert space to be the Fock
space F over the one-particle space Cn ⊗L2(R). For Ψ ∈
F, we have a well-defined amplitude 〈τ1, i1; · · · ; τm, im|Ψ〉
which is completely symmetric under interchange of the
m pairs of labels (τ1, i1), · · · , (τm, im), and this represent
the amplitude to havem quanta with a particle of type i1
at τ1, particle of type i2 at τ2, etc. We have the following
resolution of identity on F:

I =

∞
∑

m=0

(

∫

dτ1 · · · dτm)(

n
∑

i1=1

· · ·
n
∑

im=1

)

×|τ1, i1; · · · ; τm, im〉〈τ1, i1; · · · ; τm, im|.

The annihilator input process bi(t) is then realized as

〈τ1, i1; · · · ; τm, im|bi(t)Ψ〉
=

√
m+ 1 〈t, i; τ1, i1; · · · ; τm, im|Ψ〉.

The annihilation operators, together with their formal
adjoints the creator operators bi(t)

∗, satisfy the singular
canonical commutation relations

[bi(t), bj(s)] = δijδ(t− s). (10)

2. The Time Shift for Fields on Fock Space

We may define an operator K0 on the Fock space by

K0 =

n
∑

j=1

∫ ∞

−∞

dt b∗j (t)

(

i
∂

∂t

)

bj(t) (11)

and this is the second quantization of the one-particle
momentum operator i ∂

∂t
. (Note that t is not physical

time, but distance along the spatial axis measured in arc
time: that is if the field quanta are modelled as prop-
agating down the x-axis with speed c, then t ≡ x/c
is the time to reach the system located at the origin.
Causality comes into play as bj(t) describes the field
that arrives at the system at times t.) The Hamiltonian
K0 is self-adjoint operator, and it generates the unitary
group V0(t) = e−itK0 giving the time shift (propagation
of quanta down the axis):

〈τ1, i1; · · · ; τm, im|V0(t)Ψ〉
= 〈τ1 + t, i1; · · · ; τm + t, im|Ψ〉.

The free dynamics Θt(·) = V0(t)
∗(·)V0(t) will then trans-

late the input processes:

Θτ (bi(t)) = bi(t+ τ), Θτ (b
∗
i (t)) = b∗i (t+ τ).

3. The Local Hamiltonian

Let us fix a system space h and consider a singular
perturbation on h⊗ F of the form

Υ = Eijb
∗
i (0)bj(0) + Ei0b

∗
i (0) + E0jbj(0) + E00, (12)

with E∗
ij = Eji, E

∗
i0 = E0i and E

∗
00 = E00. We obtain a

time-dependent Hamiltonian by means of the time shift

Υ(t) = Θt(Υ)

= Eijb
∗
i (t)bj(t) + Ei0b

∗
i (t) + E0jbj(t) + E00.

The solution to the formal equation U̇(t) = −iΥ(t)U(t),
with initial condition U(0) = I, may be expresses as the
Dyson series expansion

U(t) =

∞
∑

n=0

(
1

i
)n

∫

∆n(t)

Υ(τn) · · ·Υ(τ1)

where we encounter integration over the simplices ∆n(t)
of times t ≥ τn > · · · > τ1 ≥ 0. The formal series may
be rewritten as the chronologically ordered exponential
which we may denote as

U(t) = ~T exp
1

i

∫ t

0

Υ(τ)dτ. (13)

Note that the notation is identical to that used in quan-
tum field theory, however, the Hamiltonian Υ(t) is more
singular in this case. Nevertheless we find that many
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algebraic identities carry over immediately, and in par-
ticular we observe that U(t) is a Θ-cocycle since

U(t+ s) = ~T exp
1

i

∫ t+s

t

Υ(τ)dτ ~T exp
1

i

∫ t

0

Υ(τ)dτ

= Θt(~T exp
1

i

∫ s

0

Υ(τ)dτ) ~T exp
1

i

∫ t

0

Υ(τ)dτ

= Θt(U(s))U(t).

4. Wick Ordered Form

Let us briefly indicate how to convert U(t) to Wick
order [26], [27] [28]. Starting from the integro-differential

equation U(t) = 1− i
∫ t

0 Υ(s)U(s)ds, we have

[bi(t), U(t)] = −i
∫ t

0

[bi(t),Υ(s)]U(s)ds

= −i
∫ t

0

δijδ(t− s){Ejkbk(t) + Ej0}U(s)

= − i

2
Eijbj(t)U(t)− i

2
Ei0U(t).

Here we assumed that [bi(t), U(s)] = 0 for t > s, since
U(s) depends only on the noise up to time s. We also
adopted the convention that the δ-function contributes
on half-weight due to the upper limit of the integral.
This implies that bi(t)U(t) = [(1 + i

2E)−1]ij [U(t)bj(t) −
i
2Ej0U(t)] and we may use this to set the equation

U̇(t) = −iΥ(t)U(t) to Wick order, to obtain

U̇(t) = bi(t)
∗(Sij − δij)U(t)bj(t) + bi(t)

∗LiU(t)

−L∗
iSijU(t)bj(t)− (

1

2
L∗
iLi − iH)U(t), (14)

where S = [Sij ] is the Cayley transform E = [Eij ],

S =
1− i

2E

1 + i
2E

(15)

and therefore unitary, while

Li = i

[

1

1 + i
2E

]

ij

Ej0,

H = E00 +
1

2
E0i

[

Im
1

1 + i
2E

]

ij

Ej0 (16)

with H self-adjoint.

5. Itō Quantum Stochastic Differential Form

Introducing integrated fields

Bi(t)
∗ =

∫ t

0

bi(τ)
∗dτ, Bi(t) =

∫ t

0

bi(τ)dτ, (17)

Λij(t) =

∫ t

0

bi(τ)
∗bj(τ)dτ, (18)

called the creation, annihilation and gauge processes, re-
spectively, it is possible to define quantum stochastic Itō
integrals with respect to these fields. Conditions for the
existence and uniqueness of solutions is given and, for
a fixed system space h are given in [1]. The equation
(14) is readily interpreted as the Itō quantum stochastic
differential equation

dU(t) = {(Sij − δij)dΛij(t) + LidBj(t)
∗

−L∗
iSijdBj(t)− (

1

2
L∗
iLi + iH)dt}U(t). (19)

With the already deduced conditions that S = [Sij ] be a
unitary matrix and H self-adjoint, (19) gives the general
equation satisfied by a unitary adapted quantum stochas-
tic process. The rather non-Hamiltonian appearance of
the equation is a result of the fact that we have the fol-
lowing non-trivial products of Itō differentials:

dBidB
∗
j = δijdt, dBidΛjk = δijdBk, (20)

dΛijdB
∗
k = δjkdB

∗
i , dΛijdΛkl = δjkdΛil. (21)

The Itō convention for differentials, that is where the in-
crement dY (t) is taken as the future pointing increment
Y (t + dt) − Y (t) and X(t)dY (t) is understood at the
infinitesimal level as X(t)[Y (t+ dt)− Y (t)]. As an alter-
native we could use the Stratonovich convention which is
to take the midpoint rule

X(t) ◦ dY (t) = X(t+
1

2
dt)[Y (t+ dt)− Y (t)]

≡ X(t)dY (t) +
1

2
dX(t)dY (t).

The Stratonovich quantum stochastic differential equa-
tion corresponding to (19) is then

dU = −i{EijdΛij + Ei0dB
∗
i + E0jdBj + E00dt} ◦ U.

6. The Langevin Equations

For a system operator X , we set

jt(X) = U(t)∗XU(t).

By reference to the quantum Itō rules, we see that, for
S = I, we have that

djt(X) = U(t)∗XdU(t) + dU(t)∗X ⊗ I U(t)

+dU(t)∗XdU(t)

= jt([X,Li])dBi(t)
∗ + jt([L

∗
i , X ])dBi(t)

+ jt(LX)dt

where we encounter the Lindblad generator

LX =
1

2
L∗
i [X,Li] +

1

2
[L∗

i , X ]Li − i[X,H ].

For S 6= I, we have the general Langevin equation

djt(X) = jt(S
∗
kiXSkj − δijX)dΛij(t)

+jt(S
∗
ji[X,Lj])dBi(t)

∗ + jt([L
∗
i , X ]Sij)dBj(t)

+ jt(LX)dt.
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7. Input-Output Relations

The output processes Bout
i (t) are defined by the iden-

tity

Bout
i (t) = U(t)∗ I ⊗ Bi(t)U(t), (22)

which in differential form takes the following form

dBout
i (t) = jt(Sij) dBj(t) + jt(Li) dt. (23)

We see that the differential of the output is a unitary
rotation of the input by the matrix S in the interaction
picture, plus a drift term corresponding to the coupling
L in the interaction picture. From the defining relation
(22) we see that the output processes satisfy the canonical
commutation relations.
The local version of this relation is then

bouti (t) = jt(Sij) bj(t) + jt(Li). (24)

It is clear that the local form (24) is structurally similar to
the boundary conditions (4). In this sense the boundary
conditions do indeed capture the input-output relations
as the fields propagate across the boundary (the system!)
at the origin.

E. Unitary QSDEs as Singular Perturbations

The quantum stochastic process U(t) define by either
formally by (14) or mathematically as a solution to (19),
will be strongly continuous, but due to the presence of
the noise fields dB∗

i , dBj and dΛij will not be strongly
differentiable. Indeed U(t) is a singular perturbation of
the generator of the time-shift (11), and the perturbation
is formally given by the local interaction Υ given by (12).
We remark that nevertheless U(t) is a Θ-cocycle, and

that we can then define a strongly continuous unitary
group, V (t), by

V (t) =

{

V0 (t)U (t) , t ≥ 0;
U (−t)∗ V0 (t) , t < 0.

Our goal is to describe the infinitesimal generator K of
V (t).
This has been a long standing problem [3], and we re-

call briefly the path that lead to the form presented in (2)
with boundary conditions (4). The major breakthrough
came in 1997 when A.N. Chebotarev solved this prob-
lem for the class of quantum stochastic evolutions sat-
isfying Hudson-Parthasarathy differential equations with
bounded commuting system coefficients [4]. His insight
was based on scattering theory of a one-dimensional sys-
tem with a Dirac delta potential, say, with formal Hamil-
tonian

k = i∂ + Eδ

describing a one-dimensional particle propagating along
the negative x-axis with a delta potential of strength E

at the origin. (In Chebotarev’s analysis the δ-function is
approximated by a sequence of regular functions, and
a strong resolvent limit is performed.) As the coeffi-
cients were assumed to commute, he was able to per-
form a simultaneous diagonalisation of these operators
and treat the problem in a class of states parameterised
by the eigenvalue coordinate. The mathematical tech-
niques used in this approach were subsequently general-
ized by Gregoratti [5] to relax the commutativity con-
dition. More recently, the analysis has been further ex-
tended to treat unbounded coefficients [6].
Independently, several authors have been engaged in

the program of describing the Hamiltonian nature of
quantum stochastic evolutions by interpreting the time-
dependent function Υ (t) as being an expression involving
quantum white noises satisfying a singular CCR [26],[27],
[29], [7].
An interesting historical point is that Chebatorev

noted that, since traditional scattering techniques were
based on perturbations of laplacain operators, they would
not be immediately applicable to the situation here where
the generator of the free dynamics k0 = i∂ is a first order
differential operator, and not semi-bounded. However
newer methods introduced by Albeverio and Kurasov
[30],[31],[32] may be employed to construct self-adjoint
extensions of such models in the situation considered
here where we interpret the singular interaction as a δ-
perturbation viewed as a singular rank-one perturbation.
We will show in the next section that this is the case here
for a wave on a 1-D wire.
Our starting point will be the one-dimensional model

considered by Chebotarev, though consider this as a
problem of finding a suitable self-adjoint extension for
the singular second quantized Hamiltonian and present a
intuitive argument leading to the correct from of K.

II. GLOBAL HAMILTONIAN AS SINGULAR
PERTURBATION OF THE TIME SHIFT

GENERATOR

A. Single quantum on a 1-D wire

We begin it a model of a single quantum mechanical
particle moving in one-dimension with free Hamiltonian

H0 = −vp = iv~
∂

∂x
.

The evolution is just the translation of the wave-
function at velocity v along the negative x-axis:

〈x|ψ(t)〉 = ψ(x+ vt).

For simplicity we take ~ = v = 1, so that x is arc-time
along the wire.
We shall consider the singular perturbation consisting

of a δ-kick at the origin:

H = H0 + ǫδ(x).
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For the particle coming in from the right, it will feel an
impulse as it passes the origin which will have the nett
effect of introducing a jump discontinuity. The singular
part of the Schrödinger equation, iψ̇ = Hψ is then

i[ψ(0+)− ψ(0−)] + ǫ
ψ(0+) + ψ(0−)

2
,

where we have the momentum impulse (proportional to
the jump in Ψ at the origin) and the average value picked
out by the δ-function. To obtain a self-adjoint extension,
we argue that this term vanishes exactly, and this implies
the boundary condition

ψ(0−) = sψ(0+).

where

s =
1− i

2ǫ

1 + i
2ǫ
.

At present, we are considering the class of square-
integrable functions with a possible jump discontinuity
at x = 0 for which the derivative function exists away
from zero and is again square-integrable. We note the
following integration by parts formula for functions φ, ψ
in this class:

∫

φ∗(i
∂

∂x
ψ) =

∫

(i
∂

∂x
φ)∗ψ − iφ∗(0+)ψ(0+) + iφ∗(0−)ψ(0−).

Let us denote the bras 〈0±| and 〈0̄| = 1
2 〈0+| + 1

2 〈0−|
defined on this class by

〈0±|ψ〉 = ψ(0±), 〈0̄|ψ〉 = ψ(0+) + ψ(0−)

2
(25)

then we have

〈φ|i ∂
∂x
ψ〉 = 〈i ∂

∂x
φ|ψ〉 + 〈φ|jψ〉

where the jump term is

j = −i|0+〉〈0+|+ i|0−〉〈0−|
≡ −i|0+ − 0−〉〈0̄|+ i|0̄〉〈0+ − 0−|,

where 〈0+ − 0−|ψ〉 = ψ(0+)− ψ(0−). The operator i ∂
∂x

,
understood in the current distributional sense, is clearly
not symmetric on this class of functions, however we do
have 〈φ|k0ψ〉 = 〈k0φ|ψ〉 where

k0 = i
∂

∂x
+ i|0̄〉〈0+ − 0−|. (26)

From von Neumann’s theory of self-adjoint extensions
of symmetric operators, it is well known that all self-
adjoint extensions of the momentum operator defined on
the 1-dimensional line with the origin removed are deter-
mined by a boundary condition ψ(0−) = sψ(0+) where
s is unimodular, as is the case here. Evidently, this cap-
tures in, a very simple setting, the type of scattering that
we see in (15). We now show that this problem can be
second-quantized without too much difficulty.

B. Indefinite number of identical (Bose) quanta on
a 1-D wire

To deal with discontinuities at zero, we introduce the
averaged noise

b̄i(0) =
1

2
bi(0

+) +
1

2
bi(0

−). (27)

Following our remarks leading to (26), we split K0 =
∫ +∞

−∞
b(x)∗i ∂

∂x
b(x)dx = K̃0 + J where

K̃0 =

n
∑

j=1

(

∫ 0

−∞

+

∫ +∞

0

)bj(x)
∗i
∂

∂x
bj(x)dx,

J = i

n
∑

j=1

b̄j(0)
∗[bj(0

+)− bj(0
−)]. (28)

1. Pure Scattering

We take the singular potential to be the second quan-
tization of the δ-function written in an explicitly sym-
metric manner:

Υ = Eij b̄i(0)
∗b̄j(0).

Then

iΨ̇ = (K0 +Υ)Ψ

= K̃0Ψ+ b̄i(0)
∗[i[bi(0

+)− b(0−)] + Eij b̄j(0)]Ψ

and again asking for the singular part (that is, the coeffi-
cient of b̄i(0)

∗) to vanish leads to the boundary condition

bi(0
−)Ψ =

[

1− i
2E

1 + i
2E

]

ij

bj(0
+)Ψ = Sij bj(0

+)Ψ.

We see that we have free propagation by translation along
the incoming and outgoing wires. At the origin we have
the boundary condition bi(0

−)Ψ = Sij bj(0
+)Ψ.

2. General Situation

The fact that we are modeling a quantum field pro-
cess traveling along the wire means that we may consider
more general interactions than just scattering. In partic-
ular, we may include the action on the system due to the
emission or absorption of the field quanta. To model this
we now take

Υ = Eij b̄i(0)
∗b̄j(0) + Ei0 b̄i(0)

∗ + E0j b̄j(0) + E00.

Then

iΨ̇ = (K0 +Υ)Ψ

= {K̃0 + Ei0b̄i(0) + E00}Ψ
+ b̄i(0)

∗
{

i[bi(0
+)− bi(0

−)] + Eij b̄j(0) + E10

}

Ψ
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We once again ask that the final term involving b̄i(0)
∗

(the singular part!) vanishes and this is equivalent to the
algebraic condition:

bi(0
−)Ψ =

[

1− i
2E

1 + i
2E

]

ij

bj(0
+)Ψ − i

[

1

1 + i
2E

]

ij

Ej0Ψ,

and, substituting in for the Itō coefficients (16), this is
exactly the boundary conditions (4), that is, bi(0

−)Ψ =
LiΨ+ Sij bj(0

+)Ψ. Rearranging then leaves us with

Ψ̇ = −iK̃0Ψ− (
1

2
L∗
iLi + iH)Ψ− L∗

iSijbj(0
+)Ψ.

From this we readily identify the desired form (2).

III. FERMIONIC MODELS

In the Fermi analogue we encounter input processes
ai(t) satisfying the singular canonical anti-commutation
relations

{ai(t), aj(s)∗} = δijδ(t− s), (29)

with {ai(t), aj(s)} = 0 = {ai(t)∗, aj(s)∗}. The appropri-
ate Hilbert space to describe these objects is the Fermi
Fock space F− consisting of vectors Ψ with amplitudes
〈τ1, i1; · · · ; τm, im|Ψ〉 that are completely anti-symmetric
under interchange of the labels (τi, ij). (By the exclusion
principle, the amplitude vanishes if two labels are iden-
tical.) The Fermi annihilator is then defined by

ai(t)|τ1, i1; · · · ; τm, im〉 = |i, t; τ1, i1; · · · ; τm, im〉.

On the domain of suitable test vector Ψ ∈ F−, we then
define the singular densities ai(0

±) and āi(0) =
1
2ai(0

+)+
1
2ai(0

−).
The second quantization procedure is similar to the

Bose case and we can immediately introduce the Fermi
analogues of the time shift operators:

K0 =

n
∑

j=1

∫ ∞

−∞

dt aj(t)
∗i
∂

∂t
aj(t),

K̃0 =

n
∑

j=1

(

∫ 0

−∞

+

∫ ∞

0

)dt aj(t)
∗i
∂

∂t
aj(t),

J = i

n
∑

j=1

āj(0)
∗[aj(0

+)− aj(0
−)].

A. Coupling to the System

The theory of Fermionic quantum stochastic calculus
was developed in the mid-1980s by Hudson and Apple-
baum [33], [34] for Fermi diffusions of even parity, and
Hudson and Parthasarathy [35] for the general case. In
applications to physical models we encounter restrictions

on the type of coupling and dynamical evolutions, mean-
ing that the full theory presented in the latter paper is
too broad.
For instance, if the bath is an electron reservoir, then

the specific issue that arises in practice is that the cre-
ation of an electron in the bath necessarily requires the
removal of an electron from the system. This means that
the system must carry Fermi degrees of freedom. An
example of a suitable Fermionic local Hamiltonian is

Υ(t) = ωijai(t)
∗aj(t) + ηαβc

∗
αcβ

+καjc
∗
αaj(t) + κ∗αjaj(t)

∗cα

where cα are Fermionic modes of the system and the
ωij , καj , ηαβ are constants. We require that the system
modes satisfy anti-commutation relation {cα, c∗β} = δαβ ,

{cα, cβ} = 0 = {c∗α, c∗β}, and also anti-commute with the
bath modes

{cα, ai(t)} = {c∗α, ai(t)} = 0,

{cα, ai(t)∗} = {c∗α, ai(t)∗} = 0.

1. Parity Restrictions

We define the parity operator η by

η(cα) = −cα,
η(ai(t)) = −ai(t),

with η(XY ) = η(X)η(Y ) and η(X∗) = η(X)∗. An oper-
atorX on the joint system and bath space is said to be of
even parity is η(X) = X and of odd parity if η(X) = −X .
We note that the local Hamiltonian is of even parity,

η(Υ(t)) = Υ(t),

and this is a natural requirement for all physically realis-
tic models. The most general type of local Hamiltonian
that we shall consider will be of the form

Υ(t) = Eijai(t)
∗aj(t) + ai(t)

∗Ei0 + E0jaj(t) + E00

where the Eij are operators on the system space neces-
sarily possessing the following definite parities

Eij - even

Ei0 = (E0i)
∗ - odd

E00 - even.

We note that ai(t)
∗Ei0 = −Ei0ai(t)

∗. As before, we
wish to study the unitary

U(t) = ~T exp
1

i

∫ t

0

Υ(τ)dτ

which by construction should be of even parity and sat-
isfy the cocycle relation with respect to the free transla-
tion on the Fermionic Fock space.
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2. Conversion to Itō Form

As in the Bose case we encounter

[ai(t), U(t)] = −i
∫ t

0

[ai(t),Υ(s)]U(s)ds.

The parities of the components of Υ are essential in
computing [ai(t),Υ(s)]. For instance, using the anti-
commutation relations and observing that Ejk commutes
with the bath modes ai(t),

[ai(t), Ejkaj(s)
∗ak(s)] = +Ejkai(t)aj(s)

∗ak(s)

−Ejkaj(s)
∗ak(s)ai(t)

= Ejk{ai(t), aj(s)∗}ak(t)
= Ejkak(t)δ(t − s).

We in fact see that

[ai(t),Υ(s)] = δij{Ejkak(t) + Ej0}δ(t− s)

which is structurally identical to the Bose case. The Wick
ordered form is therefore equivalent to (14)

U̇(t) = ai(t)
∗(Sij − δij)U(t)aj(t) + ai(t)

∗LiU(t)

−L∗
iSijU(t)aj(t)− (

1

2
L∗
iLi − iH)U(t),

The coupling operators S,L,H take the same forms as
in (15, 16) though we note that the carry the following
definite parities listed in the table below

Parity Even Odd

Bath Processes Λij(t) Ai(t), Ai(t)
∗

System coefficients Eij , E00 Ei0, E0j

Itō coefficients Sij , H Li

B. Itō Form

As in the Bose case we may introduce the integrated
fields

Ai(t) =

∫ t

0

ai(s)ds, Ai(t)
∗ =

∫ t

0

ai(s)
∗ds

Λij(s) =

∫ t

0

ai(s)
∗aj(s)ds

which are regular operators on the Fermi Fock space and
which may be extended to operators on the joint system
and bath space in the obvious manner. The operators
Ai(t) and Ai(t)

∗ are clearly odd, while Λij(t) is even.
They lead to a quantum Itō table that is exactly the
same as the Bose case (21).
The Itō form of the QSDE is therefore

dU(t) = {(Sij − δij)dΛij(t) + dA∗
i (t)Li

−L∗
iSijdAj(t)− (

1

2
L∗
iLi + iH)dt}U(t),

and we note the change dA∗
iLi = −LidA

∗
i .

1. Fermi Input-Output Relations

An application of the Itō table shows that Fermi output
fields defined by

Aout
i (t) = U(t)∗Ai(t)U(t)

will satisfy the differential relations

dAout
i (t) = U(t)∗SijU(t)dAj(t) + U(t)∗LiU(t)dt.

While formally identical to the Bose case, we should em-
phasize that the Fermi input-output relation has the ad-
ditional property that both sides of the relation are of
odd parity.

2. The Fermi Langevin Equations

We again define jt(X) = U(t)∗XU(t). For S = I, the
QSDE reduces to

dU(t) = {dA∗
iLi − L∗

i dAi − {1
2
L∗
iLi + iH)dt}U(t)

We now have

djt(X) =U(t)∗XdU(t) + dU(t)∗XU(t) + dU(t)∗XdU(t)

=U(t)∗{XdA∗
iLi −XL∗

i dAi −X(
1

2
L∗
iLi + iH)dt

+ L∗
i dAiX − dA∗

iLiX − (
1

2
L∗
iLi − iH)Xdt

+ L∗
i dAiXdA

∗
jLj}U(t)

and to proceed further we need to take into account the
parity features of X .
For a given operator Z we can write Z as a sum of

even and odd parts by setting Zeven = 1
2Z + 1

2η(Z) and

Zodd = 1
2Z − 1

2η(Z) to yield Z = Zeven + Zodd with
η(Z) = Zeven − Zodd. We see that

ZdA∗
i (t) = dA∗

i (t)η(Z), dAi(t)Z = η(Z)dAi(t).

The Langevin equation therefore becomes

djt(X) = dA∗
i (t) jt(η(X)Li − LiX)

+jt(L
∗
i η(X)−XL∗

i ) dAi(t)

+jt(L
∗
i η(X)Li −

1

2
XL∗

iLi −
1

2
L∗
iLiX) dt

−ijt([X,H ])dt

and for S 6= I this generalizes to

djt(X) = jt(S
∗
kiXSkj − δijX) dΛij(t)

+dA∗
i (t) jt(S

∗
ji[η(X)Lj

−LjX ]) + jt([L
∗
i η(X)−XL∗

i ]Sij) dAj(t)

+jt(L
∗
i η(X)Li −

1

2
XL∗

iLi −
1

2
L∗
iLiX) dt

−ijt([X,H ]) dt.
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For even operators X this is formally identical to the
Bose Langevin equation, however, for odd X we have

djt(X) = jt(S
∗
kiXSkj − δijX)dΛij(t)

−dA∗
i (t)jt(S

∗
ji{X,Lj})− jt({L∗

i , X}Sij)dAj(t)

−jt(
1

2
{X,L∗

i }Li +
1

2
L∗
i {Li, X}+ i[X,H ])dt.

3. The Fermi Global Hamiltonian

We can now state the global Hamiltonian K for the
Fermi case:

− iKΨ = −iK̃0Ψ− (
1

2
L∗
iLi + iH)Ψ− L∗

iSijaj(0
+)Ψ,

(30)

on the domain of suitable functions satisfying the bound-
ary condition

ai(0
−)Ψ = LiΨ+ Sij aj(0

+)Ψ. (31)

IV. QUANTUM FEEDBACK NETWORKS

A general quantum feedback network consists of a di-
rect graph with vertices V and edges E , see Fig. 1. At
each vertex we have a quantum mechanical system de-
scribed by the triple (Sv, Lv, Hv).

FIG. 1. (color online) Several individual models (with in-
puts and outputs put into multiple blocks if necessary) are
connected to form a quantum feedback network. the com-
ponents form the set of vertices V of the network, and the
input/output fields propagate along the edges. There will of
necessity be external fields driving the network.

To describe the open-loop model, we may form the
concatenation (S,L,H) where

S =







S1 0 · · ·
0 S2 · · ·
...

...
. . .






, L =







L1

L2

0






, H =

∑

v∈V

Hv.

The closed loop arrangement comes from feeding output
fields in as input fields as indicated in the network graph.

The global Hamiltonian K for the network will take the
form [9]

−iKΨ = −i
∑

e∈E

K̃eΨ−
∑

v∈V

(

1

2
L∗
vLv + iHv

)

Ψ

−
∑

v∈V

L∗
vSvbv (+)Ψ

where bv (+) is the vector of incoming annihilator den-
sities evaluated immediately before vertex v ∈ V . This
must be supplemented by the set of boundary conditions

bv (−)Ψ = Svbv (+)Ψ + LvΨ

for each vertex v ∈ V . Here K̃e is the generator of free
translation along each particular edge e ∈ E . A detailed
account may be found in [8].

A. The Series Product

We illustrate the method next with a derivation of the
series product of [9] using a general argument introduced
in [8]. The basic set up is sketched in Figure 1.

FIG. 2. (color online) Two systems (S(1), L(1),H(1)) and

(S(2), L(2),H(2)) connected in series.

We may model a pair of systems in cascade by
specifying the local Hamiltonians through the triples
(

S(i), L(i), H(i)
)

for i = 1, 2. The positions of the sys-
tems are t1 and t2 respectively. The global Hamiltonian
is then

−iKΨ = −i
(
∫ t2

−∞

+

∫ t1

t2

+

∫ ∞

t1

)

bj (t)
∗
i
∂

∂t
bj (t)

−(
1

2
L
(1)∗
j L

(1)
j + iH(1))Ψ − L

(1)∗
j S

(1)
jk bk

(

t+1
)

Ψ

−(
1

2
L
(2)∗
j L

(2)
j + iH(2))Ψ − L

(2)∗
j S

(2)
jk bk

(

t+2
)

Ψ

with boundary conditions

bj
(

t−1
)

Ψ = S
(1)
jk bk

(

t+1
)

Ψ+ L
(1)
j Ψ,

bj
(

t−2
)

Ψ = S
(2)
jk bk

(

t+2
)

Ψ+ L
(2)
j Ψ.

To obtain the instantaneous feedforward limit we take
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t1 − t2 → 0. Denoting the common limit as t0 then

bj
(

t−0
)

Ψ = S
(2)
jk lim

t2→t0
bk

(

t+2
)

Ψ+ L
(2)
j Ψ

= S
(2)
jk lim

t1→t0
bk

(

t−1
)

Ψ+ L
(2)
j Ψ

= S
(2)
jk lim

t1→t0

{

S
(1)
jk bk

(

t+1
)

Ψ+ L
(1)
j Ψ

}

+ L
(2)
j Ψ

= S
(2)
jk

{

S
(1)
jk bk

(

t+0
)

Ψ+ L
(1)
j Ψ

}

+ L
(2)
j Ψ.

The global Hamiltonian then reduces to

−iKΨ = −i
(
∫ t0

−∞

+

∫ ∞

t0

)

bj (t)
∗
i
∂

∂t
bj (t) Ψ

−(
1

2
L
(1)∗
j L

(1)
j + iH(1))Ψ− L

(1)∗
j S

(1)
jk bk

(

t+0
)

Ψ

−(
1

2
L
(2)∗
j L

(2)
j + iH(2))Ψ− L

(2)∗
j S

(2)
jk bk

(

t+0
)

Ψ.

Substituting in gives

−iKΨ = −i
(
∫ t0

−∞

+

∫ ∞

t0

)

bj (t)
∗
i
∂

∂t
bj (t) Ψ

−(
1

2
L∗
jLj + iH)Ψ− L∗

jSjkbk
(

t+0
)

ψ

with boundary condition

bj
(

t−0
)

Ψ = Sjkbk
(

t+0
)

Ψ+ LjΨ

where we have

S = S(2)S(1), L = L(2) + S(2)L(1),

H = H(1) +H(2) + Im
{

L(2)∗S(2)L(1)
}

.

The rule
(

S(2), L(2), H(2)
)

⊳
(

S(1), L(1), H(1)
)

= (S,L,H)

determined above is referred to as the series product of
the cascaded system [9].

B. General Feedback Reduction

More generally, the reduced model obtained from a
concatenation (S,L,H) obtained by eliminating the edge
(r0, s0) is shown in Figure 2.
By a similar argument, it is readily seen to be deter-

mined by the operators (Sred, Lred, Hred) where [8]

Sred
sr = Ssr + Ssr0 (1− Ss0r0)

−1
Ss0r,

Lred
s = Ls + Ssr0 (1− Ss0r0)

−1 Ls0 ,

Hred = H +
∑

s: output edge

ImL∗
sSsr0 (1− Ss0r0)

−1 Ls0 ,

We comment that the same rule applies to the Fermi
case as well, and in particular that the series product,
and feedback reduction rule ( preserve the correct parity
in table above.

FIG. 3. (color online) The internal line is fed back in as input
making an algebraic loop.

V. CONCLUSION

We have shown that the standard Markov models for
quantum mechanical systems driven by quantum inputs
may be formulated as the free translation of an indef-
inite number of indistinguishable quanta along a one-
dimensional wire with a singular localized interaction at
the point which the system is placed. The approach
works equally well for Boson and Fermion quanta. More
generally we may consider quantum network models with
quanta propagating along the edges and localized quan-
tum mechanical systems located at the vertices.

Under physically motivated assumptions on the parity
of the coupling operator coefficients, the Fermi analogue
leads to identical equations for the series product for cas-
caded and direct feedback situations, and more generally
for the feedback reduction formula for closed-loop net-
works involving general feedback relations.
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