
ar
X

iv
:1

50
9.

06
18

7v
2 

 [
qu

an
t-

ph
] 

 2
9 

Ja
n 

20
16

Quantum Trajectories for Squeezed Input

Processes: Explicit Solutions

Anita Dąbrowska, John Gough

March 1, 2022

Abstract

We consider the quantum (trajectories) filtering equation for the case
when the system is driven by Bose field inputs prepared in an arbitrary
non-zero mean Gaussian state. The a posteriori evolution of the system is
conditioned by the results of a single or double homodyne measurements.
The system interacting with the Bose field is a single cavity mode taken
initially in a Gaussian state. We show explicit solutions using the method
of characteristic functions to the filtering equations exploiting the linear
Gaussian nature of the problem.

1 Introduction

The aim of this paper is to write explicite solutions to equations for the quan-
tum trajectories for a linear system (cavity mode) driven by inputs in a general
Gaussian state. The quantum filtering theory developed by V. P. Belavkin [1]-
[4] describes the dynamics of a dissipative Markovian quantum system under an
indirect and continuous in time observation. The model is a quantum analog of
the classical filtering theory [5]-[10] with the framework of the quantum stochas-
tic Ito calculus (QSC) [11] being necessary to capture the physical noise. The
Bose field interacting with the system here plays the role of measuring appara-
tus. The evolution of the system conditioned by the results of the measurement
is given by the filtering equation, and the conditional density matrix depending
on the random results of the measurement can be viewed as a stochastic process.
The theory of quantum filtering, or quantum trajectories as it is known in the
physics literature, has been developed and is used nowadays in a technique of
quantum measurement and control [12]-[27].

The Belavkin filtering equation, also known as the stochastic master equa-
tion, was derived for the Bose field in a pure Gaussian state such as a vacuum
[3], squeezed vacuum [18], and coherent state [28, 29]. The rigorous derivations
of the quantum filter in more general case when the systems is coupled to the
multiple fields in arbitrary zero-mean jointly Gaussian state was given in [30].
The filtering equation for the case when the output field mixed with the field in
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a Gaussian state one can find in [31]. In the latter we presented the result for ar-
bitrary zero-mean and nonzero-mean Gaussian state of the Bose field including
vacuum, squeezed vacuum, coherent, thermal, squeezed thermal and squeezed
pure state. Recently the quantum filtering theory has been also expanded to
the non-classical states of the Bose field such as a single photon states [32] and a
superposition of continuous-mode coherent states [33]. We mention that recent
experiments have shown that single photon homodyning may become a realistic
procedure [34].

In this paper we describe the a posteriori evolution of a harmonic oscillator
(an optical cavity mode) driven by the Bose field in a Gaussian state for two
measurement schemes: a single homodyne measurement and a double homodyne
measurement. Let us remind that in the first of these schemes we measure only
one quadrature of the system while the second one allows us inaccurate joint
measurement of two quadratures of the system. In the paper we provide the
reader with the differential equations for the a posteriori mean values of the
system’s operators, show the condition for preservation of the purity of the
system’s state and assuming that a cavity mode is initially in a Gaussian state
we give an analytical solutions to the quantum filter and compare them with
the results for a priori dynamics.

2 Quantum stochastic processes

Let us consider two independent annihilation processes Bj (·) (j = 1, 2) and
related to them two independent creation processes Bj (·)∗ (j = 1, 2) satisfying
the commutation relations [35]-[37]

[Bj (t) , Bk (s)] = [Bj(t)
∗, Bk(s)

∗] = 0 ,
[

Bj (t) , Bk (s)
∗] = δjk (t ∧ s) ,

where t ∧ s = min(t, s). The processes Bj (·) (j = 1, 2), Bj (·)∗ (j = 1, 2) are
quantum analogues of classical Wiener process.

We analyze the case when the baths are in Gaussian states with the quantum
mean values

E [Bj (t)Bk (s)] = δjkmj (t ∧ s) ,
E
[

Bj (t)
∗Bk (s)

]

= δjknj (t ∧ s) ,

E
[

Bj (t)Bk (s)
∗] = δjk(nj + 1) (t ∧ s) ,

E [Bj (t)] = βjt (j = 1, 2) .

The Itō multiplication tables are given then by

× dBj(t) dBj(t)
∗

dBj(t) mjdt (nj + 1)dt
dBj(t)

∗ njdt m∗
jdt

, (1)

where nj ≥ 0, |mj |2 ≤ nj (nj + 1). All the other products, including dB1(t),
dB2(t)

∗, etc., vanish.
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When βj = 0, mj = 0, nj =
(

e~ωj/kBT − 1
)−1

, where ωj is the carrier
frequency of the j field, we get a thermal bath. In general, the processes Bk

may be represented by an Araki-Woods double-Fock space construction, as done
explicitly in [35]. However, in the degenerate case where we have |mj |2 =
nj (nj + 1) one can use for each k the representation Bk ≡

√
n+ 1Ak +

√
nA∗

k

where Ak is the annihilation process on a single copy of Fock space, with the
choice of Fock vacuum. For a finite number of states, the latter case corresponds
to Gaussian pure states (vacuum, squeezed vacuum or squeezed coherent state)
[38, 39].

3 Interaction between observed system and mea-

suring apparatus

We assume that only the first input, B1(t), interacts with the quantum system
in interest (system S) and the evolution of the compound system is described by
the unitary operator, U(t), which satisfies the quantum stochastic differential
equation (QSDE) of the form [11, 37]

dU(t) = {LdB1(t)
∗ − L∗dB1(t)− (K + iH) dt}U(t) , U(0) = I ,

where

K =
1

2
(n1 + 1)L∗L+

1

2
n1LL

∗ − 1

2
m1L

∗2 − 1

2
m∗

1L
2 ,

H is the Hamiltonian of S, and L is a coupling operator.
The above equation is written in an interaction picture rotating at the fre-

quency ω1 and H is the only part of the Hamiltonian not removed by this
procedure.

For any observable X of the system S in the Heisenberg picture

jt(X) = U(t)∗ (X ⊗ I)U(t) ,

we obtain the QSDE [36]

djt(X) = {−ijt ([X,H ])

+
1

2
(n1 + 1) jt (L

∗ [X,L] + [L∗, X ]L)

+
1

2
n1 jt (L [X,L∗] + [L,X ]L∗)

−1

2
m∗

1 jt (L [X,L] + [L,X ]L)

−1

2
m1 jt (L

∗ [X,L∗] + [L∗, X ]L∗)} dt
+jt ([X,L]) dB1(t)

∗ + jt ([L
∗, X ]) dB1(t) , (2)

which one can check it by making use of the rules of QSC and the multiplication
table (1).
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Let us remind that according to the interpretation of the model given by
Gardiner and Collet [40] the operator B1(t), B1(t)

∗ refer to the Bose field be-
fore the interaction with the system S, while the field after the interaction is
described by the output processes

Bout

1 (t) = U(t)∗ (I ⊗B1(t))U(t) ,

Bout

1 (t)∗ = U(t)∗ (I ⊗B1(t)
∗)U(t) .

Thus the output field is the field in the Heisenberg picture and we have [22]

Bout

1 (t) =

∫ t

0

(js(L)ds+ dB1(s)) ,

Bout

1 (t)∗ =

∫ t

0

(js(L
∗)ds+ dB1(s)

∗) .

The output field conveys information about the system S. Note that the incre-
ments dBout

1 (t), dBout

1 (t)∗ satisfy the multiplication table of the form (1). Thus
the output field remain Bose free field.

4 Posterior dynamics for a single homodyne ob-

servation

In this section we shall describe an evolution of a single-mode field in a cavity
conditioned by the results of a continuous in time measurement of an optical
quadrature when the cavity is driven by a vacuum, coherent, thermal or squeezed
input.

We take the hamiltonian H = ~δa∗a, where δ = ωc−ω1, ωc is the frequency
of the cavity mode, and a stands for annihilation operator, and the coupling
operator L =

√
µa with µ ∈ R+.

Let us consider the continuous measurement of the output process

Y (t) = eiθBout

1 (t) + e−iθBout

1 (t)∗ , (3)

where θ ∈ [0, 2π). Observation of Y (t) can be interpreted as the indirect and
imperfect measurement of the cavity mode observable eiθa+ e−iθa∗.

A measurement of phase-dependent quantities is possible by making use of
the homodyne/heterodyne detection scheme where a signal escaping from a cav-
ity is superposed with an auxiliary field (a local oscillator) using a beam splitter
[22, 37]. In practise, the measurement of Y (t) is realizable by an implementa-
tion of the homodyne scheme. We get the homodyne measurement if the carrier
frequency of the input field is equel to the carrier frequency of the local oscil-
lator. When this condition is not satisfied, we have the case of the heterodyne
measurement.
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The density matrix of the cavity mode under the continuous observation of
the process Y (t) satisfies the stochastic filtering equantion of the form [31]

d̺t =

{

− i [δa∗a, ̺t] +
√
µ [a, ̺t] β

∗
1 +

√
µ [̺t, a

∗] β1

+
µ

2
(n1 + 1) ([a̺t, a

∗] + [a, ̺ta
∗])

+
µ

2
n1 ([a

∗̺t, a] + [a∗, ̺ta])

−µ
2
m∗

1 ([a̺t, a] + [a, ̺ta])

−µ
2
m1 ([a

∗̺t, a
∗] + [a∗, ̺ta

∗])

}

dt

+

√
µ

κ

{

eiθa̺t + e−iθ̺ta
∗ −

(

eiθ〈a〉t + e−iθ〈a∗〉t
)

̺t

+
(

eiθn1 + e−iθm∗
1

)

[a, ̺t]

+
(

e−iθn1 + eiθm1

)

[̺t, a
∗]

}

dỸ (t) , (4)

where

dỸ (t) = dY (t)−√
µ
(

eiθ〈a〉t + e−iθ〈a∗〉t
)

dt

−
(

eiθβ1 + e−iθβ∗
1

)

dt ,

κ = 1 + 2n1 + e2iθm1 + e−2iθm∗
1, and 〈.〉t = Tr(̺t.) is the a posteriori mean

value of an operator. The above equation describes the condition evolution
of the cavity mode with respect to the commutative von Neumann algebra
Y t = {Y (s) |s ≤ t}. Note that the mean value of dỸ (t) is zero, (dỸ (t))2 = κdt

and the process Ỹ (t)/
√
κ =

∫ t

0 dỸ (s)/
√
κ is izometric to the standard Wiener

process.
One can check that if |m1|2 = n1(n1 + 1), Eq. (4) transforms pure states

into pure states and it is equivalent to the stochastic filtering equation

d|ψt〉 =
{

− iδa∗a− µ

2
(n1 + 1) a∗a− µ

2
n1aa

∗

+
µ

2
m1(a

∗)2 +
µ

2
m∗

1a
2 +

√
µβ∗

1a−
√
µβ1a

∗

+
µe−iθ

κ
〈a∗〉t

[

a
(

eiθn1 + e−iθm∗
1 + eiθ

)

−a∗
(

eiθm1 + e−iθn1

)]

− µ

2κ
〈a〉t〈a∗〉t

}

|ψt〉 dt

+

√
µ

κ

[

a
(

eiθn1 + e−iθm∗
1 + eiθ

)

− a∗
(

eiθm1 + e−iθn1

)

− eiθ〈a〉t
]

|ψt〉 dỸ (t) ,

for the a posteriori wave function |ψt〉. Here 〈.〉t = 〈ψt|(.)ψt〉 and initial condi-
tion states as |ψt=0〉 = |ψ0〉. Thus we obtain preservation of state purity when
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the field driving the system is pure. The validity of the above equation one can
check by differentiating ̺t = |ψt〉〈ψt|.

To solve Eq. (4), we will use the normal ordered characteristic function
associated with the state:

˜̺(ξ∗, ξ) = Tr
(

e−iξ∗a̺ e−iξa∗

)

(5)

with the inverse given by

̺ =
1

π

∫

d2ξ eiξ
∗a eiξa

∗

˜̺(ξ∗, ξ) .

Note that ρ̃ is related to the P -function in quantum optics [37]: here the state
is represented in terms of coherent states as ρ ≡

∫

|α〉〈α|P (α)d2α and P (α) =
1
π2

∫

eiξ
∗α+iξα∗

ρ̃(ξ∗, ξ) d2ξ.
Making use of the transformation (5), one can convert Eq. (4) into the form

d ˜̺(ξ∗, ξ; t) =
{

−
(

iδ +
µ

2

)

ξ∗∂ξ∗ −
(

−iδ + µ

2

)

ξ∂ξ

+
√
µβ1iξ

∗ +
√
µβ∗

1 iξ − µn1 |ξ|2

−µm1

2
ξ∗2 − µm∗

1

2
ξ2
}

˜̺(ξ∗, ξ; t)dt

+

√
µ

κ

[

eiθi∂ξ∗ + e−iθi∂ξ + iξ∗
(

eiθm1 + e−iθn1

)

+iξ
(

e−iθm∗
1+e

iθn1

)

−eiθ〈a〉t−e−iθ〈a∗〉t
]

˜̺(ξ∗, ξ; t)dỸ (t),(6)

where ∂ξ = ∂/∂ξ, ∂ξ∗ = ∂/∂ξ∗ .
We assume that the cavity mode is initially in the Gaussian state

ρ̃ (ξ∗, ξ, t = 0) = exp

[

−i (ξ∗α0 + ξα∗
0)−

1

2

(

ξ∗2ζ0 + ξ2ζ∗0
)

− |ξ|2ν0
]

, (7)

where α0, ζ0 ∈ C, ν0 ≥ 0. One can easily check that

Tr[aρt=0] = α0 , Tr[a2ρt=0] = ζ0 + α2
0 , Tr[a∗aρt=0] = ν0 + |α0|2 .

We shall prove that the solution to Eq. (6) corresponding to the initial state
(7) has the Gaussian form

ρ̃(ξ∗, ξ; t)=exp

[

−i (ξ∗〈a〉t+ξ〈a∗〉t)−
1

2

(

ξ∗2ζ(t)+ξ2ζ(t)∗
)

−|ξ|2ν(t)
]

(8)

where 〈a〉t = Tr[aρt].
To this end, it is convenient to rewrite Eq. (6) in terms of the stochastic

function
l(ξ∗, ξ; t) = − ln ρ̃(ξ∗, ξ; t) . (9)

Using the Itō formula

dl = −1

ρ̃
dρ̃+

1

2(ρ̃)2
(dρ̃)

2
,
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and the tables (1), we obtain

dl =
{

−
(

iδ +
µ

2

)

ξ∗∂ξ∗ l −
(

−iδ + µ

2

)

ξ∂ξ l

−√
µβ1iξ

∗ −√
µβ∗

1 iξ + µn1 |ξ|2

+
µm1

2
ξ∗2 +

µm∗
1

2
ξ2
}

dt

+
µ

2κ

[

eiθi∂ξ∗ l + e−iθi∂ξ l − iξ∗
(

eiθm1 + e−iθn1

)

−iξ
(

e−iθm∗
1 + eiθn1

)

+ eiθ〈a〉t + e−iθ〈a∗〉t
]2
dt

+

√
µ

κ

[

eiθi∂ξ∗ l+ e−iθi∂ξ l − iξ∗
(

eiθm1 + e−iθn1

)

−iξ
(

e−iθm∗
1 + eiθn1

)

+ eiθ〈a〉t + e−iθ〈a∗〉t
]

dỸ (t) . (10)

And finally inserting (9) into Eq. (10) and equating expressions of the same
power of parameters ξ and ξ∗ provides us with the consistent set of the differ-
ential equations:

d〈a〉t = −
(

iδ +
µ

2

)

〈a〉tdt−
√
µβ1dt

+

√
µ

κ

[

eiθ (ζ(t)−m1) + e−iθ (ν(t)− n1)
]

dỸ (t) , (11)

ζ̇(t) = −2iδζ(t)− µ (ζ(t) −m1)

−µ
κ

[

eiθ (ζ(t)−m1) + e−iθ (ν(t)− n1)
]2
, (12)

and

ν̇(t) = −µ (ν(t)− n1)−
µ

κ

∣

∣eiθ (ζ(t) −m1) + e−iθ (ν(t) − n1)
∣

∣

2
(13)

with the initial conditions: 〈a〉t=0 = α0, ζ(t = 0) = ζ0, and ν(t = 0) = ν0;
which completes the proof.

One can see from Eqs. (11–13) that the coherent state of the cavity mode
is preserved under the observation of Y (t) only when the input field is taken
in a vacuum or coherent state. If m1 6= 0, then the a posteriori state becomes
squeezed. In the resonance case when δ = 0, we obtain the stationary asymptotic
solutions of the form: 〈a〉∞ = −2β1√

µ , ζ(∞) = m1, and ν(∞) = n1. So the system

approaches the Gaussian state with the parameter of squeezing defined by the
state of the input field. When m1 = 0 then for any value of δ we have ζ(∞) = 0
and ν(∞) = n1.

We may draw from Eqs. (11–13) also the conclusion that the a posteriori

mean values of optical quadraturesX = a+a∗ and P = (a− a∗) /i of the cavity,
in general, depend on the measured noise, whereas their dispersions, given by

(∆X(t))2 = 1 + 2ν(t) + 2Reζ(t) , (14)
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(∆P (t))2 = 1 + 2ν(t)− 2Reζ(t) , (15)

remain non-random.
Let us note that Eqs. (12) and (13) can be written as matrix Riccati differ-

ential equation of the form

Ż(t) = Z(t)TZ(t) +RZ(t) + Z(t)R∗ +W , (16)

where

Z(t) =

[

ν(t) ζ(t)
ζ(t)∗ ν(t)

]

,

T = −µ
κ

[

1 e−2iθ

e2iθ 1

]

,

R =

[

−iδ 0
0 iδ

]

+
µ

κ

[

−κ
2 + n1 + e2iθm1 m1 + e−2iθn1

m∗
1 + e2iθn1 −κ

2 + n1 + e−2iθm∗
1

]

,

W =
µ

κ

[

n1 + n2
1 − |m1|2 m1 + e−2iθ(|m1|2 − n2

1)

m∗
1 + e2iθ(|m1|2 − n2

1) n1 + n2
1 − |m1|2

]

,

with the initial condition Z(t = 0) =

[

ν0 ζ0
ζ∗0 ν0

]

.

Eq. (16) can be solved by using the matrix fraction decomposition technique
[41] which consists in representing matrix Z(t) in the form

Z(t) = Z1(t)Z
−1
2 (t) .

The initial values of Z1(t) and Z2(t) are constrained by the initial value of Z(t).
One can check that the differential equations for the numerator and denominator
matrices are linear and they can be read as follows

[

Ż1(t)

Ż2(t)

]

=

[

R W
−T −R∗

] [

Z1(t)
Z2(t)

]

.

The solution to the foregoing can be written as the product

[

Z1(t)
Z2(t)

]

= eΥt

[

Z(0)
1

]

, (17)

where Υ =

[

R W
−T −R∗

]

is the time-invariant 4-by-4 matrix and 1 is identity

matrix of size 2.

5 Posterior dynamics for a double homodyne ob-

servation

Joint perfect measurement of two optical quadratures of a quantum system is
not possible, but one can analyze their simultaneous imperfect measurement.

8



Using a double homodyne scheme one can mix the field escaping from the cavity
(the output field) with an auxiliary field and measure simultaneously the two
signals:

Y1(t) =
1√
2
(Q1(t) +Q2(t)) ,

Y2(t) =
1√
2
(P1(t)− P2(t)) ,

where Q1(t) = Bout

1 (t) + Bout

1 (t)∗, P1(t) = (Bout

1 (t)−Bout

1 (t)∗) /i are quadra-
tures of the field escaping from the cavity and Q2(t) = B2(t) +B2(t)

∗, P2(t) =
(B2(t)−B2(t)

∗) /i describe the squeezed noise field do not interacting with S.
The observed processes Y1(t) and Y2(t) satisfy the condition [Y1(t), Y2(s)] = 0
for all t, s ≥ 0 and their increments

dY1 (t) =
1√
2
{dB1 (t) +

√
µ jt (a) dt+ dB2 (t) + H.c.} ,

dY2 (t) =
1√
2i

{dB1 (t) +
√
µ jt (a) dt− dB2 (t)− H.c.} ,

have non-trivial correlation expressed through the table

× dY1 dY2
dY1 (1 + n1 + n2 +m′

1 +m′
2) dt (m′′

1 −m′′
2 ) dt

dY2 (m′′
1 −m′′

2) dt (1 + n1 + n2 −m′
1 −m′

2) dt

where m1 = m′
1+ im

′′
1 , m2 = m′

2+ im
′′
2 are the decompositions of the squeezing

parameters into their real and imaginary parts.
The filtering equation for the a posteriori state, ̺t, takes in this case the

form [31]

d̺t =

{

− i [δa∗a, ̺t] +
√
µ [a, ̺t] β

∗
1 +

√
µ [̺t, a

∗] β1

+
µ

2
(n1 + 1) ([a̺t, a

∗] + [a, ̺ta
∗])

+
µ

2
n1 ([a

∗̺t, a] + [a∗, ̺ta])

−µ
2
m∗

1 ([a̺t, a] + [a, ̺ta])

−µ
2
m1 ([a

∗̺t, a
∗] + [a∗, ̺ta

∗])

}

dt

+

√
2µ

2∆

{

(1 + n1 + n2 −m′
1 −m′

2)J1(̺t)

+i (m′′
1 −m′′

2)J2(̺t)

}

dỸ1 (t)

+

√
2µ

2∆i

{

(1 + n1 + n2 +m′
1 +m′

2)J2(̺t)

−i (m′′
1 −m′′

2)J1(̺t)

}

dỸ2 (t) , (18)

9



where

J1(̺t) = a̺t + a∗̺t − 〈a〉t̺t − 〈a∗〉t̺t
+(n1 +m∗

1) [a, ̺t] + (n1 +m1 + 1) [̺t, a
∗] ,

J2(̺t) = a̺t − a∗̺t − 〈a〉t̺t + 〈a∗〉t̺t
+(n1 −m∗

1) [a, ̺t]− (n1 −m1 + 1) [̺t, a
∗] ,

dỸ1(t) = dY1(t)−
√

µ

2
(〈a〉t + 〈a∗〉t) dt−

√
2 (Re β1 +Re β2) dt ,

dỸ2(t) = dY2(t) +

√

µ

2
i (〈a〉t − 〈a∗〉t) dt−

√
2 (Imβ1 − Imβ2) dt ,

and
∆ = (1 + n1 + n2)

2 − (m′
1 +m′

2)
2 − (m′′

1 −m′′
2)

2
. (19)

Here the condition (ρt+dt)
2
= ρt+dt if (ρt)

2
= ρt is satisfied if and only if

|m1|2 = n1(n1 +1) and |m2|2 = n2(n2 +1). It means that the conditional state
of the cavity mode preserves its purity if and only if both electromagnetic fields
used by us for observing the system are in pure states. For instance, if the first
field is in a coherent state (β1 6= 0, m1 = 0, n1 = 0) and the cavity is initially
in a pure state, then Eq. (18) is equivalent to the stochastic filtering equation

d|ψt〉 =

{

−
(

iδ +
µ

2

)

a∗a+ µa〈a∗〉t −
µ

2
〈a〉t〈a∗〉t

+
√
µ (β∗

1a− β1a
∗)

}

|ψt〉 dt

+

√
µ√
2∆

{

(1 + n2 −m2) dỸ1(t)

−i (1 + n2 +m2) dỸ2(t)

}

(a− 〈a〉t) |ψt〉

for the a posteriori wavefunction |ψt〉.
We shall prove that Eq. (18) transforms Gaussian states into Gaussian
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states. Using (5), we obtain from (18) the stochastic equation

d ˜̺(ξ∗, ξ; t) =
{

−
(

iδ +
µ

2

)

ξ∗∂ξ∗ −
(

−iδ + µ

2

)

ξ∂ξ

+
√
µβ1iξ

∗ +
√
µβ∗

1 iξ − µn1 |ξ|2

−µm1

2
ξ∗2 − µm∗

1

2
ξ2
}

˜̺(ξ∗, ξ; t)dt

+

√
µ√
2∆

[i∂ξ∗ + i∂ξ + iξ∗(m1 + n1)

+iξ(m∗
1 + n1)− 〈a〉t − 〈a∗〉t] ˜̺(ξ∗, ξ; t)

×[(1 + n1 + n2 −m′
1 −m′

2)dỸ1(t)

−(m′′
1 −m′′

2)dỸ2(t)]

+

√
µ√

2∆i
[i∂ξ∗ − i∂ξ + iξ∗(m1 − n1)

−iξ(m∗
1 − n1)− 〈a〉t + 〈a∗〉t] ˜̺(ξ∗, ξ; t)

×[(1 + n1 + n2 +m′
1 +m′

2)dỸ2(t)

−(m′′
1 −m′′

2)dỸ1(t)] . (20)

In this case the equation for the function l(t) has the form

dl =
{

−
(

iδ +
µ

2

)

ξ∗∂ξ∗ l −
(

−iδ + µ

2

)

ξ∂ξ l

−√
µβ1iξ

∗ −√
µβ∗

1 iξ + µn1 |ξ|2

+
µm1

2
ξ∗2 +

µm∗
1

2
ξ2
}

dt+
(dl)2

2

+

√
µ√
2∆

[i∂ξ∗ l + i∂ξl − iξ∗(m1 + n1)

−iξ(m∗
1 + n1) + 〈a〉t + 〈a∗〉t]

×[(1 + n1 + n2 −m′
1 −m′

2)dỸ1(t)

−(m′′
1 −m′′

2)dỸ2(t)]

+

√
µ√

2∆i
[i∂ξ∗ l − i∂ξl − iξ∗(m1 − n1)

+iξ(m∗
1 − n1) + 〈a〉t − 〈a∗〉t] ˜̺(ξ∗, ξ; t)

×[(1 + n1 + n2 +m′
1 +m′

2)dỸ2(t)

−(m′′
1 −m′′

2)dỸ1(t)] . (21)

Now inserting

l(ξ∗, ξ; t) = −i (ξ∗〈a〉t+ξ〈a∗〉t)−
1

2

(

ξ∗2ζ(t)+ξ2ζ(t)∗
)

−|ξ|2ν(t)

into Eq. (21) and evaluating (dl)2 we end up with the consistent set of differ-
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ential equations:

d〈a〉t = −
(

iδ +
µ

2

)

〈a〉tdt−
√
µβ1dt

+

√
µ√
2∆

{

[(1 + n1 + n2 −m′
1 −m′

2)dỸ1(t)− (m′′
1 −m′′

2 )dỸ2(t)]

×(ζ −m1 + ν − n1)

−i[(1 + n1 + n2 +m′
1 +m′

2)dỸ2(t)− (m′′
1 −m′′

2)dỸ1(t)]

×((ζ −m1)− (ν − n1))

}

, (22)

ζ̇(t) = −2iδζ(t) + µ (ζ(t)−m1)

+
µ

∆

{

− 2(1 + n1 + n2)(ζ −m1)(ν − n1)

+(m′
1 +m′

2)[(ζ −m1)
2 + (ν − n1)

2]

−i(m′′
1 −m′′

2)[(ζ −m1)
2 − (ν − n1)

2]

}

, (23)

ν̇(t) = −µ (ν(t)− n1)

+
µ

∆

{

− (1 + n1 + n2)[(ζ −m1)(ζ
∗ −m∗

1) + (ν − n1)
2]

+(m′
1 +m′

2)(ν − n1)(ζ + ζ∗ − 2m′
1)

−i(m′′
1 −m′′

2 )(ν − n1)(ζ − ζ∗ − 2im′′
1)

}

, (24)

with the initial conditions 〈a〉t=0 = α0, ζ(t = 0) = ζ0, and ν(t = 0) = ν0.
It is easy to see that if δ = 0 we have the asymptotic solutions: 〈a〉∞ = −2β1√

µ ,

ζ(∞) = m1, and ν(∞) = n1.
For the coherent input Eqs. (23) and (24) form the homogeneous matrix

Riccati differential equation

Ż(t) = Z(t)TZ(t) +RZ(t) + Z(t)R∗ , (25)

where

Z(t) =

[

ν(t) ζ(t)
ζ(t)∗ ν(t)

]

,

T =
µ

∆

[

− (1 + n2) m∗
2

m2 − (1 + n2)

]

,

R =

[

−µ
2 − iδ 0
0 −µ

2 + iδ

]

,

and initially Z(t = 0) =

[

ν0 ζ0
ζ∗0 ν0

]

.

12



Using (17) we obtain the exact expressions of the parameters:

ζ(t) =
e−(µ+2iδ)t

D(t)



ζ0 +
µm∗

2

(

ν20 − |ζ0|2
)

∆(µ− 2iδ)

(

1− e−(µ−2iδ)t
)



 , (26)

ν(t) =
e−µt

D(t)



ν0 +
(1 + n2)

(

ν20 − |ζ0|2
)

∆

(

1− e−µt
)



 , (27)

where

D(t) = 1 +
(1 + n2)

2
(

ν20 − |ζ0|2
)

∆2

(

1− e−µt
)2

+
2ν0 (1 + n2)

∆

(

1− e−µt
)

− µm∗
2ζ

∗
0

∆(µ− 2iδ)

(

1− e−(µ−2iδ)t
)

− µm2ζ0
∆(µ+ 2iδ)

(

1− e−(µ+2iδ)t
)

−µ
2 |m2|2

(

ν20 − |ζ0|2
)

∆2 (µ2 + 4δ2)

(

1− e−(µ−2iδ)t
)(

1− e−(µ+2iδ)t
)

. (28)

Let us notice that for the coherent and vacuum inputs (m1 = m2 = 0 and
n1 = n2 = 0) and the cavity mode being initially in a coherent state, we get
ζ(t) = 0 and ν(t) = 0 for any t. Thus, in that case the amplitude 〈a〉t is
independent of the measured noise. The same conclusion we obtain for the
conditional evolution under a single homodyne observation.

For the large t the parameters ζ(t) and ν(t) go to zero and the systems
approaches asymptotically coherent state. Therefore after some transient time
any information about the initial conditions is lost.

6 A priori evolution

In this paragraph we would like to compare the a posteriori dynamics of the
cavity mode with the corresponding a priori dynamics. A non-selective dynam-
ics of the system we obtain by averaging both sides of Eq. (4) or respectively
(18) over the outputs. It gives us the equation

σ̇t = −i [δa∗a, σt] +
√
µ [a, σt] β

∗
1 +

√
µ [σt, a

∗] β1

+
µ

2
(n1 + 1) ([aσt, a

∗] + [a, σta
∗])

+
µ

2
n1 ([a

∗σt, a] + [a∗, σta])

−µ
2
m∗

1 ([aσt, a] + [a, σta])

−µ
2
m1 ([a

∗σt, a
∗] + [a∗, σta

∗]) , (29)

for the a priori state σt.
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Let us remind that this equation does not preserve in general the purity of
the state.

By transformation (5), we get from (29) the following equation

˙̃σ(ξ∗, ξ; t) =
{

−
(

iδ +
µ

2

)

ξ∗∂ξ∗ −
(

−iδ + µ

2

)

ξ∂ξ

+
√
µβ1iξ

∗ +
√
µβ∗

1 iξ − µn1 |ξ|2

−µm1

2
ξ∗2 − µm∗

1

2
ξ2
}

σ̃(ξ∗, ξ; t) . (30)

The solution to Eq. (30) for the initial Gaussian state (7) has the form

σ̃(ξ∗, ξ; t) = exp

[

−i (ξ∗〈a〉t + ξ〈a〉t)−
1

2

(

ξ∗2ζ(t) + ξ2ζ(t)∗
)

− |ξ|2ν(t)
]

. (31)

The parameters of the state σt appearing in (31) satisfy the set of ordinary
differential equations

˙〈a〉t = −
(

iδ +
µ

2

)

〈a〉t −
√
µβ1 ,

ζ̇(t) = −2iδζ(t)− µ (ζ(t)−m1) ,

ν̇(t) = −µ (ν(t)− n1) .

The solution to this set of equations reads

〈a〉t = e−(iδ+
µ

2
)t
[

α0 −
√
µβ1

iδ + µ
2

(

e(iδ+
µ

2
)t − 1

)

]

,

ζ(t) = e−(2iδ+µ)t

(

ζ0 −
µm1

2iδ + µ

)

+
µm1

2iδ + µ
,

ν(t) = e−µt (ν0 − n1) + n1 .

Let us notice that the asymptotic solutions have the form: ζ(∞) = µm1

2iδ+µ ,

ν(∞) = n1, and 〈a〉∞ =
−
√
µβ1

iδ+ µ

2

. It means that the systems approaches

asymptotically the Gaussian state with parameters independent of their initial
values. It should be noted that for the resonance case (δ = 0) the asymptotic a

priori and a posteriori states coincide.
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