
ar
X

iv
:1

60
9.

01
47

6v
2 

 [
qu

an
t-

ph
] 

 9
 M

ay
 2

01
7

Can decay be ascribed to classical noise?

Daniel Burgarth1, Paolo Facchi2,3, Giancarlo Garnero2,3, Hiromichi Nakazato4 ,
Saverio Pascazio2,3 and Kazuya Yuasa4

1 Institute of Mathematics, Physics and Computer Science, Aberystwyth University,
Aberystwyth SY23 3BZ, UK

2 Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari, Italy
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Abstract. No.

1. Introduction and motivation

The dynamics of a dissipative quantum system, in the Markovian approxi-
mation, is governed by the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)
equation [1, 2, 3]. This equation always admits a dilation to a stochastic differ-
ential equation [4, 5, 6] and can be read as a (quantum) Langevin equation [7].
In the mathematical physics literature, stochastic equations have been stud-
ied both for Gaussian processes [5] and for general combinations of Gaussian
and Poisson processes [6]. In this article, we shall limit our analysis to the
Gaussian case, which is more relevant for physical applications, see for exam-
ple the review [8] on derivations and applications of stochastic Schrödinger
equations for quantum control and quantum information processing.

Quantum dissipation can take different forms, and is associated with dif-
ferent physical scenarios. Among these, there are genuine “dephasing” pro-
cesses, as well as bona-fide “decay” processes (e.g., to the ground state).
Accordingly, the GKLS equations have different mathematical features and
physical meaning: for instance, some physical features of dephasing are often
reflected in the self-duality of the quantum dynamical map.

We ask here the following questions: are these different physical and
mathematical features mirrored in the Wiener process associated with the
corresponding quantum Langevin equation? More specifically: can decay
be ascribed to “classical” noise? Moreover: do the afore-mentioned features
affect the Hamiltonians of the associated Ito and Stratonovich stochastic
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equations, and if yes, how? The answers to the above questions will require
definition and physical elucidation of these concepts. On this basis, we will
endeavour to clarify the physical meaning of the corresponding stochastic
Schrödinger equations.

This article is organized as follows. In Sec. 2. we introduce notation
and review paradigmatic examples of self-dual (SD) and non-self-dual (NSD)
maps. We start with a few observations in Sec. 3., where we give a physical
definition of classical noise. In Sec. 4. we look at a rather general example,
that involves both SD and NSD components. We prove our first main result
in Sec. 5., where the Stratonovich formulation is also discussed. The relation
between self-duality and dephasing is elaborated in Sec. 6., where a definition
is given of dephasing and decay channels and general conclusions are drawn.
We put forward a few additional remarks in Sec. 7. and answer the question
posed in the title in Sec. 8..

2. Generalities and definitions

The GKLS evolution equation for the density matrix ̺ of a quantum system
reads

˙̺(t) = Ltot̺(t), Ltot = LH + L, (1)

where LH and L are the (time-independent) Hamitonian and dissipative parts
of the total map Ltot, respectively, and the dot denotes derivative with respect
to time d/dt. The solution is

̺(t) = etLtot̺(0) = Λt̺(0) (t > 0). (2)

The adjoint dynamical equation for an observable A is given by

Ȧ(t) = L♯
totA(t), (3)

whose solution is

A(t) = Λ♯
tA(0) (t > 0). (4)

The Dirac prescription [9]

Tr[̺(t)A(0)] = Tr[̺(0)A(t)], ∀̺,A (5)

connects the Schrödinger and Heisenberg pictures and consecrates their equiv-
alence. The dissipative component L of the map is said to be self-dual if

L = L♯ ⇐⇒ Λt = Λ♯
t, (6)

while it is non-self-dual otherwise.
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2.1. Example of self-dual map: phase damping

Typical examples of self-dual maps are those describing phase damping. Con-
sider for example the phase damping of a qubit performing Rabi oscillations.
The evolution of the density matrix of the qubit is described by (~ = 1)

˙̺ = Ltot̺ = −i[Ωσ1, ̺]− γ(̺− σ3̺σ3), (7)

where γ > 0, and σα (α = 0, 1, 2, 3) are the Pauli matrices (with σ0 ≡ 1).
The adjoint equation for an observable A reads

Ȧ = L♯
totA = i[Ωσ1, A]− γ(A− σ3Aσ3) (8)

and its dissipative part is SD, as L = L♯. Physically, the above equation
describes Rabi oscillations accompanied by a dephasing process: for example,
if Ω = 0, the asymptotic solution of Eq. (7) reads

̺ =
1

2
(σ0 + x · σ) t→∞−→ ̺(∞) =

1

2
(σ0 + x3σ3), (9)

x = Tr(ρσ) being the 3-dimensional Bloch vector, |x| 6 1. When Ω =
0 populations do not change, but dephasing makes interference (between
eigenstates of σ3) impossible.

Equation (7) can be derived from the stochastic Hamiltonian [10]

Hη = Ωσ1 +
√
γ η(t)σ3, (10)

where η is a white noise (precise definitions are given later). The correspond-
ing stochastic Schrödinger equation reads, by Ito calculus,

dψ = −iΩσ1ψ dt− i
√
γ σ3ψ ◦ dW

= [−iΩσ1 − (γ/2)]ψ dt− i
√
γ σ3ψ dW, (11)

where ◦ denotes the Stratonovich product and W =
∫

η dt is the Wiener
process. Equation (11) yields Eq. (7) on average over the realizations of the
Wiener process.

A similar example is the phase damping of a harmonic oscillator, whose
dissipative part reads

L̺ = −γ
2
({N2, ̺} − 2N̺N), (12)

where N = a†a and [a, a†] = 1. Again, L♯ = L and the map is SD. If the
Hamiltonian is H = Ωa†a, a generic density matrix becomes diagonal in the
N -representation

̺ =
∑

cmn|m〉〈n| t→∞−→ ̺(∞) =
∑

cnn|n〉〈n|, (13)

so that populations do not change, but interference among eigenstates of the
number operator becomes impossible.
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2.2. Example of non-self-dual map: energy damping

Typical examples of non-self-dual maps are those describing energy damping.
Consider for example the energy damping of a qubit. Let

˙̺ = Ltot̺ = −i[H, ̺]− γ′

2
({σ+σ−, ̺} − 2σ−̺σ+), (14)

where σ± = (σ1 ± iσ2)/2 and H is a Hamiltonian. One has

L♯
totA = i[H, ̺]− γ′

2
({σ+σ−, A} − 2σ+Aσ−), (15)

and the dissipative evolution is non-self-dual: L♯ 6= L. If H = (Ω/2)σ3, the
solution of Eq. (14) reads

̺ =
1

2
(σ0 + x · σ) t→∞−→ ̺(∞) = P−, (16)

so that the final state is the projection P− = (σ0−σ3)/2 over the ground state.
Equation (14) must be derivable [4, 5] from a stochastic (non-Hermitian)
Hamiltonian, through a term of the type

Hη = H + i
√

γ′ η(t)σ−. (17)

However, such a derivation is not conceptually painless, as we shall see in the
following.

A related example is the energy damping of a harmonic oscillator. For
this dynamics, we have

L̺ = −γ
′

2
({a†a, ̺} − 2a̺a†), (18)

whence

L♯A = −γ
′

2
({a†a,A} − 2a†Aa), (19)

which is NSD. The oscillator decays to the ground state (e.g., for H = Ωa†a)

̺ =
∑

cmn|m〉〈n| t→∞−→ ̺(∞) = |0〉〈0|. (20)

One of the main objectives of the present article is to elucidate whether the
difference between dephasing processes (and in general SD maps of the type
shown in Sec. 2.1.), and decay processes (and in general NSD maps of the
type shown in the present section) are reflected in some structural properties
of the associated stochastic Schrödinger equation.

Incidentally, we observe that the infinite-time limit of the dissipative dy-
namics may lead to a contraction of the algebra of observables [11, 12]. We
will not discuss in this article whether such a contraction may bear signatures
of the self-duality of the map (or lack thereof).
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3. A few observations

Let η be a white noise

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = δ(t− t′), (21)

the brackets denoting the ensemble average over all possible realizations of
the noise. The associated Wiener process reads

dW (t) ≡W (t+ dt)−W (t) =

∫ t+dt

t
η(s)ds, (22)

〈dW (t)〉 = 0, 〈dW (t)dW (t)〉 = dt. (23)

Consider the stochastic Schrödinger equation

dψ = −i(H1 − iH2)ψ dt− iLψ dW (24)

to be understood in the Ito sense. The operators H1 and H2 are taken to be
Hermitian while, in general, L is not.

The evolution of the density matrix ρ = |ψ〉〈ψ| is governed by

dρ = |ψ + dψ〉〈ψ + dψ| − |ψ〉〈ψ|
= −i[H1, ρ]dt− {H2, ρ}dt− i(Lρ− ρL†)dW + LρL†dt, (25)

where [ · , · ] is the commutator and { · , · } the anticommutator.
By taking the trace we get

Tr(dρ) = ‖ψ + dψ‖2 − ‖ψ‖2
= 〈ψ|(−2H2 + L†L)ψ〉dt− i〈ψ|(L − L†)ψ〉dW, (26)

and, by taking the average over the noise, we see that a “weak” (i.e. on
average) conservation of probability

〈‖ψ + dψ‖2〉 = 〈‖ψ‖2〉 = 1 (27)

imposes a definite relation between the noise term and the non-Hermitian
part of the Hamiltonian:

H2 =
1

2
L†L. (28)

This yields, by taking the average of (25), a GKLS equation

d

dt
ρ = −i[H1, ρ]−

1

2
{L†L, ρ}+ LρL†. (29)

Notice that, while relation (28) implies that probability is conserved on
average, in general probability is not conserved along each single realization
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of the noise, which, therefore, does not represents a physical evolution. Every
trajectory is physical and probability is (strictly) conserved in each individual
realization if and only if

L = L†, (30)

which, in turn, implies that the dissipative part of the generator is self-dual

L = L♯. (31)

When this happens, one can describe the dynamics in terms of a (Hermitian)
time-dependent Hamiltonian

Hη = H1 + η(t)L, (32)

where H1 and L are Hermitian, time-independent operators. Observe also
that in this case the stochastic Schrödinger equation (24) admits a natural
expression in terms of the Stratonovich product ◦

dψ = −iH1ψ dt− iLψ ◦ dW. (33)

Equations (30)–(33) enable one to speak of a “classical” noise, in the sense
that one can view the dynamics as arising from a classical noise source. An
example will elucidate the concept. Consider a spin-1/2 particle in a magnetic
field B, described by the Hamiltonian

H = µ ·B, (34)

where µ = µσ is the magnetic moment. If the magnetic field has a random
(white noise) component

B = B0 + δB(t), (35)

then
H = µ ·B0 +

√
γη(t)σ · n, (36)

n being the unit vector (assumed to be time-independent) parallel to the
random component of the field, and γ ∝ δB. This Hamiltonian has the form
(32) with L = L†, and describes the effect of a (classical) noisy magnetic field.
From a physical perspective, the energy eigenvalues appear to be “shaken”
by a random component.

Notice also that in this case there is no need of taking the average in
Eq. (27), as

‖ψ + dψ‖2 = ‖ψ‖2 = 1 (37)

in every individual realization of the stochastic process [provided Eq. (28)
holds]. Physically, one can view the quantum system as governed by a bona

fide (Hermitian) time-dependent Hamiltonian (32) ∀η. The dynamics is al-
ways unitary and probabilities are always conserved.
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4. One additional example: interaction with a thermal field

Let us look at one additional example: a two-level atom in interaction with
a thermal field and subject to dephasing and decay. This example involves
both SD and NSD components and puts together examples (7) and (14) of
the preceding section, generalizing the latter to non-vanishing temperature.

The dynamics is given by H1 = (Ω/2)σ3 and

L̺ = −γ
′

2
(1 + n)({σ+σ−, ̺} − 2σ−̺σ+)

−γ
′

2
n({σ−σ+, ̺} − 2σ+̺σ−)− γ(̺− σ3̺σ3), (38)

where n = (eβΩ − 1)−1, with β the inverse temperature and Ω the energy
difference of the two atomic states, and γ ∝ β−1. The constants γ and γ′ are
independent [13].

The asymptotic solution of Eq. (38) reads

̺ =
1

2
(σ0 + x · σ) t→∞−→ ̺(∞) =

P− + e−βΩP+

1 + e−βΩ
, (39)

where the notation is the same as in Eq. (9), P± = σ±σ∓ = (σ0 ± σ3)/2 are
the two projections, and Boltzmann’s statistics is implied. The stochastic
Ito-Schrödinger equation reads

dψ = −i(H1 − iH2)ψ dt− i (L−dW− + L+dW+ + L3dW3)ψ, (40)

where the noises are independent, 〈dWk〉 = 0, 〈dWkdWl〉 = δkldt, with k, l =
±, 3, and

L− = −i
√

γ′(n+ 1) σ−,

L+ = −i
√

γ′nσ+, (41)

L3 =
√
γ σ3,

so that (weak) probability conservation implies

H2 =
1

2

∑

k=±,3

L†
kLk =

γ′

2
(1 + n)P+ +

γ′

2
nP− +

γ

2
σ0 (42)

in agreement with the GKLS equation (38), as it should.
As in the examples considered in Sec. 2., similar comments apply to the

thermal damping of a harmonic oscillator (with H1 = Ωa†a and N = a†a)

L̺ = −γ
′

2
(1 + n)({a†a, ̺} − 2a̺a†)

−γ
′

2
n({aa†, ̺} − 2a†̺a)− γ

2
({N2, ̺} − 2N̺N). (43)
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5. Generalization and first main theorem

We now generalize the observations of Secs. 3. and 4. to the case of a
master equation with N GKLS operators Lk (k = 1, . . . , N). Notice that it
is sufficient to consider N ≤ d2 − 1, where d is the dimension of the Hilbert
space. A larger number of operators will be dependent and always reducible
to this case.

In the Ito form, the stochastic Schrödinger equation reads

dψ = −i(H1 − iH2)ψ dt− i

N
∑

k=1

Lkψ dWk, (44)

where H1 = H†
1, H2 = H†

2 , and, in general, Lk 6= L†
k. Moreover, the noises

are taken to be normalized and independent:

〈dWk〉 = 0, 〈dWkdWl〉 = δkldt. (45)

From the weak conservation of probability (27) we get

H2 =
1

2

∑

k

L†
kLk (46)

and the ensuing master equation

dρ

dt
= −i[H1, ρ]− {H2, ρ}+

∑

k

LkρL
†
k

= −i[H1, ρ]−
1

2

∑

k

({L†
kLk, ρ} − 2LkρL

†
k). (47)

The Stratonovich form of the stochastic Schrödinger equation is instead

dψ = −i(HS
1 − iHS

2 )ψ dt− i
N
∑

k=1

Lkψ ◦ dWk, (48)

where HS
1 − iHS

2 = H1 − iH2 +
i
2

∑

k L
2
k, that is,

HS
1 = H1 −

1

2
Im
∑

k

L2
k = H1 −

1

2

∑

k

L2
k − L2

k
†

2i
(49)

and

HS
2 = H2 −

1

2
Re
∑

k

L2
k =

1

2

∑

k

(

L†
kLk −

L2
k + L2

k
†

2

)

. (50)
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Therefore, the total Hamiltonian reads

Hη = HS
1 − iHS

2 +
∑

k

ηk(t)Lk. (51)

This Hamiltonian is Hermitian if and only if

Lk = L†
k, ∀k. (52)

Indeed, this condition implies that the non-Hermitian time-independent Hamil-
tonian vanishes, namely,

HS
2 =

1

2

∑

k

(

L†
kLk −

L2
k + L2

k
†

2

)

= 0. (53)

Remarkably, conditions (52) and (53) are in fact equivalent, as one can easily
prove by setting Lk = Xk+iYk and taking the trace. This is an instance of the
fluctuation-dissipation theorem: a (non-)Hermitian time-independent Hamil-
tonian (i.e., an imaginary optical potential à la Fermi [14, 15]) in Eq. (51) is
accompanied by a (non-)Hermitian noise term.

Conversely, one can derive a bona fide GKLS equation from a non-Hermi-
tian dissipative Hamiltonian H− iV by adding an anti-Hermitian fluctuating
term with L = iV 1/2. This is a way to cure the illness of an optical poten-
tial by restoring probability conservation through a fluctuation-dissipation
mechanism.

The dissipative part of the master equation (47) reads

Lρ = −1

2

∑

k

({L†
kLk, ρ} − 2LkρL

†
k), (54)

hence its dual is

L♯A = −1

2

∑

k

({L†
kLk, A} − 2L†

kALk). (55)

We recall that the trace conservation property, Tr(Lρ) = 0, is equivalent to
the unitality of the dual map, Λ♯

I = I or L♯
I = 0.

By looking at the above expressions it is evident that Lk = L†
k implies

the self-duality of L, say L = L♯. The converse does not hold due to the non-
uniqueness of the decomposition of L in terms of the GKLS operators Lk: for

example, L♯ = L when L†
k = eiαkLk, with arbitrary phases αk. Summarizing,

we arrive at the following conclusion:

Hη = H†
η ⇐⇒ HS

2 = 0 ⇐⇒ Lk = L†
k, ∀k =⇒ L = L♯. (56)
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Conditions (51)–(53), together with (56), generalize Eqs. (30)–(32). The
validity of these conditions enable one to say that the noise sources in Eq.
(51) are “classical”.

Let us check the main conclusions of this section by looking again at the
example of a two-level atom in interaction with a thermal field, discussed in
Sec. 4.. Let us translate this example in Stratonovich form and check the
chain of equivalence (56). In the case (40)–(42), Eqs. (49)–(50) specialize to

HS
1 = 0 (since H1 = 0), (57)

HS
2 =

γ′

2
(1 + n)P+ +

γ′

2
nP−, (58)

so that, according to Eq. (51),

Hη = iHS
2 +

∑

k=±,3

ηk(t)Lk, (59)

with Lk’s given in Eq. (41). Notice that HS
2 does not vanish, due to the

presence of the NSD components L±, that yield the terms in Eq. (58). This
makes the interpretation of the Stratonovich “Hamiltonian” cumbersome for
NSD equations. Incidentally, this example also clarifies that the “Hamiltoni-
ans” (10), (17) and (59) require different physical interpretations. In general,
if condition (52) does not hold, then the Stratonovich Hamiltonian (53) does
not vanish.

The following two sections are devoted to a thorough discussion of this
result. In Sec. 6., we first define dephasing and decay channels, then discuss
the self-duality of L, for a single channel in Sec. 6.1. and for multiple channels
in Sec. 6.2.. We finally analyze how correlated noises give rise to equivalent
forms of the master equation in Sec. 7..

6. Self-duality and dephasing

In Sec. 5. we have proven our central result that only processes engendered by
a self-dual generator L = L♯ can be obtained as the average over a classical
noise of a unitary evolution, engendered by a time-dependent self-adjoint

Hamiltonian Hη = H†
η . In this Section we shall investigate in detail the

connection between the mathematical concept of self-duality and the physical
notion of decay. By using the findings of Sec. 5., this will enable us to give
an answer to the question posed in the title of this article, and explain the
laconic abstract.

We will first consider in Sec. 6.1. the situation of a single channel, that is a
GKLS generator L with a single term in the operator sum (54) and introduce
the crucial definition of dephasing and decay channels, that we will need in
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the following. Then, in Sec. 6.2., we will move to a generic (multichannel)
generator L and prove that a self-dual generator is the sum of dephasing, i.e.
nondecaying, channels.

6.1. Single channel

Let d be the dimension of the Hilbert space. We define a single channel as a
GKLS generator L with a single term in the operator sum (54), namely

Lρ = LρL† − 1

2
{L†L, ρ}. (60)

We shall say that a single channel L is dephasing if

there exists a basis {|en〉}n=1,...,d such that L(|en〉〈en|) = 0 for all n. (61)

The basis {|en〉} is named stable basis (under the action of L). This defini-
tion is in accord with the general philosophy outlined in Ref. [16]. Observe
also that some unitary dynamics are included as limiting cases of the above
definition (when the dissipation is null).

A single channel L that is not dephasing is called a decay channel. There-
fore a decay channel admits no stable basis: physically, this implies that there
are always population flows (except for special initial states). (We notice that
these definitions of “channels” are in line with those adopted in the context
of scattering theory.)

We shall prove that

L is a dephasing channel ⇐⇒ L is normal, (62)

that is [L,L†] = 0.
The proof goes as follows. Let {|en〉} be a stable basis. L dephasing

implies that

L|en〉〈en|L† − 1

2
(L†L|en〉〈en|+ |en〉〈en|L†L) = 0 (63)

for all n, and taking expectations over |em〉, m 6= n gives

〈em|L|en〉〈en|L†|em〉 = 0, (64)

which implies 〈em|L|en〉 = 0. We therefore conclude that L is diagonal in the
stable basis, that is

L =
d
∑

n=1

zn|en〉〈en|, zn ∈ C (65)

and thus is normal, [L,L†] = 0.
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Conversely, if L is normal then it can be diagonalized as in (65), where
{|en〉} is an orthonormal basis. Thus L commutes with |en〉〈en| for all n, and
this implies (63). This proves the equivalence of the two statements in (62).

We now want to establish a link between dephasing (and thus normality
of the operator) and self-duality, in the single-channel case. We shall prove
that

L = L♯ =⇒ L is a dephasing channel (66)

In words, every single self-dual channel is a dephasing channel. The contra-
positive of (66) reads

L is a decay channel =⇒ L 6= L♯ : (67)

every decay channel is non-self-dual.
The proof is straightforward. The dual of (60) reads

L♯ρ = L†ρL− 1

2
{L†L, ρ}. (68)

Therefore we get

Lρ = L♯ρ ⇐⇒ LρL† = L†ρL, (69)

and by taking ρ = I/d, we have [L,L†] = 0, which in turn, by (62), im-
plies (66).

Two comments are now in order. First, notice that normality of L, which
is equivalent to a dephasing channel L, does not imply self-duality, and the
opposite implication of (66) is not true in general. However, it is possible to
give a full characterization of single self-dual channels by strengthening the
class of normal operators which act as GKLS operators. Indeed, one gets
that

L = L♯ ⇐⇒ L† = eiαL, (70)

for some real α. That is, a single self-dual channel is characterized by a Her-
mitian operator modulo a phase: L = e−iα/2X, with X = X†. (Remember
that a change of phase is a gauge freedom that does not change L.) The
proof goes as follows. We have proved above that if L = L♯ then L is normal,
and thus is diagonal in some (stable) basis as in (65). By plugging (65) into
the right hand side of (69), we get

zmz
∗
n = z∗mzn, (71)

for all m,n, which implies that zn = e−iα/2xn, with xn real for all n and
for some real (n-independent) phase α. The converse is immediate. The
generalization of this characterization for dilations that include also Pois-
son processes has been proved by Kümmerer and Maassen in [6], where the
detailed balance condition [17] plays a significant role.
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Second, the extension of the above results to a multichannel process (54)
has to confront the noncommutativity of the GKLS operators Lk. Suffice it
to say that, in general, in the presence of several dephasing channels there
exists no stable basis. Indeed, each single channel admits a stable basis,
but two bases are incompatible if the corresponding GKLS operators do not
commute. Therefore the net effect of several dephasing channels could be
mistaken with decay by a naive application of definition (61). We will deal
with such a general situation in the next subsection.

6.2. Multiple channels

In the previous subsection we have proved that a single self-dual channel is
a dephasing channel, by using the characterization of a dephasing channel in
terms of the normality of its GKLS operator. Now we shall establish such a
link in the general case of a multichannel process. We shall prove that

L = L♯ =⇒ L =

N
∑

k=1

Lk with Lk a dephasing channel. (72)

In words, every self-dual process is composed by one or more dephasing chan-
nels. The contrapositive of (72) states that if a process cannot be decom-
posed into a sum of dephasing channels, then its generator is non-self-dual:
the presence of a bona fide decay is symptomized by a non-self-dual L.

We will get (72) by proving the stronger result that L = L♯ implies each
channel Lk to have a Hermitian GKLS operator Lk and thus by (70) to be
self-dual:

Lk = L♯
k, for all k. (73)

This in turn, by (66), implies (72).
Here is the proof. Consider a (multichannel) dissipative L as in (54)

and its dual (55). The self-duality condition, Lρ = L♯ρ, requires that the
following relation be satisfied

∑

k

LkρL
†
k =

∑

k

L†
kρLk (74)

for any ρ. Notice that (74) implies the equality

∑

k

LkL
†
k =

∑

k

L†
kLk (75)

and therefore the dual of L reads

L♯ρ = −1

2

∑

k

(

{L†
kLk, ρ}− 2L†

kρLk

)

= −1

2

∑

k

(

{LkL
†
k, ρ}− 2L†

kρLk

)

. (76)
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We can write any self-dual L as

Lρ =
1

2
(L+ L♯)ρ, (77)

which implies that every GKLS operator appears in pair with its Hermitian
conjugate. Explicitly, we have

Lρ = −1
4

∑

k

(

{L†
kLk, ρ}+ {LkL

†
k, ρ} − 2LkρL

†
k − 2L†

kρLk

)

= −1
2

∑

k

(

{X2
k , ρ} − 2XkρXk + {Y 2

k , ρ} − 2YkρYk

)

, (78)

where the Hermitian operators Xk and Yk are defined by Lk = Xk+iYk. The
last expression means that a self-dual L can always be described by the sum
of Hermitian GKLS operators. This completes the proof.

It is worth noticing that the decomposition of a generator L in terms
of single channels is not unique, as for example is manifestly shown in the
first and the second line of (78). Thus an evolution could be built up by a
sum of decaying channels whose net effect is nevertheless self-dual, and thus,
by (72), equivalent to a sum of purely dephasing channels. A paradigmatic
example is the two-level atom in a thermal photon bath considered in (38):
when the temperature goes to infinity it happens that γ′(1 + n) ∼ γ′n, and
the net population transfer between the two atomic levels goes to zero. This
again is related to a detailed balance condition [17].

Conclusions (56) and (72) are the central results of this article. As
stressed before, the contrapositive of (72) states that decay can only be ob-
tained by a non-self-dual L. Therefore an interpretation involving “classical
noise,” in the sense of Eqs. (51)–(53) and (56), is untenable.

7. Correlated noises and equivalent forms of the master equation

We elaborate here on equivalent forms of the master equation and their cor-
responding stochastic Schrödinger equations. So far, our analysis has focused
on noise terms of the type

N
∑

k=1

LkdWk, (79)

with N ≤ d2 − 1, d being the dimension of the system, with generally non-
Hermitian operators Lk and real independent noises dWk such that

〈dWkdWl〉 = δkldt. (80)

This ansatz yields a master equation with a diagonalized Kossakowski matrix,
as in Eq. (47).
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However, this is clearly not the only option. For example, one can decide
to work with Hermitian GKLS operators and expand the Lk’s in terms of
d2 − 1 linearly independent Hermitian operators λj [e.g., su(d) operators]

Lk =

d2−1
∑

j=1

ckjλj , (81)

where ckj are the complex coefficients of the expansions. In such a case one
ends up with d2 − 1 complex noise terms

d2−1
∑

j=1

λjdZj, dZj =
N
∑

k=1

ckjdWk, (82)

that are in general not independent:

〈dZ∗
i dZj〉 = aijdt, 〈dZidZj〉 = bijdt, (83)

with

aij =
N
∑

k=1

c∗kickj, bij =
N
∑

k=1

ckickj. (84)

The covariance matrix a is positive semi-definite, a = a† and a ≥ 0,
while the “relation matrix” b is symmetric, b = bT , satisfying Picinbono’s
condition a∗ − b†a−1b ≥ 0 (with the inverse a−1 defined on the support of a)
[18]. Such conditions guarantee the positivity of the complex noise matrix.
The dissipative part of the corresponding master equation reads

L̺ = −1

2

∑

i,j

aij({λiλj , ρ} − 2λjρλi), (85)

instead of (47). Observe that the noise correlations yield the Kossakowski
matrix aij .

In order to obtain the master equation (85) from a stochastic Schrödinger
equation with the complex noise terms (82), the first condition in Eq. (83),
〈dZ∗

i dZj〉 = aijdt, is crucial, while the second one, 〈dZidZj〉 = bijdt, is not
needed and the relation matrix b can be arbitrary, as long as b satisfies Picin-
bono’s condition. However, in order to go from the stochastic Schrödinger
equation with the complex noises dZi in Eq. (82) to the one (44) with the
real independent noises dWi, by diagonalizing the covariance matrix a, the
relation matrix b should be appropriately chosen in order to get the mini-
mal number of real noises. Note that there are 2d2 − 2 real noises (real and
imaginary parts) in the d2−1 complex noises dZi, but only d

2−1 real noises
dWi suffice for the stochastic Schrödinger equation (44), with the rest of the
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degrees of freedom being redundant. The right choice of b is the following.
We diagonalize a as aij =

∑

k γkU
∗
kiUkj, with a unitary matrix U and pos-

itive semi-definite eigenvalues γi. Then, we choose the relation matrix b as
bij =

∑

k γkUkiUkj, which makes half of the real noises in dZi irrelevant (van-
ishing). On the other hand, while the choice of the relation matrix b does not
affect the master equation (85), it does affect the Stratonovich Hamiltonian.

8. Answer(s).

Let us summarize the overall picture of our results. For a generic GKLS
generator L of a master equation (47) with multiple channels, by combining
the implications (56) and (72), we get

Hη = H†
η ⇐⇒ HS

2 = 0 ⇐⇒ Lk = L†
k, ∀k

=⇒ L = L♯

=⇒ L =
N
∑

k=1

Lk with Lk a dephasing channel.

(86)

For each single channel Lk, by combining the implications (62), (66), and
(70), we have

Lk = L♯
k ⇐⇒ L†

k = eiαkLk

=⇒ [Lk, L
†
k] = 0 ⇐⇒ Lk is a dephasing channel. (87)

The answer to the question posed in the title of this article is negative:
decay cannot be ascribed to a “classical” noise process, where the connotation
of the term “classical” has to be understood according to

Eqs. (30)–(32), or in general Eqs. (51)–(53) and (56), without the caveat

of taking the average over the noise, as e.g. in Eq. (27).
This is a consequence of the chain of equivalence (86), that is valid for

master equations with an arbitrary finite number of multidimensional GKLS
operators. Dephasing is inextricably related to self-dual generators and as
a consequence the opposite process, decay, can only be ascribed to non-self-
dual maps. Physical interpretations involving “classical noises” only apply to
the former process. On the contrary, the latter process entails non-Hermitian
Hamiltonians (and imaginary optical potentials à la Fermi [14]): probability
would no longer be conserved.

There is, however, a second possible answer to our question: yes, decay
can be ascribed to a “classical” noise process, if we relax the condition (37) of
probability conservation in individual realizations, and just require probabil-
ity conservation on average: During the stochastic process, sometimes par-
ticles are absorbed by the environment, sometimes they are released, with a
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null average net flux. This is what we called weak conservation of probability
before Eq. (27).
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