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Abstract

In this paper, a method to solve functionally commutative time-
dependent linear homogeneous differential equation is discussed. We
apply this technique to solve some dynamical quantum problems.

1 Introduction

The study of natural phenomena and their model analysis often involves
differential equations, and it is well-known that once the initial condition is
stated there is the unique solution for a linear differential equation. If we
could obtain the solution of a differential equation in a closed form, we would
be able to follow a trajectory completely, i.e. we can analyse the system well.
However, the problem is that the class of integrable (or solvable) differential
equations using the methods known today is quite small, and we do not have
a uniform technique to solve for all differential equations. Thus, we look for
the closed forms of the solutions of some particular types of differential
equations using specific methods.

The dynamics in quantum mechanics is expressed by linear equations on
the set of all bounded operators B (H) on a Hilbert space H:

d

dt
ρ (t) = L (t) ρ (t) ,

but the general closed solution is not known if L is time-dependent. One of
the well-studied class is the one such that the generator of the time evolution
L (t) is functionally commutative, i.e. L (t)L (s) = L (s)L (t) for t, s ∈ I on
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some open interval I, and this class of open quantum systems is analysed
in [4, 5], where the solution of functionally commutative quantum systems
were obtained using the spectrum of L (t). This technique is useful when
the dimension is small (e.g. dimH = 1, 2, 3) because the spectrum can
be calculated relatively easily, but it becomes difficult when the dimension
increases, especially when dimH ≥ 5 because of the Galois theory.

However, linear systems with functionally commutative generators have
been studied and there are many important papers in this field [1, 3, 7, 20,
8, 18, 10, 14, 9, 22, 11]. Especially, Zhu’s technique [21, 22] enables us to
compute the solutions of these differential equations effectively. A benefit
of this method is that this technique does not rely on the calculation of
the eigenvalues of L (t), so we may be able to obtain the solutions of high-
dimensional differential equations, where the spectrum of the generator is
seldom computable.

In this paper, we study functionally commutative differential equations.
We study Zhu’s technique in Sect. 2, and as examples this technique is
applied in Sect. 3 to some 2-level quantum systems with commutative gen-
erators.

2 Preliminaries

2.1 Open Quantum Systems

First of all, let us introduce several notations and concepts in open quantum
systems (for details, see [19, 12, 13]). Let HS be an n-dimensional Hilbert
space corresponding to a quantum system S, L (HS) be the set of all linear
transformations on HS and B∗ (HS) ⊂ L (HS) be the set of all self-adjoint
bounded operators. The set of states on HS is defined by

S (HS) = {ρ ∈ B∗ (HS) | ρ ≥ 0, trρ = 1} ,

where ρ ≥ 0 means that ρ is positive semidefinite, i.e. 〈ϕ| ρ |ϕ〉 ≥ 0 for all
|ϕ〉 ∈ HS. The dynamics on S (HS) is represented by a differential equation
called a master equation as

d

dt
ρ (t) = L (t) ρ (t) , (1)

where L (t) : L (HS) → L (HS) is a linear operator (often called a generator)
on an open interval I ⊂ R containing 0. The solution of (1) with the initial
state ρ0 ∈ S (HS) is a transformation ρ : I → S (HS) which satisfies (1)
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and ρ (0) = ρ0, and it is known that ρ (t) for (1) is uniquely determined (cf.
e.g. [19, 15]) and the solution is expressed using the linear transformation
Φ : I × S (HS) → S (HS) called the fundamental solution (or dynamical
map, especially in quantum physics) as

ρ (t) = Φ (t) ρ0. (2)

By putting (2) into (1), we also obtain the equation of this fundamental
solution:

d

dt
Φ (t) = L (t) Φ (t) (3)

with Φ (0) = I (identity).
Geometrically, the set of states S (HS) forms a convex set, so Φ has to

make this set invariant during its evolution, i.e. Φ maps from a positive
element to a positive element (such a map is called a positive map). For
making Φ a positive map, it is known that L has to be an operator called a
Metzler operator and this is also a sufficient condition (see [12, 6]).

In the study of open quantum systems, we assume that our system
(HS,Φ) is affected by its surroundings or environment, which is also sup-
posed to form another system (HE,Γ) on I, and the system (HS ⊗HE ,Φ ⊗ Γ)
is assumed to form the total system on I. Indeed, the total system is con-
sidered to form a closed system, namely a system such that

L (t) ρ = −
i

~
[H (t) , ρ] , (4)

where ~ > 0 is some constant, [A,B] = AB − BA is the commutator,
H (t) : HS ⊗HE → HS ⊗HE is some time-dependent self-adjoint linear op-
erator called a Hamiltonian, and the equation (4) is called the von Neumann
equation.

For the analysis of our system (HS ,Φ), we are interested in the closed
form of the solution Φ so that we will be able to follow all orbits in the
system. However, because of the noise from the environment the structure
of L(t) can be complicated and it may be difficult to obtain the closed form
of Φ. In this field, some models have been considered and analysed, and one
of them is the functionally commutative class, where [L(t), L(s)] = O for
t, s ∈ I [4, 5]. The main topic in this paper is about open quantum systems
of this class, and we discuss the integrability later.

2.2 Magnus Expansion

For a linear differential equation (1) with the variable coefficient L(t), we
are interested in the unique solution of this equation. If the generator is
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time-independent, i.e. L(t) = L for all t ∈ I, the solution is given by

ρ(t) = exp (Lt) ρ0 (5)

for a given initial state ρ0 ∈ S (HS), where

exp(Lt) =
∞
∑

k=0

tk

k!
Lk =

m−1
∑

k=0

αk(t)Lk,

m is the degree of the minimal polynomial of L and αk : I → C are some
scalar functions.

We may expect that a similar theory should hold for a time-dependent
generator L(t), but in fact the solution of (1) with time-dependent generator
L(t) cannot be represented like (5) in general.

Magnus [16] gave a sufficient condition for this problem:

Theorem 1. [2, Theorem 1]Let Φ (t) be a map satisfying (3) and Φ (0) = I.
If

d

dt
Φ (t) =

∞
∑

k=0

Bk

k!
adk

Φ(t)L (t)

converges for all t, where Bk is the k-th Bernoulli number and

ad0
AB = B, ad1

AB = [A,B] , adk
AB =

[

A, adk−1
A B

]

,

then Φ (t) is given by
Φ (t) = exp (L (t)) .

Moreover, Φ(t) has an infinite series representation, which is now usually
called the Magnus expansion:

Φ(t) =

ˆ t

0
L(t1)dt1 −

1

2

ˆ t

0

[
ˆ t1

0
L(t2)dt2, L(t1)

]

dt1 + · · · . (6)

The Magnus expansion is a good formulation for the solution of a general
linear differential equation of the form (1) with the time-dependent genera-
tor. However, the Magnus expansion is an infinite series, which is difficult
to be dealt with, so we are next interested in linear systems which has a
finite series expression, which is discussed in the following sections.
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2.3 Linear Differential Equation of Functionally Commuta-

tive Systems

In this section we study a particular type of differential equations; differential
equations of the form (1) with the generators L(t) which commute with its
derivative on I, i.e.

[

L(t),
d

dt
L(t)

]

= O. (∀t ∈ I) (7)

The study of this type of differential equations seems to have started
before 1934 [11], and many discussions have been done on this problem
[1, 3, 7, 20, 8, 18, 10, 14, 9, 22, 11].

One reason of the popularity of this type of systems is that the solution
of (1) satisfying (7) is known to be [9, 15]:

ρ(t) = exp

(
ˆ t

0
L(τ)dτ

)

ρ0. (8)

In addition, in some cases the generator has a finite-sum form

L(t) =

M
∑

k=0

αk(t)Lk,

where Lk are linearly independent constant matrices and αk are scalar func-
tions [1, 14, 9], where we are able to calculate the closed form

Φ(t) = exp

(
ˆ t

0
L(τ)dτ

)

easily.
It is important to remark that the condition (7) is equivalent to the

commutativity of the generator L(t) because of the following theorem:

Theorem 2. [15, Theorem 7.4.1]. For integrable function A(t) on I the
following conditions are equivalent:

• [A(t), A(s)] = O for all t, s ∈ I;

•
[

A(t),
´ t

s
A(τ)dτ

]

= O for all t, s ∈ I.

Putting A(t) = d
dt
L(t), we obtain the equivalence of the functional com-

mutativity and the commutivity of the generator with its derivative. There-
fore, the functionally commutative systems have some ideal properties like
the systems of the form (7).

5



2.4 Finite Form of the Exponential

Magnus expansion (6) is a useful formula to calculate the closed form of
the solution Φ(t) for some systems. However, the Magnus expansion in-
volves an infinite series, which is difficult to be dealt with. For applications
and computational purposes, it is beneficial for us if the series can be also
represented by a finite series.

The key starting point for this problem would be the result by Martin
[18, Theorem 2]:

Theorem 3. Suppose L(t) is bounded and piecewise continuous for t ≥
0. Then L(t) is functionally commutative on t ≥ 0 iff there is a set of
mutually commuting constant matrices {Lk = L(tk)}Mk=1 for some M ≤ n2

and bounded piecewise continuous scalar functions αk such that

L(t) =

M
∑

k=1

αk(t)Lk.

A benefit of this theorem is that we are able to simply calculate

Φ(t) = exp

(
ˆ t

0
L(τ)dτ

)

using the decomposition by Martin. However, as Zhu pointed out in [21],
there are difficulties in finding the decomposition. In [21, 22] Zhu con-
structed a systematic method to obtain a finite decomposition of a func-
tionally commutative generator L(t), called a spatial decomposition. In this

section his method and the application to calculate exp
(

´ t

0 L(τ)dτ
)

are

introduced.
Let L = L (I,C) be a linear space of maps f : I → C. A matrix function

F ∈ Mn (L) is said to be proper if there are G ∈ Mn (C), p ∈ N and αk ∈ L

(k = 1, . . . , p) such that

F (t) =

p
∑

k=1

αk (t)Gk−1,

and the associated function f : I × C → C:

f (t, λ) =

p
∑

k=1

αk (t)λk−1
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is called a primitive function. Note that the primitive function need not be
defined on the entire complex plane but is required that, for some D ⊂ C,
f (·, λ) ∈ L for all λ ∈ D, λi ∈ D and

{

1

ki!
·
∂kif (t, λ)

∂λki

∣

∣

∣

∣

λ=λi

| ki = 0, 1, . . . ,mi − 1, i = 1, 2, . . . , r

}

⊂ L,

where σ (G) = {(λi,mi)}
r
i=1 is the spectrum (i.e. λi is an eigenvalue and mi

is its multiplication) of G.
Recall that a matrix function F (t) is said to be functionally commutative

(or semiproper) on I if

F (t)F (s) = F (s)F (t) (∀t, s ∈ I) .

An important discovery by Zhu was that a functionally commutative matrix
function F can be decomposed into a finite sum of proper functions as
follows:

Theorem 4. F ∈ Mn (L) is functionally commutative on I iff F can be
decomposed into a sum of proper functions (called a spatial decomposition):

F (t) =

m
∑

i=1

Fi (t) =

m
∑

i=1

fi (t,Gi) ,

where [Gi, Gj ] = O for all i, j ≤ m.

Using the spatial decomposition of a functionally commutative matrix
function, we are able to solve the linear differential equation (1) according
to the following theorem:

Theorem 5. [22, Theorem 4]. If L ∈ Mn (K) is semiproper on I having a
decomposition

L (t) =

m
∑

i=1

Li (t) =

m
∑

i=1

fi (t,Gi) ,

where [Gi, Gj ] = 0 and m is the degree of the minimal polynomial of L, then
the system (1) has the finite solution

Φ (t) =
m
∏

i=1

gi (t,Gi) ,

where

gi (t, λ) = exp

(
ˆ t

0
fi (τ, λ) dτ

)

.
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3 Functionally Commutative Quantum Systems

As shown in the previous section, a functionally commutative linear homoge-
neous differential equation can be solved using the technique by Zhu. In this
section we apply this method to some functionally commutative quantum
systems.

Example 6. In [5], a functionally commutative system:

L(t)ρ =
n2−1
∑

k=1

αk(t) [UkρU
∗
k − ρ] (9)

was analysed, where Uk are unitary operators such that {Uk}k ∪ {I} forms
a basis of L(H). In this case, the eigenvalues of L can be obtained relatively
easily, and the solution was finally calculated using the spectrum.

Alternatively, as an example, we calculate the solution of (9) with n = 2
[5, Example 1] using the Zhu’s technique. Let

d

dt
ρt = L (t) ρt = γ

3
∑

k=1

αk (t) (σkρtσ
∗
k − ρt) ,

where γ ∈ C is some constant, αk : R → C are some complex functions and
σk are the Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 i

−i 0

)

, σ3 =

(

1 0
0 −1

)

.

According to the identity [17, pp.35]:

vec (ABC) =
(

CT ⊗A
)

vecB,

the matrix form of L (t) is given by

L̃ (t) = γ

3
∑

k=1

αk (t) (σk ⊗ σk − I)

= γ [(α1 (t) + α2 (t)) adiag (1, 0, 0, 1) + (α1 (t) − α2 (t)) adiag (0, 1, 1, 0)

− (α1 (t) + α2 (t)) I − 2α3 (t) diag (0, 1, 1, 0)] , (10)

where I is the identity matrix,

adiag (a1, . . . , an) =







O a1

. .
.

an O






,
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and

vec







a11 · · · a1n
...

. . .
...

an1 · · · ann






=































a11
...

an1
a12
...

an2
...

ann































is the vector form of the matrix, which is used to represent a superoperator
in its matrix form. One can easily check L is commutative by a direct
calculation.

In (10), put

G1 = adiag (1, 0, 0, 1) , f1 (t, λ) = γ {α1 (t) + α2 (t)}λ,
G2 = adiag (0, 1, 1, 0, ) f2 (t, λ) = γ {α1 (t) − α2 (t)}λ,

G3 = I, f3 (t, λ) = −γ {α1 (t) + α2 (t)}λ,
G4 = diag (0, 1, 1, 0) , f4 = −2γα3 (t)λ,

then, applying Theorem 5 we have

g1 (t, G1) = C1

∞
∑

ξ=0

(

´ t

0
γ {α1 (τ ) + α2 (τ )} dτ

)ξ

ξ!
G

ξ
1

= C1






G4 +

∞
∑

ξ=0

(

´ t

0
γ {α1 (τ ) + α2 (τ )} dτ

)2ξ+1

(2ξ + 1)!
G1

+

∞
∑

ξ=0

(

´ t

0
γ {α1 (τ ) + α2 (τ )} dτ

)2ξ

(2ξ)!
diag (1, 0, 0, 1)







= C1

[

G4 + cosh

(
ˆ t

0

γ {α1 (τ ) + α2 (τ )} dτ

)

diag (1, 0, 0, 1)

+ sinh

(
ˆ t

0

γ {α1 (τ ) + α2 (τ )} dτ

)

adiag (1, 0, 0, 1)

]
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g2 (t, G2) = C2

∞
∑

ξ=0

(

´ t

0
γ {α1 (τ )− α2 (τ )} dτ

)

ξ!
G

ξ
2

= C2






diag(1, 0, 0, 1) +

∞
∑

ξ=0

(

´ t

0
γ {α1 (τ )− α2 (τ )} dτ

)2ξ+1

(2ξ + 1)!
G2

+
∞
∑

ξ=0

(

´ t

0
γ {α1 (τ )− α2 (τ )} dτ

)2ξ

(2ξ)!
G4







= C2

[

diag(1, 0, 0, 1) + sinh

(
ˆ t

0

γ {α1 (τ )− α2 (τ )} dτ

)

G2

+cosh

(
ˆ t

0

γ {α1 (τ )− α2 (τ )} dτ

)

G4

]

g3 (t, G3) = C3 exp

(

−γ

ˆ t

0

{α1 (τ ) + α2 (τ )} dτ

)

I

g4 (t, G4) = C4

[

diag(1, 0, 0, 1) + exp

(

−2γ

ˆ t

0

α3 (t) dτ

)

G4

]

,

where C1, . . . , C4 ∈ C are arbitrary constants. Then we obtain the funda-
mental solution Φ (t) of (1)

Φ (t) =

4
∏

k=1

gk (t, Gk)

= C exp

(

−γ

ˆ t

0

{α1 (τ ) + α2 (τ )} dτ

)[

cosh

(
ˆ t

0

γ {α1(τ ) + α2(τ )}dτ

)

diag(1, 0, 0, 1) + sinh

(
ˆ t

0

γ {α1(τ ) + α2(τ )} dτ

)

adiag(1, 0, 0, 1)

+ sinh

(
ˆ t

0

γ {α1(τ )− α2(τ )}dτ

)

exp

(

−2γ

ˆ t

0

α3(τ )dτ

)

adiag(0, 1, 1, 0)

+ cosh

(
ˆ t

0

γ {α1(τ )− α2(τ )} dτ

)

exp

(

−2γ

ˆ t

0

α3(τ )dτ

)

diag(0, 1, 1, 0)

]

=
C

2

[(

1 + exp

(

−2γ

ˆ t

0

{α1(τ ) + α2(τ )}dτ

))

diag(1, 0, 0, 1)

+

(

1− exp

(

−2γ

ˆ t

0

{α1(τ ) + α2(τ )}dτ

))

adiag(1, 0, 0, 1)

+

(

exp

(

−2γ

ˆ t

0

α2(τ )dτ

)

− exp

(

−2γ

ˆ t

0

α1(τ )dτ

))

exp

(

−2γ

ˆ t

0

α3(τ )dτ

)

adiag(0, 1, 1, 0)

+

(

exp

(

−2γ

ˆ t

0

α2(τ )dτ

)

+ exp

(

−2γ

ˆ t

0

α1(τ )dτ

))

exp

(

−2γ

ˆ t

0

α3(τ )dτ

)

diag(0, 1, 1, 0)

]

,
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where C = C1C2C3C4 is some constant, or in another form

Φ (t) ρ =
C

2

[(

1 + exp

(

−2γ

ˆ t

0

{α1(τ ) + α2(τ )} dτ

))

(σ3ρσ3 + ρ)

+

(

1− exp

(

−2γ

ˆ t

0

{α1(τ ) + α2(τ )} dτ

))

(σ1ρσ1 + σ2ρσ2)

+

(

exp

(

−2γ

ˆ t

0

α2(τ )dτ

)

− exp

(

−2γ

ˆ t

0

α1(τ )dτ

))

exp

(

−2γ

ˆ t

0

α3(τ )dτ

)

(σ1ρσ1 − σ2ρσ2)

+

(

exp

(

−2γ

ˆ t

0

α2(τ )dτ

)

+ exp

(

−2γ

ˆ t

0

α1(τ )dτ

))

exp

(

−2γ

ˆ t

0

α3(τ )dτ

)

(ρ− σ3ρσ3)

]

.

Since Φ(0) = I, we have C = 1.

Example 7. We consider another 2-level system

d

dt
ρt = L (t) ρt

L (t) ρ = −
i

2
ε (t) [σ3, ρ] + γ (t) (µL1 + (1 − µ)L2) ρ

+
1

2

1
∑

α,β=0

cα,β (t) ([Fα, ρFβ ] + [Fαρ, Fβ ]) ,

where µ ∈ [0, 1] is some constant,

L1ρ = σ+ρσ− − 1
2 {σ

−σ+, ρ} , L2ρ = σ−ρσ+ − 1
2 {σ

+σ−, ρ} ,
F0 = σ−σ+, F1 = σ+σ−,

σ± = 1√
2

(σ1 ± iσ2) ,

[A,B] = AB − BA, {A,B} = AB + BA and γ, ε, cα,β are time-dependent
complex functions. This example was considered in [4], but here we calculate
the solution using the Zhu’s method. By a simple calculation one finds the
matrix form of L (t) is given by

L =









2γ (µ− 1) 0 0 2γµ
0 −2c00 + 4c01 − 2c11 + iε− γ 0 0
0 0 −2c00 + 4c10 − 2c11 − iε− γ 0

2γ (1− µ) 0 0 −2γµ









= A1 (t) + A2 (t) + A3 (t) ,

where

A1 (t) = 2γ (t)G1

A2 (t) = {4c01 (t) − 2c00 (t) − 2c11 (t) − γ (t) + iε (t)}G2

A3 (t) = {4c10 (t) − 2c00 (t) − 2c11 (t) − γ (t) − iε (t)}G3
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with

G1 =









µ− 1 0 0 µ

0 0 0 0
0 0 0 0

1 − µ 0 0 −µ









G2 = diag (0, 1, 0, 0) G3 = diag (0, 0, 1, 0)

f1 (t, λ) = 2γ (t)λ

f2 (t, λ) = {4c01 (t) − 2c00 (t) − 2c11 (t) − γ (t) + iε (t)}λ

f3 (t, λ) = {4c10 (t) − 2c00 (t) − 2c11 (t) − γ (t) − iε (t)}λ.

Thus, by applying Theorem 5,

g1 (t, G1) = C1 exp

(
ˆ t

0

f1 (τ,G1) dτ

)

= C1

















µ 0 0 µ

0 1 0 0
0 0 1 0

1− µ 0 0 1− µ









+ cosh

(
ˆ t

0

2γ(τ )dτ

)









1− µ 0 0 −µ

0 0 0 0
0 0 0 0

µ− 1 0 0 µ









+sinh

(
ˆ t

0

2γ(τ )dτ

)

G1

]

= C1









µ 0 0 µ

0 1 0 0
0 0 1 0

1− µ 0 0 1− µ









− C1 exp

(

−

ˆ t

0

2γ(τ )dτ

)

G1

g2 (t, G2) = C2 exp

(
ˆ t

0

f2 (τ,G2) dτ

)

= C2






I −G2 +

∞
∑

k=0

(

´ t

0
{4c01 (τ )− 2c00 (τ )− 2c11 (τ )− γ (τ ) + iε (τ )} dτ

)k

k!
G2







= C2diag (1, 0, 1, 1) + C2 exp

(
ˆ t

0

{4c01 (τ )− 2c00 (τ )− 2c11 (τ )− γ (τ ) + iε (τ )} dτ

)

G2

g3 (t, G3) = C3 exp

(
ˆ t

0

f3 (τ,G3) dτ

)

= C3






I −G3 +

∞
∑

k=0

(

´ t

0
{4c10 (τ )− 2c00 (τ )− 2c11 (τ )− γ (τ )− iε (τ )} dτ

)k

k!
G3







= C3diag (1, 1, 0, 1) + C3 exp

(
ˆ t

0

{4c10 (τ )− 2c00 (τ )− 2c11 (τ )− γ (τ )− iε (τ )} dτ

)

G3,
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where C1, C2, C3 ∈ C are arbitrary constants. Then, finally we obtain the
solution

Φ(t) = C









µ 0 0 µ

0 0 0 0
0 0 0 0

1− µ 0 0 1− µ









+C exp

(
ˆ t

0

{4c01 (τ )− 2c00 (τ )− 2c11 (τ )− γ (τ ) + iε (τ )} dτ

)

G2

+C exp

(
ˆ t

0

{4c10 (τ )− 2c00 (τ )− 2c11 (τ )− γ (τ )− iε (τ )} dτ

)

G3

−C exp

(

−

ˆ t

0

2γ(τ )dτ

)

G1

where C = C1C2C3 is a constant, or in another form

Φ(t)ρ =
C

4
[(2µ− 1) (ρσ3 + σ3ρ+ iσ1ρσ2 + iσ2ρσ1) + ρ+ σ1ρσ1 − σ2ρσ2 + σ3ρσ3]

+
C

4
exp

(
ˆ t

0

{4c01 (τ )− 2c00 (τ )− 2c11 (τ )− γ (τ ) + iε (τ )} dτ

)

[ρ− σ3ρσ3 + ρσ3 − σ3ρ]

+
C

4
exp

(
ˆ t

0

{4c10 (τ )− 2c00 (τ )− 2c11 (τ )− γ (τ )− iε (τ )} dτ

)

[ρ− σ3ρσ3 − ρσ3 + σ3ρ]

−
C

4
exp

(

−

ˆ t

0

2γ(τ )dτ

)

[(2µ− 1) (ρσ3 + σ3ρ+ iσ1ρσ2 + iσ2ρσ1)− ρ+ σ1ρσ1 − σ2ρσ2 − σ3ρσ3] .

The initial condition implies C = 1.

4 Concluding Remark

In this paper some results on ordinary linear differential equations with
functionally commutative generators were introduced, and using the Zhu’s
result, a method to solve a certain type of differential equations effectively,
some quantum master equations with functionally commutative generators
were solved effectively, i.e. involving only finitely many terms. Indeed, this
method does not rely on the spectrum of the generator explicitly, in other
words we do not need to calculate the eigenvalues. This is an advantage from
a computational point, and we may be able to solve higher dimensional and
more complicated master equations, where it is difficult to calculate the
eigenvalues.
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