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Abstract

We investigate the influence of photon excitations on quantum correlations in tripartite Glauber

coherent states of Greenberger-Horne-Zeilinger type. The pairwise correlations are measured by means

of the entropy-based quantum discord. We also analyze the monogamy property of quantum discord

in this class of tripartite states in terms of the strength of Glauber coherent states and the photon

excitation order.
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1 Introduction

In the context of information processing and transmission, several theoretical and experimental re-

sults confirm the advantages of quantum protocols compared to their classical counterparts (see for

instance [1, 2, 3]). Quantum technology exploiting the intriguing phenomena of quantum world, such

as entanglement, offers secure ways for communication [4, 5] and potentially powerful algorithms in

quantum computation [6]. Originally, quantum information processing focused on discrete (finite-

dimensional) entangled states like the polarizations of a photon or discrete levels of an atom. But, the

extension from discrete to continuous variables has been also proven beneficial in coding and manip-

ulating efficiently quantum information. Coherent states, which constitute the prototypical instance

of continuous-variables states, are expected to play a central role in this context. They are appealing

for their mathematical elegance (continuity and over-completion property) and closeness to classical

physical states (minimization of Heisenberg uncertainty relation). Implementing a logical qubit en-

coding by treating entangled coherent states as qubits in a two dimensional Hilbert space has been

shown a promising strategy in performing successfully various quantum tasks such as quantum tele-

portation [7, 8], quantum computation [9, 10, 11], entanglement purification [12] and errors correction

[13]. In view of these potential applications, a special attention was paid, during the last years, to the

identification, characterization and quantification of quantum correlations in bipartite coherent states

systems (see for instance the papers [14, 15, 16] and references therein). The bipartite treatment was

extended to superpositions of multimode coherent states [17, 18, 19, 20, 21] which exhibit multipartite

entanglement. One may quote for instance entanglement properties in GHZ (Greenberger-Horne-

Zeilinger), W (Werner) states discussed in [22, 23] and entangled coherent state extensions of cluster

qubits investigated in [24, 25, 26]. To quantify quantum correlations beyond entanglement in coherent

states systems, measures such as quantum discord [27, 28] and its geometric variant [29] were used.

Explicit results were derived for quantum discord [30, 31, 32, 33, 34, 35, 36, 37] and geometric quantum

discord [38, 39, 40, 41] for some special sets of coherent states.

On the other hand, decoherence is a crucial process to understand the emergence of classicality

in quantum systems. It describes the inevitable degradation of quantum correlations due to exper-

imental and environmental noise. Various decoherence models were investigated and in particular

the phenomenon of entanglement sudden death was considered in a number of distinct contexts (see

for instance [42] and reference therein). For optical qubits based on coherent states, the influence of

the environment, is mainly due to energy loss or photon absorption. The photon loss or equivalently

amplitude damping in a noisy environment can be modeled by assuming that some of field energy

and information is lost after transmission through a beam splitter [36, 43]. Interestingly, it has been

shown that a beam spitting device with a coherent in the first input and a number state in the second

input generates photon-added coherent states [44]. Henceforth, understanding the influence of photon

excitations might be useful to develop the adequate strategies in improving the performance of noise
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reduction in quantum processing protocols involving coherent states. In this sense, some authors

considered the concurrence as measure of the entanglement in bipartite and tripartite photon added

coherent states [23, 45].

In this work, we derive the analytical expression of pairwise quantum discord in a three modes

system initially prepared in a tripartite Glauber coherent state of GHZ-type. In particular, we shall

consider the influence of photon excitation of a single mode on the dynamics of pairwise quantum

correlations. Mathematically, this process is represented by the action of a suitable creation operator

on the state of the first subsystem. Another important issue in photon added GHZ-type coherent

states concerns the distribution of quantum discord between the different parts of the whole system.

In fact, we study the shareability of quantum correlations which obeys a restrictive inequality termed

in the literature as the monogamy property [46] (see also [47, 48, 49, 50, 51, 52]).

This paper is organized as follows. In section 2, basic definitions and equations related to photon

added coherent states are presented. We also consider the quantum correlations as measured by

the entanglement of formation in quasi-Bell states. In particular, we introduce an encoding map to

pass from continuous variables (coherent states) to discrete variables (logical quantum bits). Along

the same line of reasoning, this qubit encoding is extended, in section 3, to tripartite photon added

coherent states of GHZ-type. The pairwise quantum discord quantifying the amount of quantum

correlations existing in the system is analytically derived. In section 4, we study the monogamy

property of quantum discord. Numerical illustrations of the monogamy inequality are presented in

some special cases. Concluding remarks close this paper.

2 Entanglement in photon added quasi-Bell states

2.1 Photon added coherent states and qubit mapping

The basic objects in this work are the Glauber coherent states |α〉 and | − α〉 where α is a complex

number which determines the coherent amplitude of the electromagnetic field. Mathematically, a

single-mode quantized radiation field is represented by the harmonic oscillator algebra spanned by the

creation a+ and annihilation a− operators. The process of addingm photons to coherent states of type

|α〉 and |−α〉 is usually represented by the action of the operator (a+)m (m is a non negative integer)

[53]. Several experimental as well theoretical studies were devoted to the generation and nonclassical

properties of photon-added coherent states [54] (for a recent review see [55]). Explicitly, m successive

actions of creation operator a+ on the Glauber coherent states

|α〉 = e−
|α|2

2

∞∑

n=0

αn

√
n!
|n〉, (1)
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lead to the un-normalized states

||α,m〉 =
(
a+

)m | α〉 = e−
|α|2

2

∞∑

n=0

αn

n!

√
(n+m)! | n+m〉. (2)

The vectors |n〉 denote the Fock-Hilbert states of the harmonic oscillator. The normalized m-photon

added coherent states are defined by

|α,m〉 = (a+)m|α〉√
〈α|(a−)m(a+)m|α〉

, (3)

where the quantity

〈α|(a−)m(a+)m|α〉 = m!Lm(−|α|2), (4)

involves the Laguerre polynomial of order m defined by

Lm(x) =
m∑

n=0

(−1)nm!xn

(n!)2(m− n)!
. (5)

Photon added coherent states interpolate between electromagnetic field coherent states (quasi-classical

states) and Fock states |n〉 (purely quantum states). Furthermore, they exhibit non-classical features

such as squeezing, negativity of Wigner distribution and sub Poissonian statistics [55]. Their ex-

perimental generation using parametric down conversion in a nonlinear crystal was reported in [54].

Photon-coherent states |α,m〉 and | −α,m〉, of the same amplitude and phases differing by π, are not

orthogonal to each other. Indeed using the expression

〈−α|(a−)m(a+)m|α〉 = e−2|α|2m!Lm(|α|2), (6)

it is simply verified that the overlap between the two states is

〈−α,m|α,m〉 = e−2|α|2 Lm(|α|2)
Lm(−|α|2) . (7)

Considering the nonorthogonality property (7), the identification of photon added coherent states

|α,m〉 and | − α,m〉 as basis of a logical qubit is only possible for |α| large (|α| ≥ 2). Alternatively,

the Schrödinger cat states, the even and odd coherent states, can be used to encode a qubit. Indeed,

based on the encoding scheme proposed in [11], we introduce a two dimensional basis spanned by the

orthogonal qubits |+,m〉 and |−,m〉 defined by

|±,m〉 = 1√
2± 2κme−2|α|2

(|α,m〉 ± | − α,m〉) (8)

where

κm ≡ κm(|α|2) := Lm(|α|2)
Lm(−|α|2) . (9)

Clearly, for m = 0, one has κ0 = 1 and the logical qubits (8) reduce to

|±〉 = 1√
2± 2e−2|α|2

(|α〉 ± | − α〉), (10)
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which coincide with even and odd Glauber coherent states providing the qubit encoding scheme

introduced in [11]. This qubit encoding is important in dealing with quantum correlation in photon

added coherent states and to investigate the influence of the photon excitations processes. To illustrate

this, we shall first consider the entanglement in quasi-Bell states which are very interesting in quantum

optics and serve as valuable resource for quantum teleportation and many other quantum computing

operations. The quasi-Bell states

|Bk(α)〉 = Nk(α)
[
|α〉 ⊗ |α〉+ eikπ| − α〉 ⊗ | − α〉

]
, (11)

with k = 0 (mod 2) (resp. k = 1 (mod 2)) stands for even (resp. odd) quasi-Bell states and the

normalization factor Nk(α) is

N−2

k (α) = 2 + 2e−4|α|2 cos kπ. (12)

By repeated actions of the creation operator on the first mode, the resulting excited quasi-Bell states

are

||Bk(α,m)〉 = Nk(α)

[[
(a+)m ⊗ I

]
|α〉 ⊗ |α〉+ eikπ

[
(a+)m ⊗ I

]
| − α〉 ⊗ | − α〉

]
(13)

are un-normalized (I stands for the unity operator). Using the norm of the vectors ||Bk(α,m)〉 given
by

〈Bk(α,m)||Bk(α,m)〉 = m!
Lm(−|α|2) + e−4|α|2Lm(|α|2) cos kπ

1 + e−4|α|2 cos kπ
, (14)

we introduce the normalized photon-added quasi-Bell states as

|Bk(α,m)〉 = ||Bk(α,m)〉√
〈Bk(α,m)||Bk(α,m)〉

. (15)

They can be rewritten as

|Bk(α,m)〉 = Nk(α,m)
[
|m,α〉 ⊗ |α〉 + eikπ |m,−α〉 ⊗ | − α〉

]
, (16)

in terms of the normalized photon added coherent state (3). The normalization factor in (16) is

N−2

k (α,m) = 2 + 2κme−4|α|2 cos kπ, (17)

which reduces for m = 0 to (12) and the quasi-Bell states (11) are recovered.

2.2 Dynamics of the entanglement of formation under photon excitation

Using the qubit mapping (8) for the first mode and (10) for the second, the bipartite state (16) is

converted in the two qubit state

|Bk(α,m)〉 = Nk(α,m)
∑

i=±

∑

j=±

Cij |i,m〉 ⊗ |j〉, (18)

where the vectors |i,m〉 (resp. |j〉) are defined by (8) (resp. (10)) and the expansion coefficients are

given by

C++ = c+mc+(1 + eikπ), C−+ = c+c−m(1− eikπ), C+− = c+mc−(1− eikπ), C−− = c−c−m(1 + eikπ),
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with

c±m =

√
1± κme−2|α|2

2
c± =

√
1± e−2|α|2

2
.

In a pure bipartite system, the quantum discord coincides with entanglement of formation (see for

instance [30, 31, 32]). Thus, to discuss the effect of the photon excitations of quasi-Bell states (16),

we quantify the quantum correlations by means of the entanglement of formation. We recall that for

ρ12 the density matrix for a pair of qubits 1 and 2 which may be pure or mixed, the entanglement of

formation is defined by [56]

E(ρ12) = H(
1

2
+

1

2

√
1− |C(ρ12)|2), (19)

where H(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function. The concurrence C(ρ12)

is given by

C(ρ12) = max {λ1 − λ2 − λ3 − λ4, 0} (20)

for λ1 ≥ λ2 ≥ λ3 ≥ λ4 the square roots of the eigenvalues of the ”spin-flipped” density matrix

̺12 ≡ ρ12(σy ⊗ σy)ρ
⋆
12(σy ⊗ σy) where the star stands for complex conjugation and σy is the usual

Pauli matrix. In the state (16), it easy to check that the concurrence (20) gives

C12 = 2N 2
k (α,m)|C++C−− −C+−C−+|, (21)

which rewrites explicitly as

C12 =

√
1− e−4|α|2

√
1− κ2me−4|α|2

1 + κme−4|α|2 cos kπ
(22)

in terms of the coherent states amplitude |α| and the excitation order m. This result coincides with

one obtained in [45] using a different qubit encoding. It follows that entanglement of formation is

E12 = H

[
1

2
+

e−2|α|2(1 + κm cos kπ)

2 + 2κme−4|α|2 cos kπ

]
. (23)

For m = 0, one has

C12 =
1− e−4|α|2

1 + e−4|α|2 cos kπ
. (24)

To illustrate the influence of the photon excitation on the quantum correlation between the modes of

the quasi-Bell state (11), we report in the figures 1 and 2 the behavior of the entanglement of formation

E12 (23) versus Glauber coherent states amplitude |α|2 and the overlap p = 〈α| − α〉 = e−2|α|2 for

different values of m. We note that for |α| large (|α|2 ≥ 1.5), the entanglement of formation tends to

unit independently of the number of added photons m. Indeed, from equation (23), one gets E12 = 1

for |α| −→ ∞. Note that, in this limit, the Glauber coherent states |α〉 and |−α〉 tends to orthogonality
and an orthogonal basis can be constructed such that |0〉 ≡ |α〉 and |1〉 ≡ | − α〉. Thus, in the strong

regime |α| −→ ∞, the quasi-Bell states (11) become maximally entangled

|Bk(∞)〉 = 1√
2

[
|0〉 ⊗ |0〉+ eikπ|1〉 ⊗ |1〉

]
.
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Subsequently, maximally entangled quasi-Bell states are robust against any photon addition process.

Another interesting limiting situation concerns quasi-Bell states with smaller values of α (weak regime).

For α −→ 0, the symmetric (k = 0 (mod 2))-quasi-Bell state (11) reduces to the separable state |0〉⊗|0〉
and by adding m photons it becomes |m〉 ⊗ |0〉. No quantum correlation is created by the photon

excitation (E12 = 0). This result can be also obtained from (23) for |α| −→ 0. As depicted in the

figure 2, the situation is completely different for anti-symmetric quasi-Bell states (k = 1 (mod 2)) (11).

For α approaching zero, the entanglement of formation decreases as the photon excitation number m

increases. For |α| −→ 0, the Laguerre polynomial (5) can be approximated by Lm(|α|2) ≃ 1 −m|α|2

and the quantity (9) writes

κm(|α|2) ≃ 1− 2m|α|2. (25)

Reporting (25) in (23), one gets

E12(B1(0,m)) ≃ H

(
m+ 1

m+ 2

)
. (26)

It is interesting to note that in the situation when |α| −→ 0, the anti-symmetric quasi-Bell states (11)

reduce to the maximally entangled two qubit state of W-type

|B1(0)〉 =
1√
2

[
|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉

]
(27)

where |0〉 and |1〉 denote the Fock number states. The action of the operator (a+)m on the state

|B1(0)〉 gives
|B1(0,m)〉 = 1√

m+ 2

[
|m〉 ⊗ |1〉 +

√
m+ 1|m+ 1〉 ⊗ |0〉

]
.

In this case, the concurrence is

C12(B1(0,m)) = 2

√
m+ 1

m+ 2
, (28)

which agrees with the result (26). Clearly, adding photons to maximally entangled states of W-type

(27) diminishes the amount of pairwise quantum correlations. For the intermediate regime, corre-

sponding to |α|2 ranging between 0 and 1.5, the entanglement of formation increases as the Glauber

coherent state amplitude α increases. We note that adding photon process induces a quick activation

of the creation of quantum correlation for the symmetric quasi-Bell states (figure 1). Similarly, the

results presented in figure 2 show that increasing the amplitude of anti-symmetric quasi-Bell states

tends to compensate the quantum correlation loss due to photon excitations in states of W type.

3 Pairwise quantum correlations in excited quasi-GHZ coherent states

3.1 Photon added quasi-GHZ coherent states

The analysis and results derived in the previous section are useful in investigating pairwise quantum

correlations in tripartite states involving Glauber coherent states. In this respect, we consider the

quasi-GHZ coherent states defined by

|GHZk(α)〉 = Ck(α)(|α,α, α〉 + eikπ| − α,−α,−α〉). (29)
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Figure 1. The entanglement of formation E12 versus |α|2 and p = e−2|α|2 for k = 0 and different values

of photon excitation number m.

Figure 2. The entanglement of formation E12 versus |α|2 and p = e−2|α|2 for k = 1 and different values

of photon excitation number m.

where the normalization constant Ck is given by

C−2

k (α) = 2 + 2e−6|α|2 cos kπ. (30)

The excitation of the first mode by adding m photon leads to the tripartite state

||GHZk(α,m)〉 = ((a+)m ⊗ I⊗ I) |GHZk(α)〉, (31)

from which we introduce the normalized photon added quasi-GHZ coherent states as

|GHZk(α,m)〉 = ||GHZk(α,m)〉√
〈GHZk(α,m)||GHZk(α,m)〉

. (32)

Using the expressions (4) and (6), the vector (32) rewrites as

|GHZk(α,m)〉 = Ck(α,m)(|m,α〉 ⊗ |α〉 ⊗ |α〉,+eikπ|m,−α〉 ⊗ | − α〉 ⊗ | − α〉). (33)

where the normalization factor is

C−2

k (α,m) = 2 + 2κme−6|α|2 cos kπ. (34)

For m = 0, the state |GHZk(α,m)〉 (33) reduces to |GHZk(α)〉 (29). It is also important to note that

for |α| large, the overlap between Glauber coherent states |α〉 and | − α〉 approaches zero and then
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they are quasi-orthogonal. In this case, the state |GHZk(α)〉 (29) reduces to the usual GHZ three

qubit state

|GHZk(∞)〉 = 1√
3
(|0〉 ⊗ |0〉 ⊗ |0〉+ eikπ|1〉 ⊗ |1〉 ⊗ |1〉), (35)

where |0〉 ≡ |α〉 and |1〉 ≡ | − α〉.
In investigating the pairwise quantum discord in a tripartite system 1 − 2 − 3 prepared in the state

|GHZk(α,m)〉, one needs the reduced density matrices describing the two qubit subsystems 1−2, 2−3

and 1 − 3. Since only the first mode is affected by the photon excitations, it is simply seen that the

reduced density matrices ρ12 = Tr3ρ123 and ρ13 = Tr2ρ123 are identical. The pure three mode density

matrix ρ123 is given

ρ123 = |GHZk(α,m)〉〈GHZk(α,m)|. (36)

After some algebra, the reduced density matrices ρ12 and ρ13 can be written as

ρ12 = ρ13 =
C2
k(α,m)

N 2
k (α,m)

[(
1 + e−2|α|2

2

)
|Bk(α,m)〉〈Bk(α,m)| +

(
1− e−2|α|2

2

)
Z|Bk(α,m)〉〈Bk(α,m)|Z

]
(37)

in terms of photon added quasi-Bell states (16). The operator Z is the third Pauli generator defined

by

Z|Bk(α,m)〉 = Nk(α,m)[|m,α) ⊗ |α〉 − eikπ|m,−α)⊗ | − α〉].

Similarly, by tracing out the first mode, the reduced matrix density ρ23 takes the form

ρ23 =
C2
k(α,m)

N 2
k (α, 0)

[(
1 + κme−2|α|2

2

)
|Bk(α, 0)〉〈Bk(α, 0)| +

(
1− κme−2|α|2

2

)
Z|Bk(α, 0)〉〈Bk(α, 0)|Z

]
.(38)

To derive the pairwise correlation between the components of the subsystems 1− 2, 2− 3 and 1− 3,

we assume that the information is encoded in even and odd Glauber coherent states (Schrödinger cat

states). In this sense, we introduce for the first mode the following qubit mapping

|m,±α〉 =

√
1 + κme−2|α|2

2
|0〉1 ±

√
1− κme−2|α|2

2
|1〉1. (39)

This coincides with the encoding scheme (8) introduced in the previous section to study the entangle-

ment in quasi-Bell states. For the second and third modes, we consider the qubits defined by

| ± α〉 =

√
1 + e−2|α|2

2
|0〉i ±

√
1− e−2|α|2

2
|1〉i, i = 2, 3. (40)

Substituting (39) and (40) in (37) (resp. (38)), one can express the density matrix ρ12 (resp. ρ23) in

the two qubit basis {|0〉1 ⊗ |0〉2, |0〉1 ⊗ |1〉2, |1〉1 ⊗ |0〉2, |1〉1 ⊗ |1〉2} (resp. {|0〉2 ⊗ |0〉3, |0〉2 ⊗ |1〉3, |1〉2 ⊗
|0〉3, |1〉2 ⊗ |1〉3}). The resulting density matrices have non-vanishing entries only along the diagonal

and the anti-diagonal.
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3.2 Bipartite measures of quantum discord

The state |GHZk(α,m)〉 (33) has rank two reduced density matrices (37) and (38). For these two qubit

states, the Koashi-Winter relation which provides the connection between the quantum discord and

the entanglement of formation, can be exploited to obtain the relevant pairwise quantum correlations.

It is important to note that for two qubit states with rank larger than two, the derivation of quantum

discord involves optimization procedures that are in general complicated to achieve analytically.

The total correlation in the subsystem 1 − 2 comprising the optical modes 1 and 2, is quantified by

the mutual information

I12 = S1 + S2 − S12, (41)

where S12 is the von Neumann entropy of the quantum state ρ12 (37) (S(ρ) = −Tr ρ ln ρ) and S1 (resp.

S2) is the entropy of the reduced state ρ1 = Tr2(ρ12) (resp. ρ2 = Tr1(ρ12)) of the mode 1( resp. 2). The

mutual information I12 contains both quantum and classical correlations. The classical correlations

C12 can be determined by a local measurement optimization procedure. To remove the measurement

dependence, a maximization over all possible measurements is performed and the classical correlation

writes

C12 = S2 − S̃min, (42)

where S̃min denotes the minimal value of the conditional entropy [57, 58] (for more details, see the

recent review [59]). Thus, the quantum discord, defined as the difference between total correlation I12

and classical correlation C12 [57, 58], writes

D12 = I12 − C12 = S1 + S̃min − S12. (43)

The main difficulty in deriving the analytical expression of bipartite quantum discord (43), in arbitrary

mixed state, arises in the minimization process of conditional entropy. This explains why the explicit

expressions of quantum discord were obtained only for few exceptional two-qubit quantum states,

especially ones of rank two. One may quote for instance the results obtained in [31, 32] (see also

[36, 37, 41]). Since the density matrix ρ12 (37) is of rank two, the derivation of the analytical expression

of S̃min in equation (42), can be performed by purifying the density matrix ρ12 and making use of

Koashi-Winter relation [60] (see also [33]). This relation establishes the connection between the

classical correlation of a bipartite state ρ12 and the entanglement of formation E23 of its complement

ρ23 in the pure state ρ123 (36). The minimal value of the conditional entropy coincides with the

entanglement of formation of ρ23 [60]:

S̃min = E23. (44)

The Koaschi-Winter relation and the purification procedure provide us with a computable expression

of quantum discord in the bipartite state ρ12

D12 = S1 − S12 + E23 (45)
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when the measurement is performed on the subsystem 1. The von Neumann entropy of the reduced

density ρ1 = Tr2ρ12 is

S1 = H

(
1

2

(1 + κme−2|α|2)(1 + e−4|α|2 cos kπ)

1 + κme−6|α|2 cos kπ

)
, (46)

and the entropy of the bipartite density ρ12 is explicitly given by

S12 = H

(
1

2

(1 + κme−4|α|2 cos kπ)(1 + e−2|α|2)

1 + κme−6|α|2 cos kπ

)
. (47)

It is important to note that the entanglement of formation measuring the entanglement of the subsys-

tem 2 with the ancillary qubit, required in the purification process to minimize the conditional entropy,

is exactly the entanglement of formation measuring the degree of intricacy between the optical modes

2 and 3. Using the definition of Wootters concurrence (20), one gets

C23 = κme−2|α|2 (1− e−4|α|2)2

1 + κme−6|α|2 cos kπ
(48)

and subsequently the corresponding entanglement of formation writes

E23 = H

(
1

2
+

1

2

√

1− κ2me−4|α|2(1− e−4|α|2)2

(1 + κme−6|α|2 cos kπ)2

)
. (49)

Reporting (46), (47) and (49) in (45), the quantum discord in the state ρ12 is explicitly given by

D12 = H

(
1

2

(1 + κme−2|α|2)(1 + e−4|α|2 cos kπ)

1 + κme−6|α|2 cos kπ

)
(50)

− H

(
1

2

(1 + κme−4|α|2 cos kπ)(1 + e−2|α|2)

1 + κme−6|α|2 cos kπ

)

+ H

(
1

2
+

1

2

√

1− κ2me−4|α|2(1− e−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2

)
,

The pairwise quantum discord existing in the mixed states ρ23 (38) can be computed along the same

procedure. As result, when the measurement is performed on the subsystem 2, the quantum discord

is

D23 = S2 − S23 + E13. (51)

The von Neumann entropy of the reduced density ρ2 = Tr1ρ12 is

S2 = H

(
1

2

(1 + e−2|α|2)(1 + κme−4|α|2 cos kπ)

1 + κme−6|α|2 cos kπ

)
, (52)

and the entropy of the bipartite density ρ23 is

S23 = H

(
1

2

(1 + e−4|α|2 cos kπ)(1 + κme−2|α|2)

1 + κme−6|α|2 cos kπ

)
. (53)

In purifying the state ρ23 to derive the minimal amount of conditional entropy, it is simple to show here

also that the entanglement of formation measuring the entanglement of the mode 3 with an ancillary
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qubit, is exactly the entanglement of formation measuring the degree of intricacy between the optical

modes 1 and 3. From (20), the concurrence between the modes 1 and 3 takes the following form

C13 = e−2|α|2
√

(1− κ2me−4|α|2)(1 − e−4|α|2)

1 + κme−6|α|2 cos kπ
, (54)

from which one gets

E13 = H

(
1

2
+

1

2

√

1− e−4|α|2(1− κ2me−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2

)
. (55)

Finally, the expression of quantum discord in the state ρ23 is

D23 = H

(
1

2

(1 + e−2|α|2)(1 + κme−4|α|2 cos kπ)

1 + κme−6|α|2 cos kπ

)
(56)

− H

(
1

2

(1 + e−4|α|2 cos kπ)(1 + κme−2|α|2)

1 + κme−6|α|2 cos kπ

)

+ H

(
1

2
+

1

2

√

1− e−4|α|2(1− κ2me−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2

)
.

3.3 Some special cases

In order to analyze the influence of the photon excitation number m on the bipartite quantum discord

D12 (50) and D23 (56), we first give the figures 3 and 4 representing respectively D12 and D23 for

symmetric states (k = 0).

Figure 3. The quantum discord D12 versus |α|2 and p = e−2|α|2 for k = 0 and different values of

photon excitation number m.

We can see from figure 3 that the quantum discord D12(|α|2) between the optical modes 1 and 2, in

the symmetric case (k = 0), exhibits peaks which move to the left-hand when the photon excitation

number m increases. It must be noticed that the height of peaks, Dmax
12 (m), increases with increasing

the number of added photons. We observe also that on the left-hand side of the peak (weak regime),

the quantum discord D12 rises rapidly with increasing the optical strength |α|2. This indicates that

the photon excitation of Glauber coherent states, in the weak regime, induces an activation of the

correlations between the modes 1 and 2. In the strong regime (|α| large), the quantum discord tends

12



Figure 4. The quantum discord D23 versus |α|2 and p = e−2|α|2 for k = 0 and different values of

photon excitation number m.

to zero quickly as m increases. The behavior of D23(|α|2) in symmetric quasi-GHZ coherent states

(k = 0), depicted in figure 4, shows that the maximal amount of quantum discord Dmax
23 (m) is obtained

form = 0 and |α|2 ∼ 0.5. In contrast withD12, D
max
23 (m) decreases asm increases (figure 5). Thus, the

increase of the quantum discord D12 is accompanied by a decrease of D23 when the photon excitation

number m increases. Remark also that for symmetric states (k = 0), the photon excitation does not

affect the amount of pairwise quantum correlations D12 and D23 in the limiting situations |α| −→ 0

and |α| −→ ∞. This is no longer valid for antisymmetric states k = 1 especially for |α| approaching
zero (see figures 5 and 6). Indeed, the quantum discord D12 and D23 decreases for α −→ 0 as the

GHZ-like coherent states become more excited.

Figure 5. The quantum discord D12 versus |α|2 and p = e−2|α|2 for k = 1 and different values of

photon excitation number m.

The behavior of quantum discord D12 and D23 in anti-symmetric states (k = 1), when |α| ap-
proaches zero, can be confirmed analytically. In fact, using (25), one shows that for |α| −→ 0 the

quantum discord D12 (50) and D23 (56) are given by

D12 = D13 = H

(
2

m+ 3

)
−H

(
m+ 2

m+ 3

)
+H

(
1

2
+

1

2

√
(m+ 1)(m+ 5)

m+ 3

)
, (57)

and

D23 = H

(
m+ 2

m+ 3

)
−H

(
2

m+ 3

)
+H

(
1

2
+

1

2

√
m2 + 2m+ 5

m+ 3

)
. (58)
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Figure 6. The quantum discord D23 versus |α|2 and p = e−2|α|2 for k = 1 and different values of

photon excitation number m.

It is interesting to note that the antisymmetric photon added GHZ-type coherent states |GHZ1(α,m)〉
(33) reduces, for |α| −→ 0, to

|GHZ1(0,m)〉 = 1√
m+ 3

(
√
m+ 1|m+ 1, 0, 0〉 + |m, 1, 0〉 + |m, 0, 1〉) (59)

which coincides with the usual three qubit W states for m = 0 [61]. The state (59) is expressed in

the Fock-Hilbert basis. Hence, according to the results plotted in figures 5 and 6, one concludes that

photon excitations diminish the pairwise quantum correlations existing in three qubit states of W

type.

4 Monogamy of quantum discord in a three-qubit entangled state

of GHZ-type

Having investigated the pairwise quantum discord in the state |GHZk(α,m)〉 (33), we shall consider

the distribution of quantum correlations among its three optical modes. It is well established that in

a multi-qubit quantum system, the monogamy property imposes restrictive constraints for the qubits

to share freely quantum correlations. Now, it is well established that, unlike the square of concurrence

and the squashed entanglement, the quantum discord does not follow the monogamy relation. In this

section, we investigate the influence of photon excitation number m on monogamy relation of quantum

entropy-based quantum discord in tripartite state of type |GHZk(α,m)〉 (33).
The entropy-based quantum discord, in the three modes states GHZk(α,m), is monogamous if, and

only if, the quantum discord deficit defined by

∆123 = ∆123(m, |α|2) = D1|23 −D12 −D13, (60)

is positive. This condition reflects that the monogamy property is satisfied when the quantum discord

D1|23 between the first mode and the modes 2-3 (viewed as a single subsystem) exceeds the sum of

pairwise quantum discord D12 and D13. We recall that the concept of monogamy was originally in-

troduced by Coffman, Kundu and Wootters in 2001 [46] in analyzing the distribution of entanglement
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in a tripartite qubit system. After, several works considered the monogamy of other quantum correla-

tions quantifiers. In this section, we shall determine the conditions under which the quantum discord

satisfies the monogamy property and a special attention will be devoted to the influence of photon

excitations of Glauber coherent states. For this end, one has to determine the pairwise quantum

discord D1|23 in the pure state |GHZk(α,m)〉 (33). In pure states the quantum discord coincides with

the entanglement of formation. Hence, to compute the entanglement between qubit (1) and the joint

qubits (23), we introduce the orthogonal basis {|0〉1, |1〉1} defined by

|0〉1 =
|α,m〉 + | − α,m〉√
2(1 + κme−2|α|2)

, |1〉1 =
|α,m〉 − | − α,m〉√
2(1− κme−|α|2)

, (61)

for the first subsystem. For the modes (23), grouped into a single subsystem, we introduce the

orthogonal basis {|0〉23, |1〉23} given by

|0〉23 =
|α,α〉 + | − α,−α〉√

2(1 + e−4|α|2)
|1〉23 =

|α,α〉 − | − α,−α〉√
2(1− e−4|α|2)

. (62)

Inserting (61) and (62) in |GHZk(α,m)〉 , we get the expression of the pure state |GHZk(α,m)〉 in the

basis {|0〉1 ⊗ |0〉23, |0〉1 ⊗ |1〉23, |1〉1 ⊗ |0〉23, |1〉1 ⊗ |1〉23}. Explicitly, it is given by

|GHZk(α,m)〉 =
∑

α=0,1

∑

β=0,1

Cα,β|α〉1 ⊗ |β〉23 (63)

where the coefficients Cα,β are

C0,0 = Ck(α,m)(1 + eikπ)c+
1
c+
23
, C0,1 = Ck(α,m)(1 − eikπ)c+

1
c−
23
,

C1,0 = Ck(α,m)(1 − eikπ)c+
23
c−
1
, C1,1 = Ck(α,m)(1 + eikπ)c−

1
c−
23
,

in terms of the quantities

c±
1
=

√
1± κme−2|α|2

2
, c±

23
=

√
1± e−4|α|2

2
.

The concurrence between the two logical qubits 1 and 23 is given by

C1|23 =

√
(1− κ2me−4|α|2)(1− e−8|α|2)

1 + κme−6|α|2 cos kπ
, (64)

from which we obtain

D1|23 = E1|23 = H

(
1

2
+

1

2

κme−2|α|2 + e−4|α|2 cos kπ

1 + κme−6|α|2 cos kπ

)
. (65)

Inserting D1|23 (65) and D12 = D13 (45) in (60), one gets the explicit expression of the quantum

discord deficit ∆123. The corresponding behavior as function of |α|2 (and p = e−2|α|2) for various

values of photon excitation order m is displayed in the figures 7 and 8.

It can be inferred that the photon excitation of symmetric quasi GHZ-coherent states (k = 0) does

not affect the monogamy property of quantum discord. The quantum discord deficit ∆123 is always
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Figure 7. The quantum discord deficit ∆123 versus |α|2 and p = e−2|α|2 for k = 0 and different values

of photon excitation number m.

Figure 8. The quantum discord deficit ∆123 versus |α|2 and p = e−2|α|2 for k = 1 and different values

of photon excitation number m.

positive. The situation is slightly different for antisymmetric quasi GHZ-coherent states (k = 1).

In absence of photon excitation (m = 0), the quantum discord violates the monogamy inequality for

|α|2 < 0.1075 (or equivalently p > 0.806). Remarkably, this violation tends to disappear when photons

are added and the quantum discord becomes monogamous. For symmetric as well antisymmetric quasi

GHZ-coherent states comprising m ≥ 2 added photons, ∆123 is almost identical in particular for high

values of |α| (|α|2 ≥ 1.5). Remark that for |α| large the photon added three mode coherent states

|GHZk(α,m)〉 tend to the usual Greenberger-Horne-Zeilinger three qubit states (35). This indicates

that, in this case, photon addition process does not affect the distribution of the quantum correlations.

Another special limiting situation concerns Glauber states with amplitude approaching zero. For

symmetric states |GHZ0(α = 0,m), it is easy to verify from the equations (45) and (65) that ∆123 = 0

for any photon excitation order m. For the antisymmetric states |GHZ1(α = 0,m), which coincide

with three qubit states of W-type (59), the monogamy discord deficit increases as m increases (see

figure 8). This result can be recovered analytically. Indeed, for k = 1 and |α| −→ 0, one shows that

D1|23 −→ H

(
2

m+ 3

)
, (66)
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and using the result (58) one has

∆123 −→ 2H

(
m+ 2

m+ 3

)
− 2H

(
1

2
+

1

2

√
(m+ 1)(m+ 5)

m+ 3

)
−H

(
2

m+ 3

)
. (67)

The behavior ∆123 near the point α = 0, plotted in the figure 8, reflects that the photon addition

tends to increase the quantum deficit ∆123 and subsequently to reduce the violation of monogamy

relation in states of W-type.

5 Concluding remarks

In multipartite quantum systems, the monogamy is probably one of the most important relation which

imposes severe restriction on the structure of entanglement distributed among many parties. In this

context, the main interest of this paper was the monogamy property of quantum discord in three qubit

systems where the information is encoded in even and odd Glauber coherent states. In particular, we

investigated the influence of photon excitations on the shareability of quantum discord between the

three optical modes of a quantum of GHZ-type. We derived the quantum discord deficit by evaluat-

ing analytically the pairwise correlations in terms of the photon excitation number and the optical

strength of Glauber coherent states. The symmetric quasi-GHZ coherent states follow the monogamy

property for any photon excitation order. We have also shown that the photon excitation of antisym-

metric quasi-GHZ coherent states reduces the violation of the monogamy property especially in states

involving Glauber coherent states with small amplitudes.

Finally, the investigation of the influence of photon excitations on the monogamy of quantum corre-

lations in the states of GHZ-type using geometric based quantifiers such as Hilbert-Schmidt norm or

trace distance would be interesting. On the other hand, another significant issue which deserves to be

examined concerns the dynamics of quantum discord under the effect of subtracting photons on the

pairwise correlations in multipartite coherent states.
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