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Abstract

The goal of this paper is to calculate exactly the average of uncertainty-product of two bounded ob-

servables and to establish its typicality over the whole set of finite dimensional quantum pure states. Here

we use the uniform ensembles of pure and isospectral states as well as the states distributed uniformly

according to the measure induced by the Hilbert-Schmidt norm. Firstly, we investigate the average un-

certainty of an observable over isospectral density matrices. By letting the isospectral density matrices

be of rank-one, we get the average uncertainty of an observable restricted to pure quantum states. These

results can help us check how large the gap is between the uncertainty-product and any obtained lower

bounds about the uncertainty-product. Although our method in the present paper cannot give a tighter

lower bound of uncertainty-product for bounded observables, it can help us drop any one that is not

tighter than the known one substantially.
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1 Introduction

Uncertainty principle (aka Heisenberg’s uncertainty relation) is one of basic constraints in quantum me-

chanics. It means that we cannot principally obtain precise measurement outcomes simultaneously when

we measure two incomparable observables at the same time. The mathematical formulation of uncer-

tainty relation is in terms of any of a variety of inequalities, where a fundamental limit to the precision

with which certain pairs of physical properties of a particle, i.e. complementary variables, such as position

x̂ and momentum p̂, can be known simultaneously. The uncertainty relation [1], introduced by Heisenberg

in 1927, relates the standard deviation of momentum ∆ p̂ and the standard deviation of position ∆x̂, it indi-

cates that the more precisely the momentum of some particle is determined, the less precisely its position

can be known, and vice versa. Specifically, the quantitative relation of such two standard deviations was

derived by Kennard [2] later that year:

∆x̂ · ∆ p̂ >
h̄
2

, (1.1)
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where ∆ p̂ =
√
〈 p̂2〉 − 〈 p̂〉2 and ∆x̂ =

√
〈x̂2〉 − 〈x̂〉2.

The most common general form of the uncertainty principle is the Robertson-Schrödinger uncertainty

relations [3, 4]. In order to state it explicitly, we need some notions. The precision to which the value of

an observable A can be known is quantified by its uncertainty function

∆A(ρ) :=
√
〈A2〉ρ − 〈A〉2

ρ (1.2)

where 〈O〉ρ := Tr (Oρ) for any observable O. Furthermore, the precision to which the values of two

observables A and B can be known simultaneously is limited by the Robertson-Schrödinger uncertainty

relation

(∆A(ρ) · ∆B(ρ))2
>
(
〈{A, B}〉ρ − 〈A〉ρ〈B〉ρ

)2
+ 〈[A, B]〉2

ρ, (1.3)

where {A, B} := 1
2 (AB + BA) and [A, B] := 1

2
√
−1

(AB − BA). We see from Robertson-Schrödinger uncer-

tainty relation that this uncertainty relation depends on the state under consideration. There are a lot of

literatures devoting to improve the right hand side (rhs) of the above inequality [5, 6]. Moreover, recently

many researchers proposed new perspective, instead of description of uncertainty-product, they used the

sum of uncertainty [7, 8], and its various generalizations [9, 10], etc. Besides, many researchers generalize

the uncertainty relation from pure state to isospectral mixed states by employing symplectic geometric

tools [11]. Many contributions are given to another reformulation of uncertainty relation, for instance

entropic uncertainty relation [12, 13] and its applications [14]. A connection is also established between

entropic uncertainty and wave-particle duality [15]. There are literatures devoted to study the connection

among uncertainty, and entanglement [16, 17, 18, 7], and the reversibility of measurement [19].

The purpose of this paper is to give a new perspective to state-independent uncertainty relation in

terms of representation theory of unitary group and random matrix theory. Caution: because observables

may be unbounded, for instance, the position operator x̂, in physical regime, an unbounded observable

may take infinity at some state. Throughout this paper, we will focus on bounded observables. Consider

the following particular statistical ensembles: The used distribution of random state is uniform distri-

bution induced by Hilbert-Schmidt measure defined over the set of all density matrices. By using tools

from representation theory of unitary group and random matrix theory, we can give an exact calculation

of such average value (in the pure state case or mixed state case, respectively) and consider its typicality

under some restriction. Theoretically, as the typicality suggests that without measuring such bounded

observables, we may claim that at most sampled states, one can get their uncertainty-product is close

to their average value with overwhelming probability. Equivalently, their uncertainty-product deviates

their average value with exponentially small probability. Our method proposed here in fact can help

check how large the gap is between the uncertainty-product and any obtained lower bounds about the

uncertainty-product. Specifically, except calculate the average of uncertainty-product, we also calculate

the averages of the obtained lower bounds of uncertainty-product. Clearly the obtained lower bounds are

state-dependent.

This paper is organized as follows. In Sect. 2, we will introduce various measures on state space.

Specifically, there is a unique probability which is unitarly invariant on the pure state space. But, how-

ever, there is no unique unitarily-invariant probability measure over the mixed state space because of the

existence of environment. Sect. 3 discusses the motivation why we take the average over corresponding

2



state ensembles. Sect. 4 deals with the isospectral average of uncertainty-product of two bounded ob-

servables over the set of isospectral quantum states. Furthermore, separately, we consider the average of

uncertainty-product for a random pure state, and also for a random mixed state. In Sect. 5, we make

a discussion about the concentration of measure phenomenon about the quantity, i.e., the uncertainty-

product of two bounded observables over the set of mixed states. Finally, some necessary materials for

reasoning of our results are provided in the Appendix, see Sect. 7, for example, two specific examples in

lower dimensions are provided in Sect. 7.8.

2 Measures on the state spaces

Given a measure µ on the set of quantum states, one can calculate the corresponding averages over all

states with respect to this measure [20]. We will consider the set of pure quantum states. For a d-

dimensional Hilbert space Hd, the set of pure states consists of all unit vectors in Hd. On this set, there

exists a unique measure which is unitarily invariant, i.e., uniform probability measure dµ(ψ) or induced

by normalized Haar measure dµHaar(U) over the unitary group U(d). Indeed, any random pure state |ψ〉 is

generated by a random unitary matrix U ∈ U(d) on any fixed pure state |ψ0〉 via |ψ〉 = U|ψ0〉. The uniform

ensemble of pure quantum states of finite-dimensional Hilbert space studied extensively in the context

of foundations of quantum statistical mechanics, entanglement theory or various protocols/features of

quantum information theory. Related literatures are too numerous to mention. Here we mention our

two works using such particular ensemble to investigate the typicality of quantum coherence and average

entropy of isospectral quantum states, see [21, 22]. Then we can define the average value of some function

f on the set of pure states as follows:

〈 f (ψ)〉 :=
∫

Sk
f (ψ)dµ(ψ) =

∫

U(d)
f (Uψ0)dµHaar(U). (2.1)

Unlike the case of pure states, it is known that there exist various measures on the set of mixed

states, D (Hd), the set of all positive semidefinite matrices with unit trace. As a matter of fact, one

assumes naturally the distributions of eigenvalues and eigenvectors of a quantum state ρ, via the spectral

decomposition ρ = UΛU†, are independent. Thus any probability measure µ on D (Hd) will be of product

form: dµ(ρ) = dν(Λ)×dµHaar(U), where dµHaar(U) is the unique Haar measure [23] on the unitary group

and ν defines the distribution of eigenvalues without unique choice for it. The utility of ν in the average

entropy or average coherence can be found in [24, 25, 20].

The measures used frequently over the D (Hd) can be obtained by partially tracing over the Haar-

distributed pure states in the higher dimension Hilbert space Hd ⊗ Hk, say Cd ⊗ Ck. In order to be

convenience we suppose that d 6 k. Following [20], the joint probability density function of spectrum

Λ = {λ1, . . . , λd} of ρ is given by

dνd,k(Λ) = Cd,kδ

(
1 −

d

∑
j=1

λj

)

∏
16i<j6d

(λj − λi)
2

d

∏
j=1

λk−d
j θ(λj)dλj, (2.2)

where the theta function θ ensures that ρ is positive definite, Cd,k is the normalization constant, given by

Cd,k =
Γ(dk)

∏
d−1
j=0 Γ(d − j + 1)Γ(k − j)

. (2.3)
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In particular, in the present paper we will consider a special case where d = k, which corresponds to the

Hilbert-Schmidt measure, a flat metric over the D (Hd), denoted by dµHS(ρ). We also denote dνd,k = dν

and Cd,k = CHS if d = k. Thus we have

dµHS(ρ) = dν(Λ)× dµHaar(U), (2.4)

where ρ = UΛU†.

For convenience, we let A, B be observables, ρ = UΛU†, and introduce the following symbol for

convenience:

tk = Tr
(

Λk
)
= Tr

(
ρk
)

, Ek(Λ) :=
∫
(UΛU†)⊗kdµHaar(U). (2.5)

3 Motivation

In order to explain why we take the average of uncertainty-product for bounded observables, some

words are needed. Denote L0(A, B, ρ) :=
(
〈{A, B}〉ρ − 〈A〉ρ〈B〉ρ

)2
+ 〈[A, B]〉2

ρ. Clearly Eq. (1.3) becomes

(∆A(ρ) · ∆B(ρ))2
> L0(A, B, ρ). If one is obtained another lower bound, say L(A, B, ρ), via some mathe-

matical methods, then (∆A(ρ) · ∆B(ρ))2
> L(A, B, ρ). Now we need to compare lower bounds L0 and L.

If L(A, B, ρ) > L0(A, B, ρ), then we can say the lower bounds of the uncertainty principle are improved,

that is, we get a tighter lower bound. However, such improvement sometimes is not essential, it is possible

that

∫
L(A, B, ρ)dµHS(ρ) =

∫
L0(A, B, ρ)dµHS(ρ). (3.1)

This shows that L(A, B, ρ) = L0(A, B, ρ) is satisfied almost every except a zero measure in state space

by the Measure Theory. This is not real improvement. In fact, there are two observables such that the

lower bound of the uncertainty principle Eq. (1.3) cannot be improved, see below Eq. (4.58). This example

tell us that getting a universal uncertainty principle for any observables in which the lower bound is

really improved, compared with L0, seems impossible. At least, the statement is applicable for Eq. (4.58).

However, if (∆A(ρ) · ∆B(ρ))2
> L(A, B, ρ) > L0(A, B, ρ) and

∫
L(A, B, ρ)dµHS(ρ) >

∫
L0(A, B, ρ)dµHS(ρ), (3.2)

then we say that the uncertainty principle (∆A(ρ) · ∆B(ρ))2
> L(A, B, ρ) really improves the uncertainty

principle (∆A(ρ) · ∆B(ρ))2
> L0(A, B, ρ). Therefore L(A, B, ρ) is tighter than L0(A, B, ρ) substantially. This

is what we want. But there is another situation that appears. We maybe get a new one L̂(A, B, ρ) without

knowing the relationship between L̂ and L0. But we can still determine wether or not

∫
L̂(A, B, ρ)dµHS(ρ) >

∫
L0(A, B, ρ)dµHS(ρ). (3.3)

If it were the case, then L̂(A, B, ρ) > L0(A, B, ρ) would hold in a subset of the state space. Improvement of

uncertainty principle is possible limited to local range.
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4 Isospectral average of uncertainty-product

In this section, we focus on the ensemble of isospectral density matrices. This ensemble has been recently

studied in various contexts of quantum information. In fact, we also do some work in this field [22].

Consider the set of all isospectral density matrices UΛ := {ρ : ρ = UΛU†, U ∈ U (d)} with a fixed

spectrum Λ = {λ1, . . . , λd}, where λj > 0 for each j and ∑
d
j=1 λj = 1. Now we can explicitly compute the

average (squared) uncertainty of observable A over the set of isospectral density matrices UΛ as follows:

∫
∆A(ρ)2dµHaar(U) = Tr

(
A2

E1(Λ)
)
− Tr

(
A⊗2

E2(Λ)
)

, (4.1)

where Ek(Λ) is from (2.5). The details of computation about Ek(Λ), where k = 1, 2, 3, 4, are gathered in

the Appendix, i.e., Section 7.

From the relations (7.16) and (7.17), we see that

∫
∆A(ρ)2dµHaar(U) =

d − Tr
(
Λ2
)

d2 − 1

[
Tr
(

A2
)
− 1

d
(Tr (A))2

]
. (4.2)

By (7.51), we have

∫

D(Hd)
∆A(ρ)2dµHS(ρ) =

d
d2 + 1

[
Tr
(

A2
)
− 1

d
(Tr (A))2

]
. (4.3)

On the other hand, for any state ρ ∈ D (Hd),

∆A(ρ)2 · ∆B(ρ)2 = Tr
([

A2 ⊗ B2
]

ρ⊗2
)
+ Tr

([
A⊗2 ⊗ B⊗2

]
ρ⊗4

)

−Tr
([

A2 ⊗ B⊗2
]

ρ⊗3
)
− Tr

([
B2 ⊗ A⊗2

]
ρ⊗3
)

. (4.4)

Thus

∫
∆A(ρ)2 · ∆B(ρ)2dµHaar(U)

= Tr
([

A2 ⊗ B2
]
E2(Λ)

)
+ Tr

([
A⊗2 ⊗ B⊗2

]
E4(Λ)

)

− Tr
([

A2 ⊗ B⊗2
]
E3(Λ)

)
− Tr

([
B2 ⊗ A⊗2

]
E3(Λ)

)
, (4.5)

where ρ ∈ UΛ.

With these identities, we calculate the the averaged uncertainty-product over the isospectral density

matrices. By the tedious but simple calculations, we have the following result:

Theorem 4.1. For two observables A and B on Hd, the average of uncertainty-product over the set of all isospectral

density matrices ρ on Hd is given by a symmetric function in arguments A and B

∫
∆A(ρ)2 · ∆B(ρ)2dµHaar(U) =

8

∑
j=1

ωj(Λ) · Ωj(A, B), (4.6)
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where Ωj(A, B) are symmetric in arguments A and B for each j: Ωj(A, B) = Ωj(B, A) and

Ω1(A, B) = Tr (A)2 Tr (B)2 , (4.7)

Ω2(A, B) = Tr
(

A2
)

Tr (B)2 + Tr (A)2 Tr
(

B2
)

, (4.8)

Ω3(A, B) = Tr (AB)Tr (A)Tr (B) , (4.9)

Ω4(A, B) = Tr
(

A2
)

Tr
(

B2
)

, (4.10)

Ω5(A, B) = Tr (AB)Tr (AB) , (4.11)

Ω6(A, B) = Tr
(

A2B
)

Tr (B) + Tr (A)Tr
(

AB2
)

, (4.12)

Ω7(A, B) = Tr
(

A2B2
)

, (4.13)

Ω8(A, B) = Tr (ABAB) , (4.14)

and ωj(Λ) are given by the following:

ω1(Λ) =
1

24
∆
(4)
4 +

3

8
∆
(3,1)
4 +

1

6
∆
(2,2)
4 +

3

8
∆
(2,1,1)
4 +

1

24
∆
(1,1,1,1)
4 , (4.15)

ω2(Λ) =

(
1

24
∆
(4)
4 +

1

8
∆
(3,1)
4 − 1

8
∆
(2,1,1)
4 − 1

24
∆
(1,1,1,1)
4

)
−
(

1

6
∆
(3)
3 +

2

3
∆
(2,1)
3 +

1

6
∆
(1,1,1)
3

)
, (4.16)

ω3(Λ) =
1

6
∆
(4)
4 +

1

2
∆
(3,1)
4 − 1

2
∆
(2,1,1)
4 − 1

6
∆
(1,1,1,1)
4 , (4.17)

ω4(Λ) =

(
1

24
∆
(4)
4 − 1

8
∆
(3,1)
4 +

1

6
∆
(2,2)
4 − 1

8
∆
(2,1,1)
4 +

1

24
∆
(1,1,1,1)
4

)

+

(
∆
(2)
2

2
+

∆
(1,1)
2

2

)
−
(

1

3
∆
(3)
3 − 1

3
∆
(1,1,1)
3

)
, (4.18)

ω5(Λ) =
1

12
∆
(4)
4 − 1

4
∆
(3,1)
4 +

1

3
∆
(2,2)
4 − 1

4
∆
(2,1,1)
4 +

1

12
∆
(1,1,1,1)
4 , (4.19)

ω6(Λ) =

(
1

6
∆
(4)
4 − 1

3
∆
(2,2)
4 +

1

6
∆
(1,1,1,1)
4

)
−
(

1

3
∆
(3)
3 − 1

3
∆
(1,1,1)
3

)
, (4.20)

ω7(Λ) =

(
1

6
∆
(4)
4 − 1

2
∆
(3,1)
4 +

1

2
∆
(2,1,1)
4 − 1

6
∆
(1,1,1,1)
4

)

+

(
∆
(2)
2

2
− ∆

(1,1)
2

2

)
− 2

(
1

3
∆
(3)
3 − 2

3
∆
(2,1)
3 +

1

3
∆
(1,1,1)
3

)
, (4.21)

ω8(Λ) =
1

12
∆
(4)
4 − 1

4
∆
(3,1)
4 +

1

4
∆
(2,1,1)
4 − 1

12
∆
(1,1,1,1)
4 . (4.22)

Here the meanings of the notations ∆
(4)
4 , ∆

(3,1)
4 , ∆

(2,1,1)
4 , ∆

(1,1,1,1)
4 can be found from (7.37) to (7.41).

The hard part of the proof centers around the calculations of Ek(Λ) by using Schur-Weyl duality.

Among other things, the key ingredient here is the Weingarten function, defined over the permutation

group Sk, see the definition (7.10) for the unitary group. There are many ways that can be used to define

the Weingarten function, for instance, a sum over partitions or equivalently, Young tableaux of k ∈ N

and the characters of the symmetric group. In the case where permutation groups of lower orders are

considered (such as k = 2, 3, 4 in our paper), the Weingarten functions can be explicitly evaluated. When

k becomes larger, the explicit evaluation of such function is considerably complicated, and naturally the

asymptotics is concerned. The proof of Theorem 4.1 is placed in Section 7.5.
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Remark 4.2. Let N−1
d = d2(d2 − 1)(d2 − 4)(d2 − 9). We can write down more specific expressions for

ωj(Λ), where tk = Tr
(

Λk
)

for natural number k.

ω1(Λ) = Nd

(
(d4 − 8d2 + 6)− 6d(d2 − 4)t2 + 3(d2 + 6)t2

2 + 8(2d2 − 3)t3 − 30dt4

)
, (4.23)

ω2(Λ) = Nd

(
−d(d4 − 10d2 + 14) + 2d2(2d2 − 13)t2 − d(d2 + 6)t2

2 − 8d(d2 − 4)t3 + 10d2t4

)
, (4.24)

ω3(Λ) = Nd

(
−4d(d2 − 4) + 4d2(d2 + 1)t2 − 4d(d2 + 6)t2

2 − 16d(d2 + 1)t3 + 40d2t4

)
, (4.25)

ω4(Λ) = Nd

(
(d6 − 11d4 + 19d2 + 6)− d(3d4 − 25d2 + 12)t2 (4.26)

+(d4 − 6d2 + 18)t2
2 + 4(d4 − 5d2 − 6)t3 − 2d(2d2 − 3)t4

)
, (4.27)

ω5(Λ) = Nd

(
2(d2 + 6)− 4d(d2 + 6)t2 + 2(d4 − 6d2 + 18)t2

2 + 16(2d2 − 3)t3 − 4d(2d2 − 3)t4

)
,(4.28)

ω6(Λ) = Nd

(
2(d4 − 5d2 − 6)− 2d(d4 − d2 − 12)t2 + 12(2d2 − 3)t2

2 (4.29)

+8(d4 − 3d2 + 6)t3 − 12d(d2 + 1)t4

)
, (4.30)

ω7(Λ) = Nd

(
−d(d3 + 4d2 − 9d − 16) + d2(d4 − d2 − 32)t2 (4.31)

−4d(2d2 − 3)t2
2 − 4d(d4 − 5d2 + 4)t3 + 4d2(d2 + 1)t4

)
, (4.32)

ω8(Λ) = Nd

(
−10d + 20d2t2 − 2d(2d2 − 3)t2

2 − 8d(d2 + 1)t3 + 2d2(d2 + 1)t4

)
. (4.33)

Because A and B are bounded observables, i.e., Hermitian operators, we see that Tr (A) , Tr (B), and

Tr (AB) are real numbers and Tr
(

A2
)
> 0, and Tr

(
B2
)
> 0. Then Tr (A)2 Tr (B)2

> 0, Tr
(

A2
)

Tr (B)2 +

Tr (A)2 Tr
(

B2
)
> 0, Tr

(
A2
)

Tr
(

B2
)
> 0, i.e., Ωj(A, B) > 0 for j = 1, 2, 4, 5 by the definition. In addition,

Tr
(

A2B2
)
= Tr

(
BA2B

)
> 0 since BA2B > 0. Thus Ω7(A, B) > 0. Consider the operator X = AB + BA.

Clearly X is a Hermitian operator. Moreover X2 > 0, thus Tr
(
X2
)
> 0. Because Tr

(
X2
)
= 2(Tr (ABAB)−

Tr
(

A2B2
)
), we have that Tr (ABAB) > Tr

(
A2B2

)
> 0. Hence Ω8(A, B) > 0. In summary, Ωj(A, B) > 0

for j = 1, 2, 4, 5, 7, 8. However, Ω3(A, B) and Ω6(A, B) are not always non-negative.

Remark 4.3. The rhs of (4.6) remind us of one of applications to random matrix theory from free prob-

ability theory, established by Voiculescu [26]. Specifically, we can consider two independent random

observables A and B from Gaussian unitary ensemble (GUE), according to free probability theory, A and

B are asymptotic free (see the meaning of freeness in [27]). Indeed, denote ϕ(·) = 1
d Tr (·), where Tr (·)

means the trace of matrix, when d becomes large enough, we have

ϕ(ABAB) ≃ ϕ(A2)ϕ(B)2 + ϕ(A)2ϕ(B2)− ϕ(A)2ϕ(B)2, (4.34)

that is,

Ω8(A, B) ≃ d−2Ω2(A, B)− d−3Ω1(A, B). (4.35)

Similarly, we have

Ω3(A, B) ≃ d−1Ω1(A, B), (4.36)

Ω5(A, B) ≃ d−2Ω1(A, B), (4.37)

Ω6(A, B) ≃ d−1Ω2(A, B), (4.38)

Ω7(A, B) ≃ d−1Ω4(A, B). (4.39)
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Furthermore, we obtain that
∫

∆A(UΛU†)2 · ∆B(UΛU†)2dµHaar(U) ≃
(

ω1(Λ) + d−1ω3(Λ) + d−2ω5(Λ)− d−3ω8(Λ)
)

Ω1(A, B)

+
(

ω2(Λ) + d−1ω6(Λ) + d−2ω8(Λ)
)

Ω2(A, B)

+
(

ω4(Λ) + d−1ω7(Λ)
)

Ω4(A, B). (4.40)

The calculation in Theorem 4.1, and the subsequent remark suggest us that there are three terms, i.e.,

Ω1(A, B), Ω2(A, B), and Ω4(A, B), as the dimension grows large, play a leading role in estimating the

average of uncertainty-product within isospectral density matrices. This also tells us that if we want to

get a better lower bound about uncertainty-product, then when we take average of any improved lower

bound, we should get larger coefficients of such three terms.

Besides, for a fixed Λ, we may view the left hand side of (4.6) as a function of two random observables

A and B, for instance, from GUE or Wishart ensemble. We can also consider the concentration of measure

phenomenon about such two observables. We leave these questions in the future research.

4.1 Average of uncertainty-product on pure states

For the pure state case, the average of uncertainty-product is easier to calculate. What we have obtained

is the following:

Theorem 4.4. For two observables A and B on Hd, the average of uncertainty-product taken over the whole set of

all pure states in Hd is given by

∫
∆A(ψ)2 · ∆B(ψ)2dµ(ψ) =

8

∑
j=1

ujΩj(A, B), (4.41)

where Ωj(A, B) is from Theorem 4.1, and for Kd = (d(d + 1)(d + 2)(d + 3))−1,

u1 = Kd, u2 = −(d + 2)Kd, u3 = 4Kd, u4 = (d2 + 3d + 1)Kd, (4.42)

u5 = 2Kd, u6 = −2(d + 1)Kd, u7 = (d2 + d − 2)Kd, u8 = 2Kd. (4.43)

We also have that
∫

dµ(ψ)
[(
〈{A, B}〉ψ − 〈A〉ψ〈B〉ψ

)2
+ 〈[A, B]〉2

ψ

]
=

8

∑
j=1

ljΩj(A, B), (4.44)

where

l1 = Kd, l2 = Kd, l3 = −2(d + 1)Kd, l4 = Kd, l5 = (d + 1)(d + 2)Kd, (4.45)

l6 = −2(d + 1)Kd, l7 = (d2 + d − 2)Kd, l8 = −2(2d + 5)Kd. (4.46)

In the above theorem, we investigate average behavior of both sides of Heisenberg-Robertson-Kennard

relations on uniform pure state ensemble. For the case of the average of product of uncertainties (or

the corresponding lower bounds for this quantity) over pure Haar-distributed quantum states, the corre-

sponding integrals are very easy to perform as the integral
∫

ψ⊗kdµ(ψ)
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involved in all the averages are proportional to the projectors on the symmetric powers of the relevant

Hilbert space. This will be clear in the proof, see (7.75). The details of the proof of Theorem 4.4 can be

found in Subsection 7.6.

Remark 4.5. In higher dimensional space, there are two terms playing major role in the average uncertainty-

product relative to other terms, i.e., Ω4(A, B) = Tr
(

A2
)

Tr
(

B2
)

and Ω7(A, B) = Tr
(

A2B2
)
. How-

ever, the terms which play major role in the average lower bound of uncertainty-product is Ω5(A, B) =

Tr (AB)Tr (AB), and Ω7(A, B) = Tr
(

A2B2
)
. Furthermore, we can derive that

∫
dµ(ψ)

{
∆A(ψ)2 · ∆B(ψ)2 −

[(
〈{A, B}〉ψ − 〈A〉ψ〈B〉ψ

)2
+ 〈[A, B]〉2

ψ

]}

= −(d + 3)KdΩ2(A, B) + 2(d + 3)KdΩ3(A, B) + d(d + 3)KdΩ4(A, B)

− d(d + 3)KdΩ5(A, B) + 4(d + 3)KdΩ8(A, B). (4.47)

By the nonnegativity of the left hand side of (4.47), we get the following inequality:

2Ω3(A, B) + dΩ4(A, B) + 4Ω8(A, B) > Ω2(A, B) + dΩ5(A, B). (4.48)

That is,

2 Tr (AB)Tr (A) Tr (B) + d Tr
(

A2
)

Tr
(

B2
)
+ 4 Tr (ABAB)

> Tr
(

A2
)

Tr (B)2 + Tr (A)2 Tr
(

B2
)
+ d Tr (AB) Tr (AB) . (4.49)

It seems difficult to show the above matrix trace inequality (4.49) directly. This inequality about two

observables is what we want to get, i.e., uncertainty relation which is independent of state.

Remark 4.6. Naturally, a pure state |ψ〉 is called the average state with respect to uncertainty product of

observables (A, B) if it satisfies that

∆A(ψ)2 · ∆B(ψ)2 =
8

∑
j=1

ujΩj(A, B). (4.50)

What properties do such state have? Answering this question can reveal principally why we do not need

to take any measurements, and we can guess the uncertainty about observables by taking average.

Corollary 4.7. For two observables A and B on C
2, the average of uncertainty-product taken over the whole set of

all pure states is given by
∫

∆A(ψ)2 · ∆B(ψ)2dµ(ψ) =
1

120
Ω1(A, B)− 1

30
Ω2(A, B) +

1

30
Ω3(A, B) +

11

120
Ω4(A, B)

+
1

60
Ω5(A, B)− 1

20
Ω6(A, B) +

1

30
Ω7(A, B) +

1

60
Ω8(A, B). (4.51)

We also have that
∫

dµ(ψ)
[(
〈{A, B}〉ψ − 〈A〉ψ〈B〉ψ

)2
+ 〈[A, B]〉2

ψ

]

=
1

120
Ω1(A, B) +

1

120
Ω2(A, B)− 1

20
Ω3(A, B) +

1

120
Ω4(A, B)

+
1

10
Ω5(A, B)− 1

20
Ω6(A, B) +

1

30
Ω7(A, B)− 3

20
Ω8(A, B). (4.52)
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Next, as an example, we take A = σi and B = σj, where σi and σj are any two different matrices from

three Pauli’s matrices, using the above Corollary, then we get the average of uncertainty-product of A and

B is given by

∫
∆A(ψ)2 · ∆B(ψ)2dµ(ψ) =

2

5
. (4.53)

Moreover,

∫
dµ(ψ)

[(
〈{A, B}〉ψ − 〈A〉ψ〈B〉ψ

)2
+ 〈[A, B]〉2

ψ

]
=

2

5
. (4.54)

This is surprising! As we have seen that the following inequality

∆A(ψ)2 · ∆B(ψ)2
>
(
〈{A, B}〉ψ − 〈A〉ψ〈B〉ψ

)2
+ 〈[A, B]〉2

ψ (4.55)

holds for all pure state |ψ〉. From the above discussion, we see that

∫
dµ(ψ) f (ψ) = 0, (4.56)

where f is defined by

f (ψ) = ∆A(ψ)2 · ∆B(ψ)2 −
[(
〈{A, B}〉ψ − 〈A〉ψ〈B〉ψ

)2
+ 〈[A, B]〉2

ψ

]
, (4.57)

which is obviously a non-negative function of the pure state |ψ〉. By Lebesgue integration theory, we get

that f (ψ) vanishes almost everywhere except a zero-measure subset of all pure states. In other words,

∆A(ψ)2 · ∆B(ψ)2 =
(
〈{A, B}〉ψ − 〈A〉ψ〈B〉ψ

)2
+ 〈[A, B]〉2

ψ, a.e. (4.58)

From the above observation, we see that any desire to improve universally the uncertainty-product seems

impossible, at least in the qubit case for two observables σi and σj chosen from three Pauli’s matrices.

4.2 Average of uncertainty-product on the mixed states

For the mixed state, comparing with the pure state, the calculation is more complicated, we have the

following result.

Theorem 4.8. For two observables A and B on Hd, the average of uncertainty-product taken over the whole set of

all density matrices D (Hd) is given by

∫
∆A(ρ)2 · ∆B(ρ)2dµHS(ρ) =

8

∑
j=1

ω j · Ωj(A, B), (4.59)

where ωj =
∫

ωj(Λ)dν(Λ)(j = 1, . . . , 8).

Proof. The proof follows directly from Theorem 4.1 by using Proposition 7.4 and Lemma 7.6.
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Remark 4.9. In fact, we can give the final formulae for ωj’s. We ignore the tedious but simple calculations.

ω1 = Nd

(
d4 − 20d2 + 158− 50

d2 + 1
+

792

d2 + 2
− 1512

d2 + 3

)
, (4.60)

ω2 = Nd

(
−d5 + 18d3 − 118d − 50d

d2 + 1
+

504d
d2 + 3

)
, (4.61)

ω3 = Nd

(
4d3 − 80d +

200d
d2 + 1

− 1584d
d2 + 2

+
2016d
d2 + 3

)
, (4.62)

ω4 = Nd

(
d6 − 17d4 + 99d2 − 316− 50

d2 + 1
+

396

d2 + 2
+

504

d2 + 3

)
, (4.63)

ω5 = Nd

(
2d2 − 40 +

100

d2 + 1
− 792

d2 + 2
+

1008

d2 + 3

)
, (4.64)

ω6 = Nd

(
−2d4 + 38d2 − 276 − 792

d2 + 2
+

2016

d2 + 3

)
, (4.65)

ω7 = Nd

(
2d5 − d4 − 28d3 + 9d2 + 136d +

100d
d2 + 1

− 672d
d2 + 3

)
, (4.66)

ω8 = Nd

(
2d − 100d

d2 + 1
+

396d
d2 + 2

− 336d
d2 + 3

)
. (4.67)

From the above formulae, we can see that in higher dimensional space, Ω4(A, B) = Tr
(

A2
)

Tr
(

B2
)

plays

a leading role relative to other terms. We also see from Remark 4.3 that, for the large enough dimension

d, when observables A and B taken from GUE are independent,
∫

∆A(ρ)2 · ∆B(ρ)2dµHS(ρ) ≃ m1Ω1(A, B) + m2Ω2(A, B) + m4Ω4(A, B). (4.68)

where

m1 = ω1 + d−1ω3 + d−2ω5 − d−3ω8, (4.69)

m2 = ω2 + d−1ω6 + d−2ω8, (4.70)

m4 = ω4 + d−1ω7. (4.71)

Similar to the pure state case (see (4.50)), a mixed state ρ is called the average state with respect to uncer-

tainty product of observables (A, B) if it satisfies that

∆A(ρ)2 · ∆B(ρ)2 =
8

∑
j=1

ω j · Ωj(A, B). (4.72)

We can ask analogous problems parallel to the pure state case. But we are not concerned these problems

in this paper.

4.3 Average lower bound of uncertainty-product

Here we also calculate the average of the lower bound of uncertainty-product in (1.3).

Theorem 4.10. For two observables A and B on Hd, it holds that

∫

D(Hd)
dµHS(ρ)

(
〈{A, B}〉ρ − 〈A〉ρ〈B〉ρ

)2
=

8

∑
j=1

β jΩj(A, B), (4.73)
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where N−1
d = d2(d2 − 1)(d2 − 4)(d2 − 9) and

β1 = Nd

(
d4 − 18d2 + 158 − 50

d2 + 1
+

792

d2 + 2
− 1512

d2 + 3

)
, (4.74)

β2 = Nd

(
d3 − 20d +

50d
d2 + 1

− 396d
d2 + 2

+
504d

d2 + 3

)
, (4.75)

β3 = Nd

(
−2d5 + 38d3 − 276d − 792d

d2 + 2
+

2016d
d2 + 3

)
, (4.76)

β4 = Nd

(
−2d2 − 20 +

50

d2 + 1
− 396

d2 + 2
+

504

d2 + 3

)
, (4.77)

β5 = Nd

(
d6 − 15d4 − 2d3 + 60d2 + 34d − 140+

200d + 200

d2 + 1
− 396d + 792

d2 + 2
+

1008

d2 + 3

)
, (4.78)

β6 = Nd

(
−2d3 + 4d2 + 34d − 380+

200d + 500

d2 + 1
− 396d + 1584

d2 + 2
+

2016

d2 + 3

)
, (4.79)

β7 = Nd

(
−d7 +

27

2
d5 − 91

2
d3 + 70d − 50d

d2 + 1
+

396d
d2 + 2

− 672d
d2 + 3

)
, (4.80)

β8 = Nd

(
−d7 +

27

2
d5 − 91

2
d3 + 68d +

50d
d2 + 1

− 336d
d2 + 3

)
. (4.81)

Thus

∫

D(Hd)
dµHS(ρ)

[(
〈{A, B}〉ρ − 〈A〉ρ〈B〉ρ

)2
+ 〈[A, B]〉2

ρ

]
=

8

∑
j=1

β′
jΩj(A, B), (4.82)

where

β′
1 = β1, β′

2 = β2, β′
3 = β3, β′

4 = β4, β′
5 = β5, β′

6 = β6, (4.83)

β′
7 = Nd

(
−d7 + 14d5 − 53d3 + 102d − 100d

d2 + 1
+

396d
d2 + 2

− 672d
d2 + 3

)
, (4.84)

β′
8 = Nd

(
−d7 + 13d5 − 38d3 + 36d +

100d
d2 + 1

− 336d
d2 + 3

)
. (4.85)

The average of the lower bound of uncertainty-product can be the reference value for improving the

lower bound of uncertainty-product, as suggested in Section 3. The proof of Theorem 4.10 is put in

Subsection 7.7.

Remark 4.11. From the above Theorem 4.10, we see that in higher dimensional space, Ω7(A, B) =

Tr
(

A2B2
)

and Ω8(A, B) = Tr (ABAB) play a leading role relative to other terms.

Remark 4.12. We can still compare (4.59) and (4.82) in order to obtain another matrix trace inequality:

8

∑
j=1

(ωj − β′
j) · Ωj(A, B) > 0. (4.86)

As a matter of fact, (4.48) and (4.86) are just two special cases of the following matrix trace inequalities:

8

∑
j=1

f j(d) · Ωj(A, B) > 0, (4.87)

where f j(d)(j = 1, . . . , 8) are the dimension-dependent factors under some constraints.
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5 Concentration of measure phenomenon

In order to discuss the concentration of measure phenomenon might being happened to the uncertainty-

product, we will use the concentration of measure phenomenon on the special unitary group SU(Hd),

established recently by Oszmaniec in his thesis [28].

Proposition 5.1 (Concentration of measure on SU(Hd)). Consider a special unitary group SU(Hd) equipped

with the Haar measure µHaar and a Riemann metric gHS. Let f : SU(Hd) → R be a smooth function on SU(Hd)

with the mean f̄ =
∫

SU(Hd)
f (U)dµHaar(U), let

L =
√

max {gHS(∇ f ,∇ f ) : U ∈ SU(Hd)} (5.1)

be the Lipschitz constant of f . Then, for every ǫ > 0, the following concentration inequalities hold

µHaar

{
U ∈ SU(Hd) : f (U)− f̄ > ǫ

}
6 exp

(
− dǫ2

4L2

)
, (5.2)

µHaar

{
U ∈ SU(Hd) : f (U)− f̄ 6 −ǫ

}
6 exp

(
− dǫ2

4L2

)
. (5.3)

Denote

Φ(U) = ∆A(UρU†)2 · ∆B(UρU†)2. (5.4)

From (4.4), we see that

Φ(U) = Tr
(

U⊗4ρ⊗4U†,⊗4
[

A2 ⊗ B2 ⊗ 1
⊗2 + A⊗2 ⊗ B⊗2 − A2 ⊗ B⊗2 ⊗ 1 − A⊗2 ⊗ B2 ⊗ 1

])
. (5.5)

By using the result in [28, Lemma 6.1], we see that the Lipschitz constant LΦ of the function Φ, with

respect to the metric tensor gHS, satisfies

LΦ 6 8
∥∥∥A2 ⊗ B2 ⊗ 1

⊗2 + A⊗2 ⊗ B⊗2 − A2 ⊗ B⊗2 ⊗ 1 − A⊗2 ⊗ B2 ⊗ 1

∥∥∥
∞

6 32 ‖A‖2
∞ ‖B‖2

∞ . (5.6)

Thus we have the following result:

Theorem 5.2 (Concentration of measure within isospectral density matrices). For every ǫ > 0, the following

concentration inequalities hold

µHaar

{
U ∈ SU(Hd) : Φ(U)− Φ > ǫ

}
6 exp

(
− dǫ2

4096 ‖A‖4
∞ ‖B‖4

∞

)
, (5.7)

µHaar

{
U ∈ SU(Hd) : Φ(U)− Φ 6 −ǫ

}
6 exp

(
− dǫ2

4096 ‖A‖4
∞ ‖B‖4

∞

)
. (5.8)

This result shows that when we consider the uncertainty-product for two bounded observables A and

B over the set of isospectral density matrices, the uncertainty-product around its average, in (4.6)

Φ =
8

∑
j=1

ωj(Λ) · Ωj(A, B), (5.9)

has an overwhelming probability.
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Lemma 5.3 (Lévy’s lemma). Let f : Sk → R be a Lipschitz function from k-sphere to real line with the Lipschitz

constant L (with respect to the Euclidean norm) and a point u ∈ S
k be chosen uniformly at random. Then, for all

ǫ > 0,

Pr
{∣∣ f (u)− f̄

∣∣ > ǫ
}
6 2 exp

(
− (k + 1)ǫ2

9π3L2 ln 2

)
, (5.10)

where f̄ :=
∫

Sk f (u)dµ(u) means the mean value of f with respect to uniform probability measure on the unit sphere

Sk.

Let f (ρ) = ∆A(ρ)2 · ∆B(ρ)2. Then

f (ρ)− f (σ) = Tr
([

A2 ⊗ B2
] [

ρ⊗2 − σ⊗2
])

+ Tr
([

A⊗2 ⊗ B⊗2
] [

ρ⊗4 − σ⊗4
])

−Tr
([

A2 ⊗ B⊗2
] [

ρ⊗3 − σ⊗3
])

− Tr
([

B2 ⊗ A⊗2
] [

ρ⊗3 − σ⊗3
])

. (5.11)

Thus

| f (ρ)− f (σ) | 6

∣∣∣Tr
([

A2 ⊗ B2
] [

ρ⊗2 − σ⊗2
])∣∣∣+

∣∣∣Tr
([

A⊗2 ⊗ B⊗2
] [

ρ⊗4 − σ⊗4
])∣∣∣

+
∣∣∣Tr
([

A2 ⊗ B⊗2
] [

ρ⊗3 − σ⊗3
])∣∣∣+

∣∣∣Tr
([

B2 ⊗ A⊗2
] [

ρ⊗3 − σ⊗3
])∣∣∣

6

∥∥∥A2 ⊗ B2
∥∥∥

∞

∥∥∥ρ⊗2 − σ⊗2
∥∥∥

1
+
∥∥∥A⊗2 ⊗ B⊗2

∥∥∥
∞

∥∥∥ρ⊗4 − σ⊗4
∥∥∥

1

+
∥∥∥A2 ⊗ B⊗2

∥∥∥
∞

∥∥∥ρ⊗3 − σ⊗3
∥∥∥

1
+
∥∥∥B2 ⊗ A⊗2

∥∥∥
∞

∥∥∥ρ⊗3 − σ⊗3
∥∥∥

1
. (5.12)

Since
∥∥∥ρ⊗k − σ⊗k

∥∥∥
1
6 k ‖ρ − σ‖1 , (5.13)

it follows that

| f (ρ)− f (σ) | 6
(

12 ‖A‖2
∞ ‖B‖2

∞

)
‖ρ − σ‖1 (5.14)

For the pure states, that is, ρ = |ψ〉〈ψ| and σ = |φ〉〈φ|, we have ‖ψ − φ‖1 6
√

2 ‖ψ − φ‖2, implying

| f (ψ)− f (φ) | 6 L · ‖ψ − φ‖2 , (5.15)

where L := 12
√

2 ‖A‖2
∞ ‖B‖2

∞. Note here that k = 2d − 1 since pure states live in Cd. Then

Pr
{∣∣ f (ψ)− f̄

∣∣ > ǫ
}
6 2 exp

(
− dǫ2

1296π3 ‖A‖4
∞ ‖B‖4

∞ ln 2

)
. (5.16)

When ‖A‖∞ and ‖B‖∞ are independent of the dimension d, it shows the concentration of measure phe-

nomenon.

In fact, we can view ρ and σ in D (Hd) as reduced states of Haar-distributed bipartite states |Ψρ〉 and

|Ψσ〉 in Hd ⊗Hd, then let g(Ψρ) = ∆A(ρ)2 · ∆B(ρ)2, where Ψρ = |Ψρ〉〈Ψρ| and ρ = Tr2

(
|Ψρ〉〈Ψρ|

)
. Thus

∣∣g(Ψρ)− g(Ψσ)
∣∣ 6 (12

√
2 ‖A‖2

∞ ‖B‖2
∞)
∥∥Ψρ − Ψσ

∥∥
2

. (5.17)

Then

Pr
{∣∣ f (ρ)− f̄

∣∣ > ǫ
}
6 2 exp

(
− d2ǫ2

1296π3 ‖A‖4
∞ ‖B‖4

∞ ln 2

)
. (5.18)

Thus we have the following:
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Theorem 5.4 (Concentration of measure). Assume that ‖A‖∞ and ‖B‖∞ are independent of dimension, where

A and B are bounded observables. It holds that

Pr
{∣∣∣∆A(ψ)2 · ∆B(ψ)2 − 〈∆A(ψ)2 · ∆B(ψ)2〉

∣∣∣ > ǫ
}
6 2 exp

(
− dǫ2

1296π3 ‖A‖4
∞ ‖B‖4

∞ ln 2

)
(5.19)

and

Pr
{∣∣∣∆A(ρ)2 · ∆B(ρ)2 − 〈∆A(ρ)2 · ∆B(ρ)2〉

∣∣∣ > ǫ
}
6 2 exp

(
− d2ǫ2

1296π3 ‖A‖4
∞ ‖B‖4

∞ ln 2

)
. (5.20)

Here 〈 f (ρ)〉 =
∫

f (ρ)dµHS(ρ).

Generally, observables A and B are dimension-dependent, thus we cannot obtain the concentration

of measure phenomenon universally. But of course, even though A and B are dimension-dependent, we

could still get the concentration of measure phenomenon, for instance, whenever their operator norms are

uniformly bounded. Besides, inequalities presented above do not have to be tight, i.e., even if the right

hand side is "large", the relevant left hand side might still be very small.

6 Concluding remarks

This paper deals with uncertainty relations in various random state ensembles. As suggested, taking

a state at random also corresponds to assuming minimal prior knowledge about the system in ques-

tion. We make an attempt in describing uncertainty relation using only observables by taking average of

uncertainty-product of any two bounded observables in our random state ensemble (see (4.48)). We also

establish the typicality of a random state with respect to any two bounded observables under restricted

conditions. The concentration of measure phenomenon is a very important property for a random state

since it predicates the bulk behavior of a large number of quantum particles without any practical de-

tections. Theoretically, sampled states randomly will show up average behavior with respect to a pair of

bounded observables as we increases the level of the quantum system under consideration. In addition,

we have also present an interesting result: beyond the set of zero-measure of all pure qubit states, it holds

that

∆A(ψ)2 · ∆B(ψ)2 =
(
〈{A, B}〉ψ − 〈A〉ψ〈B〉ψ

)2
+ 〈[A, B]〉2

ψ. (6.1)

This result indicates that any desire to improve the uncertainty-product universally seems impossible,

at least in the qubit case for two distinct observables σi and σj chosen from three Pauli’s matrices. Our

calculations can help us check how large the gap is between the uncertainty-product and any obtained

lower bounds about the uncertainty-product. We hope the results obtained in this paper will shed new

light on quantum information processing tasks.
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7 Appendix: the computation of Ek(Λ)

Consider a system of k qudits, each with a standard local computational basis {|i〉, i = 1, . . . , d}. The

Schur-Weyl duality relates transforms on the system performed by local d-dimensional unitary operations

to those performed by permutation of the qudits. Recall that the symmetric group Sk is the group of all

permutations of k objects. This group is naturally represented in our system by

P(π)|i1 · · · ik〉 := |iπ−1(1) · · · iπ−1(k)〉, (7.1)

where π ∈ Sk is a permutation and |i1 · · · ik〉 is shorthand for |i1〉 ⊗ · · · ⊗ |ik〉. Let U (d) be the group of

d × d unitary operators. This group is naturally represented in our system by

Q(U)|i1 · · · ik〉 := U|i1〉 ⊗ · · · ⊗ U|ik〉, (7.2)

where U ∈ U (d). Thus we have the following famous result:

Theorem 7.1 (Schur). Let A = span {P(π) : π ∈ Sk} and B = span {Q(U) : U ∈ U (d)}. Then:

A′ = B and A = B′ (7.3)

The following result concerns with a wonderful decomposition of the representations on k-fold tensor

space (Cd)⊗k of U (d) and Sk, respectively, using their corresponding irreps accordingly.

Theorem 7.2 (Schur-Weyl duality). There exist a basis, known as Schur basis, in which representation
(

QP, (Cd)⊗k
)

of U (d)× Sk decomposes into irreducible representations Qλ and Pλ of U (d) and Sk, respectively:

(i) (Cd)⊗k ∼=⊕
λ⊢(k,d) Qλ ⊗ Pλ;

(ii) P(π) ∼=⊕
λ⊢(k,d) 1Qλ

⊗ Pλ(π);

(iii) Q(U) ∼=⊕
λ⊢(k,d) Qλ(U)⊗ 1Pλ

.

Since Q and P commute, we can define representation
(

QP, (Cd)⊗k
)

of U (d)× Sk as

QP(U, π) = Q(U)P(π) = P(π)Q(U) ∀(U, π) ∈ U (d)× Sk. (7.4)

Then:

QP(U, π) = U⊗kPπ = PπU⊗k ∼=
⊕

λ⊢(k,d)

Qλ(U)⊗ Pλ(π). (7.5)
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The dimensions of pairing irreps for U (d) and Sk, respectively, in Schur-Weyl duality can be computed

by so-called hook length formulae. The hook of box (i, j) in a Young diagram determined by a partition λ is

given by the box itself, the boxes to its right and below. The hook length is the number of boxes in a hook.

Specifically, we have the following result without its proof:

Theorem 7.3 (Hook length formulae). The dimensions of pairing irreps for U (d) and Sk, respectively, in Schur-

Weyl duality can be given as follows:

dim(Qλ) = ∏
(i,j)∈λ

d + j − i
h(i, j)

= ∏
16i<j6d

λi − λj + j − i

j − i
, (7.6)

dim(Pλ) =
k!

∏(i,j)∈λ h(i, j)
. (7.7)

In [29], Schur-Weyl duality is employed to give a computation about the integral of the following form:

∫

U(d)
U⊗kM(U⊗k)†dµHaar(U). (7.8)

Moreover we have obtained that

∫

U(d)
U⊗kM(U⊗k)†dµHaar(U) =

(

∑
π∈Sk

Tr (MP(π)) P(π−1)

)(

∑
π∈Sk

Wg(π)P(π−1)

)
, (7.9)

where Weingarten function Wg is defined over Sk by

Wg(π) :=
1

(k!)2 ∑
λ⊢k

dim(Pλ)
2

dim(Qλ)
χλ(π) (7.10)

for each π ∈ Sk and χλ(π) = Tr (Pλ(π)) is the value of the character of irrep Pλ at π ∈ Sk.

Here we consider a special case where the above-mentioned M = Λ⊗k for a given spectrum Λ and any

natural number k, thus we introduce a new symbol for convenience:

Ek(Λ) :=
∫
(UΛU†)⊗kdµHaar(U). (7.11)

Throughout this paper, we frequently leave out the integral domain U (d) when we consider matrix inte-

gral taken over the whole unitary group U (d) unless stated otherwise. We see that

Ek(Λ) = ∑
λ⊢(k,d)

Tr
(

Λ⊗kCλ

)

Tr (Cλ)
Cλ, (7.12)

where

Cλ :=
dim(Pλ)

k! ∑
π∈Sk

χλ(π)P(π). (7.13)

7.1 The case where k = 1, 2.

It is already known in [29] that

∫
UXU†dµHaar(U) =

Tr (X)

d
1d (7.14)
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and

∫
(U ⊗ U)M(U ⊗ U)†dµHaar(U)

=

(
Tr (M)

d2 − 1
− Tr (MF)

d(d2 − 1)

)
1d ⊗ 1d −

(
Tr (M)

d(d2 − 1)
− Tr (MF)

d2 − 1

)
F, (7.15)

where F := ∑
d
i,j=1 |ji〉〈ij| is called a swap operator. Thus

E1(Λ) =
1d

d
, (7.16)

E2(Λ) =
1

d2 − 1

[(
1 − Tr

(
Λ2
)

d

)
1d ⊗ 1d −

(
1

d
− Tr

(
Λ2
))

F

]

= ∆
(2)
2 C(2) + ∆

(1,1)
2 C(1,1), (7.17)

where

∆
(2)
2 :=

1 + Tr
(
Λ2
)

d(d + 1)
, ∆

(1,1)
2 :=

1 − Tr
(
Λ2
)

(d − 1)d
(7.18)

and

Cλ =





1
2 (P(1) + P(12)), if λ = (2),

1
2 (P(1) − P(12)), if λ = (1, 1).

(7.19)

7.2 The formula of E3(Λ)

In what follows, we compute E3(Λ). Note that we get the following decomposition via Schur-Weyl duality

(Cd)⊗3 ∼= Q(3) ⊗ P(3)

⊕
Q(2,1) ⊗ P(2,1)

⊕
Q(1,1,1)⊗ P(1,1,1) (7.20)

where

dim(Qλ) =





d(d+1)(d+2)
6 , if λ = (3),

(d−1)d(d+1)
3 , if λ = (2, 1),

(d−2)(d−1)d
6 , if λ = (1, 1, 1),

and dim(Pλ) =





1, if λ = (3),

2, if λ = (2, 1),

1, if λ = (1, 1, 1).

(7.21)

Hence

Cλ =






1
6

(
P(1) + P(12) + P(13)+ P(23)+ P(123)+ P(132)

)
, if λ = (3),

1
3

(
2P(1)− P(123)− P(132)

)
, if λ = (2, 1),

1
6

(
P(1) − P(12) − P(13)− P(23)+ P(123)+ P(132)

)
, if λ = (1, 1, 1).

(7.22)

It follows that

Tr (Cλ) =





d(d+1)(d+2)
6 , if λ = (3),

2(d−1)d(d+1)
3 , if λ = (2, 1),

(d−2)(d−1)d
6 , if λ = (1, 1, 1)

(7.23)
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and

Tr
(

Λ⊗3Cλ

)
=





1
6

[
1 + 3 Tr

(
Λ2
)
+ 2 Tr

(
Λ3
)]

, if λ = (3),

2
3

[
1 − Tr

(
Λ3
)]

, if λ = (2, 1),

1
6

[
1 − 3 Tr

(
Λ2
)
+ 2 Tr

(
Λ3
)]

, if λ = (1, 1, 1).

(7.24)

Therefore

E3(ρ) = ∆
(3)
3 C(3) + ∆

(2,1)
3 C(2,1) + ∆

(1,1,1)
3 C(1,1,1), (7.25)

where

∆
(3)
3 :=

1 + 3 Tr
(
Λ2
)
+ 2 Tr

(
Λ3
)

d(d + 1)(d + 2)
, (7.26)

∆
(2,1)
3 :=

1 − Tr
(
Λ3
)

(d − 1)d(d + 1)
, (7.27)

∆
(1,1,1)
3 :=

1 − 3 Tr
(
Λ2
)
+ 2 Tr

(
Λ3
)

(d − 2)(d − 1)d
. (7.28)

7.3 The formula of E4(Λ)

Similar we get the following decomposition:

(Cd)⊗4 ∼= Q(4) ⊗ P(4)

⊕
Q(3,1) ⊗ P(3,1)

⊕
Q(2,2) ⊗ P(2,2)

⊕
Q(2,1,1) ⊗ P(2,1,1)

⊕
Q(1,1,1,1) ⊗ P(1,1,1,1), (7.29)

where

dim(Qλ) =





d(d+1)(d+2)(d+3)
24 , if λ = (4),

(d−1)d(d+1)(d+2)
8 , if λ = (3, 1),

(d−1)d2(d+1)
12 , if λ = (2, 2),

(d−2)(d−1)d(d+1)
8 , if λ = (2, 1, 1),

(d−3)(d−2)(d−1)d
24 , if λ = (1, 1, 1, 1),

and dim(Pλ) =





1, if λ = (4),

3, if λ = (3, 1),

2, if λ = (2, 2),

3, if λ = (2, 1, 1),

1, if λ = (1, 1, 1, 1).

(7.30)

Hence we have:

C(4) =
1

24
P(1) +

1

24

(
P(12) + P(13)+ P(14)+ P(23) + P(24) + P(34)

)

+
1

24

(
P(12)(34)+ P(13)(24)+ P(14)(23)

)

+
1

24

(
P(123)+ P(132)+ P(124)+ P(142) + P(134)+ P(143)+ P(234) + P(243)

)

+
1

24

(
P(1234)+ P(1243)+ P(1324)+ P(1342)+ P(1423)+ P(1432)

)
, (7.31)

C(3,1) =
3

8
P(1) +

1

8

(
P(12)+ P(13)+ P(14) + P(23) + P(24) + P(34)

)

−1

8

(
P(12)(34)+ P(13)(24)+ P(14)(23)

)

−1

8

(
P(1234)+ P(1243)+ P(1324)+ P(1342)+ P(1423)+ P(1432)

)
, (7.32)
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C(2,2) =
1

6
P(1) +

1

6

(
P(12)(34)+ P(13)(24)+ P(14)(23)

)

− 1

12

(
P(123)+ P(132)+ P(124)+ P(142)+ P(134) + P(143)+ P(234)+ P(243)

)
, (7.33)

C(2,1,1) =
3

8
P(1) −

1

8

(
P(12) + P(13) + P(14)+ P(23)+ P(24) + P(34)

)

−1

8

(
P(12)(34)+ P(13)(24)+ P(14)(23)

)

+
1

8

(
P(1234)+ P(1243)+ P(1324)+ P(1342)+ P(1423)+ P(1432)

)
, (7.34)

C(1,1,1,1) =
1

24
P(1) −

1

24

(
P(12) + P(13)+ P(14)+ P(23) + P(24) + P(34)

)

+
1

24

(
P(12)(34)+ P(13)(24)+ P(14)(23)

)

+
1

24

(
P(123)+ P(132)+ P(124)+ P(142) + P(134)+ P(143)+ P(234) + P(243)

)

− 1

24

(
P(1234)+ P(1243)+ P(1324)+ P(1342)+ P(1423)+ P(1432)

)
, (7.35)

E4(ρ) = ∆
(4)
4 C(4) + ∆

(3,1)
4 C(3,1) + ∆

(2,2)
4 C(2,2) + ∆

(2,1,1)
4 C(2,1,1)+ ∆

(1,1,1,1)
4 C(1,1,1,1), (7.36)

where

∆
(4)
4 :=

1 + 6 Tr
(
Λ2
)
+ 3 Tr

(
Λ2
)2

+ 8 Tr
(
Λ3
)
+ 6 Tr

(
Λ4
)

d(d + 1)(d + 2)(d + 3)
, (7.37)

∆
(3,1)
4 :=

1 + 2 Tr
(
Λ2
)
− Tr

(
Λ2
)2 − 2 Tr

(
Λ4
)

(d − 1)d(d + 1)(d + 2)
, (7.38)

∆
(2,2)
4 :=

1 + 3 Tr
(
Λ2
)2 − 4 Tr

(
Λ3
)

(d − 1)d2(d + 1)
, (7.39)

∆
(2,1,1)
4 :=

1 − 2 Tr
(
Λ2
)
− Tr

(
Λ2
)2

+ 2 Tr
(
Λ4
)

(d − 2)(d − 1)d(d + 1)
, (7.40)

∆
(1,1,1,1)
4 :=

1 − 6 Tr
(
Λ2
)
+ 3 Tr

(
Λ2
)2

+ 8 Tr
(
Λ3
)
− 6 Tr

(
Λ4
)

(d − 3)(d − 2)(d − 1)d
. (7.41)

7.3.1 The (k, d) = (2, 2) case

We have

∆
(2)
2 =

1 + t2

6
, ∆

(1,1)
2 =

1 − t2

2
. (7.42)

7.3.2 The (k, d) = (3, 2) case

We have

∆
(3)
3 =

1 + 3t2 + 2t3

24
, ∆

(2,1)
3 :=

1 − t3

6
, ∆

(1,1,1)
3 = 0. (7.43)
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7.3.3 The (k, d) = (4, 2) case

We have

∆
(4)
4 =

1 + 6t2 + 3t2
2 + 8t3 + 6t4

120
, (7.44)

∆
(3,1)
4 =

1 + 2t2 − t2
2 − 2t4

24
, (7.45)

∆
(2,2)
4 =

1 + 3t2
2 − 4t3

12
, (7.46)

∆
(1,1,1,1)
4 = 0. (7.47)

7.4 The moment of Tr
(
ρk
)
= tk

In fact, we have already known that

Proposition 7.4 ([20]). We have:

〈t2〉 =
∫

dµHS(ρ) Tr
(

ρ2
)

=
2d

d2 + 1
, (7.48)

〈t3〉 =
∫

dµHS(ρ) Tr
(

ρ3
)

=
5d2 + 1

(d2 + 1) (d2 + 2)
, (7.49)

〈t4〉 =
∫

dµHS(ρ) Tr
(

ρ4
)

=
14d3 + 10d

(d2 + 1) (d2 + 2) (d2 + 3)
. (7.50)

Remark 7.5. It is obvious that

〈t2〉 =
∫

dν(Λ) Tr
(

Λ2
)

=
2d

d2 + 1
, (7.51)

〈t3〉 =
∫

dν(Λ) Tr
(

Λ3
)

=
5d2 + 1

(d2 + 1) (d2 + 2)
, (7.52)

〈t4〉 =
∫

dν(Λ) Tr
(

Λ4
)

=
14d3 + 10d

(d2 + 1) (d2 + 2) (d2 + 3)
. (7.53)

Lemma 7.6. It holds that
〈

t2
2

〉
=
∫

dµHS(ρ)
[
Tr
(

ρ2
)]2

=
4d4 + 18d2 + 2

(d2 + 1) (d2 + 2) (d2 + 3)
. (7.54)

Proof. In what follows, we calculate the integral:

∫
dµHS(ρ)

[
Tr
(

ρ2
)]2

=
∫

dν(Λ) Tr
(

Λ2
)2

=
∫

dν(Λ)

(
Tr
(

Λ4
)
+ 2 ∑

i<j

λ2
i λ2

j

)

=
∫

dν(Λ) Tr
(

Λ4
)
+ 2Cd

HS

∫ (

∑
i<j

λ2
i λ2

j

)
δ

(
1 −

d

∑
j=1

λj

)
|∆(λ) |2

d

∏
j=1

dλj

=
∫

dν(Λ) Tr
(

Λ4
)
+ 2Cd

HS

(
d
2

) ∫ (
λ2

1λ2
2

)
δ

(
1 −

d

∑
j=1

λj

)
|∆(λ) |2

d

∏
j=1

dλj, (7.55)

where Cd
HS is the normalization constant:

Cd
HS =

Γ
(
d2
)

Γ(d + 1) ∏
d
j=1 Γ(j)2

. (7.56)
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Next, we calculate the following integral:

∫ (
λ2

1λ2
2

)
δ

(
1 −

d

∑
j=1

λj

)
|∆(λ) |2

d

∏
j=1

dλj. (7.57)

Let

F(t) =
∫ (

λ2
1λ2

2

)
δ

(
t −

d

∑
j=1

λj

)
|∆(λ) |2

d

∏
j=1

dλj. (7.58)

Performing Laplace transform (t → s) of F(t) gives rise to

F̃(s) =
∫ ∞

0

(
λ2

1λ2
2

)
exp

(
−s

d

∑
j=1

λj

)
|∆(λ) |2

d

∏
j=1

dλj

= s−(d2+4)
∫ ∞

0

(
µ2

1µ2
2

)
exp

(
−

d

∑
j=1

µj

)
|∆(µ) |2

d

∏
j=1

dµj. (7.59)

Using the inverse Laplace transform result (s → t): L −1(sα) = t−α−1

Γ(−α)
, it follows that

F(t) =
1

Γ(d2 + 4)
td2+3

∫ ∞

0

(
µ2

1µ2
2

)
exp

(
−

d

∑
j=1

µj

)
|∆(µ) |2

d

∏
j=1

dµj. (7.60)

Then

∫ (
λ2

1λ2
2

)
δ

(
1 −

d

∑
j=1

λj

)
|∆(λ) |2

d

∏
j=1

dλj =
1

Γ(d2 + 4)

∫ ∞

0

(
µ2

1µ2
2

)
exp

(
−

d

∑
j=1

µj

)
|∆(µ) |2

d

∏
j=1

dµj. (7.61)

Denote

〈 f (µ)〉q =

∫ ∞

0 · · ·
∫ ∞

0 f (µ)q(µ)dµ∫ ∞

0 · · ·
∫ ∞

0 q(µ)dµ
, (7.62)

where

q(µ) ≡ q(µ1, . . . , µd) = |∆(µ) |2γ
d

∏
j=1

µα−1
j e−µ jdµj. (7.63)

From Mehta’s book [30, Eq. (17.8.3), pp. 324], we see that

〈µ2
1 · · · µ2

kµk+1 · · · µm〉q =
k

∏
j=1

(α + 1 + γ(2d − m − j))
m

∏
j=1

(α + γ(d − j)). (7.64)

Letting k = m = 2 and (α, γ) = (1, 1) in the above equation, we obtain that

〈µ2
1µ2

2〉q =
2

∏
j=1

(2d − j) ·
2

∏
j=1

(d − j + 1) = 2d(d − 1)2(2d − 1). (7.65)

This implies that

∫ ∞

0

(
µ2

1µ2
2

)
exp

(
−

d

∑
j=1

µj

)
|∆(µ) |2

d

∏
j=1

dµj = 2d(d − 1)2(2d − 1)
∫ ∞

0
exp

(
−

d

∑
j=1

µj

)
|∆(µ) |2

d

∏
j=1

dµj. (7.66)
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Therefore

∫ (
λ2

1λ2
2

)
δ

(
1 −

d

∑
j=1

λj

)
|∆(λ) |2

d

∏
j=1

dλj =
2d(d − 1)2(2d − 1)

Γ(d2 + 4)

∫ ∞

0
exp

(
−

d

∑
j=1

µj

)
|∆(µ) |2

d

∏
j=1

dµj. (7.67)

Since

∫ ∞

0
· · ·

∫ ∞

0
q(µ)dµ =

d

∏
j=1

Γ(j)Γ(j + 1) = Γ(d + 1)
d

∏
j=1

Γ(j)2. (7.68)

Finally we get

∫ (
λ2

1λ2
2

)
δ

(
1 −

d

∑
j=1

λj

)
|∆(λ) |2

d

∏
j=1

dλj = 2d(d − 1)2(2d − 1)
Γ(d + 1)

Γ(d2 + 4)

d

∏
j=1

Γ(j)2. (7.69)

Based on this computation, we finally obtain that

∫
dµHS(ρ)

[
Tr
(

ρ2
)]2

=
14d3 + 10d

(d2 + 1) (d2 + 2) (d2 + 3)

+2
Γ
(
d2
)

Γ(d + 1) ∏
d
j=1 Γ(j)2

(
d
2

)
2d(d − 1)2(2d − 1)

Γ(d + 1)

Γ(d2 + 4)

d

∏
j=1

Γ(j)2

=
14d3 + 10d

(d2 + 1) (d2 + 2) (d2 + 3)
+

2(d − 1)3(2d − 1)

(d2 + 1) (d2 + 2) (d2 + 3)
. (7.70)

Therefore we completes the proof.

7.5 The proof of Theorem 4.1

For the first term in the left hands (lhs) of the above equation:

Tr
([

A2 ⊗ B2
]
E2(Λ)

)
=

∆
(2)
2

2

[
Tr
(

A2
)

Tr
(

B2
)
+ Tr

(
A2B2

)]

+
∆
(1,1)
2

2

[
Tr
(

A2
)

Tr
(

B2
)
− Tr

(
A2B2

)]
. (7.71)

Then for the third and fourth terms:

Tr
([

A2 ⊗ B⊗2
]
E3(Λ)

)

=
∆
(3)
3

6

[
Tr
(

A2
)

Tr (B)2 + 2 Tr
(

A2B
)

Tr (B) + Tr
(

A2
)

Tr
(

B2
)
+ 2 Tr

(
A2B2

)]

+
2∆

(2,1)
3

3

[
Tr
(

A2
)

Tr (B)2 − Tr
(

A2B2
)]

+
∆
(1,1,1)
3

6

[
Tr
(

A2
)

Tr (B)2 − 2 Tr
(

A2B
)

Tr (B)− Tr
(

A2
)

Tr
(

B2
)
+ 2 Tr

(
A2B2

)]
(7.72)
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and

Tr
([

B2 ⊗ A⊗2
]
E3(Λ)

)

=
∆
(3)
3

6

[
Tr
(

B2
)

Tr (A)2 + 2 Tr
(

B2 A
)

Tr (A) + Tr
(

B2
)

Tr
(

A2
)
+ 2 Tr

(
B2A2

)]

+
2∆

(2,1)
3

3

[
Tr
(

B2
)

Tr (A)2 − Tr
(

B2 A2
)]

+
∆
(1,1,1)
3

6

[
Tr
(

B2
)

Tr (A)2 − 2 Tr
(

B2A
)

Tr (A)− Tr
(

B2
)

Tr
(

A2
)
+ 2 Tr

(
B2A2

)]
. (7.73)

The second term is:

Tr
([

A⊗2 ⊗ B⊗2
]
E4(Λ)

)

=
∆
(4)
4

24

[
Tr (A)2 Tr (B)2 + Tr

(
A2
)

Tr (B)2 + 4 Tr (AB)Tr (A) Tr (B) + Tr (A)2 Tr
(

B2
)
+ Tr

(
A2
)

Tr
(

B2
)

+2 Tr (AB)2 + 4 Tr
(

A2B
)

Tr (B) + 4 Tr (A) Tr
(

AB2
)
+ 4 Tr

(
A2B2

)
+ 2 Tr (ABAB)

]

+
∆
(3,1)
4

8

[
3 Tr (A)2 Tr (B)2 + Tr

(
A2
)

Tr (B)2 + 4 Tr (AB)Tr (A) Tr (B) + Tr (A)2 Tr
(

B2
)

−Tr
(

A2
)

Tr
(

B2
)
− 2 Tr (AB)2 − 4 Tr

(
A2B2

)
− 2 Tr (ABAB)

]

+
∆
(2,2)
4

12

[
2 Tr (A)2 Tr (B)2 + 2 Tr

(
A2
)

Tr
(

B2
)
+ 4 Tr (AB)2 − 4 Tr

(
A2B

)
Tr (B)− 4 Tr (A) Tr

(
AB2

)]

+
∆
(2,1,1)
4

8

[
3 Tr (A)2 Tr (B)2 − Tr

(
A2
)

Tr (B)2 − 4 Tr (AB)Tr (A)Tr (B)− Tr (A)2 Tr
(

B2
)

−Tr
(

A2
)

Tr
(

B2
)
− 2 Tr (AB)2 + 4 Tr

(
A2B2

)
+ 2 Tr (ABAB)

]

+
∆
(1,1,1,1)
4
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[
Tr (A)2 Tr (B)2 − Tr

(
A2
)

Tr (B)2 − 4 Tr (AB)Tr (A)Tr (B)− Tr (A)2 Tr
(

B2
)
+ Tr

(
A2
)

Tr
(

B2
)

+2 Tr (AB)2 + 4 Tr
(

A2B
)

Tr (B) + 4 Tr (A) Tr
(

AB2
)
− 4 Tr

(
A2B2

)
− 2 Tr (ABAB)

]
. (7.74)

Therefore, we get the conclusion.

7.6 The proof of Theorem 4.4

Clearly, for k = 2, 3, 4, we know that
∫

dµ(ψ)|ψ〉〈ψ|⊗k = ∆
(k)
k C(k). (7.75)

Then
∫

∆A(ψ)2 · ∆B(ψ)2dµ(ψ)

=
∫

dµ(ψ) Tr
([

A2 ⊗ B2
]

ψ⊗2
)
+
∫

dµ(ψ) Tr
([

A⊗2 ⊗ B⊗2
]

ψ⊗4
)

−
∫

dµ(ψ) Tr
([

A2 ⊗ B⊗2
]

ψ⊗3
)
−
∫

dµ(ψ) Tr
([

B2 ⊗ A⊗2
]

ψ⊗3
)

, (7.76)

Now,
∫

Tr
([

A2 ⊗ B2
]

ψ⊗2
)

dµ(ψ) =
1

d(d + 1)

[
Tr
(

A2
)

Tr
(

B2
)
+ Tr

(
A2B2

)]
(7.77)
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∫
Tr
([

A⊗2 ⊗ B⊗2
]

ψ⊗4
)

dµ(ψ) =
1

d(d + 1)(d + 2)(d + 3)
Ω(A, B), (7.78)

where

Ω(A, B) = Tr (A)2 Tr (B)2 + Tr
(

A2
)

Tr (B)2 + 4 Tr (AB)Tr (A) Tr (B) + Tr (A)2 Tr
(

B2
)

+Tr
(

A2
)

Tr
(

B2
)
+ 2 Tr (AB)2 + 4 Tr

(
A2B

)
Tr (B) + 4 Tr (A)Tr

(
AB2

)

+4 Tr
(

A2B2
)
+ 2 Tr (ABAB) . (7.79)

Moreover
∫

Tr
([

A2 ⊗ B⊗2
]

ψ⊗3
)

dµ(ψ)

=
1

d(d + 1)(d + 2)

[
Tr
(

A2
)

Tr (B)2 + 2 Tr
(

A2B
)

Tr (B) + Tr
(

A2
)

Tr
(

B2
)
+ 2 Tr

(
A2B2

)]
(7.80)

and
∫

Tr
([

B2 ⊗ A⊗2
]

ψ⊗3
)

dµ(ψ)

=
1

d(d + 1)(d + 2)

[
Tr
(

B2
)

Tr (A)2 + 2 Tr
(

B2A
)

Tr (A) + Tr
(

A2
)

Tr
(

B2
)
+ 2 Tr

(
A2B2

)]
.(7.81)

Thus

d(d + 1)(d + 2)(d + 3)
∫

∆A(ψ)2 · ∆B(ψ)2dµ(ψ)

= Ω(A, B) + (d + 2)(d + 3)
[
Tr
(

A2
)

Tr
(

B2
)
+ Tr

(
A2B2

)]

− (d + 3)
[
Tr
(

A2
)

Tr (B)2 + 2 Tr
(

A2B
)

Tr (B) + Tr
(

A2
)

Tr
(

B2
)
+ 2 Tr

(
A2B2

)]

− (d + 3)
[
Tr
(

B2
)

Tr (A)2 + 2 Tr
(

B2A
)

Tr (A) + Tr
(

A2
)

Tr
(

B2
)
+ 2 Tr

(
A2B2

)]
(7.82)

d(d + 1)(d + 2)(d + 3)
∫

∆A(ψ)2 · ∆B(ψ)2dµ(ψ)

= Tr (A)2 Tr (B)2 − (d + 2) Tr
(

A2
)

Tr (B)2 + 4 Tr (AB)Tr (A) Tr (B)

− (d + 2) Tr (A)2 Tr
(

B2
)
+ (d2 + 3d + 1) Tr

(
A2
)

Tr
(

B2
)
+ 2 Tr (AB)2

− 2(d + 1) Tr
(

A2B
)

Tr (B)− 2(d + 1) Tr (A)Tr
(

AB2
)

+ (d2 + d − 2) Tr
(

A2B2
)
+ 2 Tr (ABAB) . (7.83)

Therefore

d(d + 1)(d + 2)(d + 3)
∫

∆A(ψ)2 · ∆B(ψ)2dµ(ψ)

= Tr (A)2 Tr (B)2 + 4 Tr (AB)Tr (A) Tr (B) + 2 Tr (AB)2 + 2 Tr (ABAB)

− (d + 2)
[
Tr
(

A2
)

Tr (B)2 + Tr (A)2 Tr
(

B2
)]

− 2(d + 1)
[
Tr
(

A2B
)

Tr (B) + Tr (A) Tr
(

AB2
)]

+ (d2 + 3d + 1) Tr
(

A2
)

Tr
(

B2
)
+ (d2 + d − 2) Tr

(
A2B2

)
, (7.84)
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that is,

∫
∆A(ψ)2 · ∆B(ψ)2dµ(ψ) =

8

∑
j=1

ujΩj(A, B), (7.85)

where Ωj(A, B) is from Theorem 4.1, and for Kd = (d(d + 1)(d + 2)(d + 3))−1,

u1 = Kd, u2 = −(d + 2)Kd, u3 = 4Kd, u4 = (d2 + 3d + 1)Kd, (7.86)

u5 = 2Kd, u6 = −2(d + 1)Kd, u7 = (d2 + d − 2)Kd, u8 = 2Kd. (7.87)

In the following we calculate the average lower bound,

∫
dµ(ψ)

(
〈{A, B}〉ψ − 〈A〉ψ〈B〉ψ

)2
=
∫

dµ(ψ)
[
〈{A, B}〉2

ψ + 〈A〉2
ψ〈B〉2

ψ − 2〈{A, B}〉ψ〈A〉ψ〈B〉ψ

]

=
1

d(d + 1)

[
Tr ({A, B})2 + Tr

(
{A, B}2

)]
+

1

d(d + 1)(d + 2)(d + 3)
Ω(A, B)

− 2

d(d + 1)(d + 2)
[Tr (A)Tr (B)Tr ({A, B}) + Tr (AB)Tr ({A, B}) + Tr (A{A, B})Tr (B)

+ Tr (A) Tr (B{A, B}) + Tr (AB{A, B}) + Tr (A{A, B}B)]

=
1

d(d + 1)

[
Tr (AB)2 +

1

2
Tr (ABAB) +

1

2
Tr
(

A2B2
)]

+
1

d(d + 1)(d + 2)(d + 3)
Ω(A, B)

− 2

d(d + 1)(d + 2)
[Tr (A)Tr (B)Tr (AB) + Tr (AB)2 + Tr

(
A2B

)
Tr (B)

+Tr
(

B2A
)

Tr (A) + 2 Tr (ABAB) + 2 Tr
(

A2B2
)]

(7.88)

and

∫
〈[A, B]〉2

ψdµ(ψ) =
∫

dµ(ψ)
[
〈ψ |AB|ψ〉2 + 〈ψ |BA|ψ〉2 − 2 〈ψ |AB| ψ〉 〈ψ |BA|ψ〉

]

=
1

2d(d + 1)

[
Tr
(

A2B2
)
− Tr (ABAB)

]
. (7.89)

Therefore we have that

∫
dµ(ψ)

[(
〈{A, B}〉ψ − 〈A〉ψ〈B〉ψ

)2
+ 〈[A, B]〉2

ψ

]
=

8

∑
j=1

ljΩj(A, B), (7.90)

where

l1 = Kd, l2 = Kd, l3 = −2(d + 1)Kd, l4 = Kd, l5 = (d + 1)(d + 2)Kd, (7.91)

l6 = −2(d + 1)Kd, l7 = (d2 + d − 2)Kd, l8 = −2(2d + 5)Kd. (7.92)

7.7 The proof of Theorem 4.10

Since the first term in the rhs of (1.3) can be rewritten as

(
〈{A, B}〉ρ − 〈A〉ρ〈B〉ρ

)2
= 〈{A, B}〉2

ρ + 〈A〉2
ρ〈B〉2

ρ − 2〈{A, B}〉ρ〈A〉ρ〈B〉ρ

= Tr
(

ρ⊗2{A, B}⊗2
)
+ Tr

(
ρ⊗4

[
A⊗2 ⊗ B⊗2

])
− 2 Tr

(
ρ⊗3 [{A, B} ⊗ A ⊗ B]

)
, (7.93)
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it follows that
∫

D(Hd)
dµHS(ρ)〈{A, B}〉2

ρ =
∫

dν(Λ) Tr
(
E2(Λ){A, B}⊗2

)

=
1

d2 + 1
Tr (AB)2 +

1

2d(d2 + 1)

[
Tr
(

A2B2
)
+ Tr (ABAB)

]
(7.94)

and
∫

D(Hd)
dµHS(ρ)〈A〉2

ρ〈B〉2
ρ =

∫
dν(Λ) Tr

(
E4(Λ)

[
A⊗2 ⊗ B⊗2

])

= α1Ω1(A, B) + α2 (Ω2(A, B) + 4Ω3(A, B)) + α3 (Ω4(A, B) + 2Ω5(A, B))

+ α4Ω6(A, B) + α5 (2Ω7(A, B) + Ω8(A, B)) , (7.95)

where

α1 = Nd

(
d4 − 18d2 + 158 − 50

d2 + 1
+

792

d2 + 2
− 1512

d2 + 3

)
(7.96)

α2 = Nd

(
d3 − 20d +

50d
d2 + 1

− 396d
d2 + 2

+
504d

d2 + 3

)
, (7.97)

α3 = Nd

(
−2d2 − 20 +

50

d2 + 1
− 396

d2 + 2
+

504

d2 + 3

)
, (7.98)

α4 = Nd

(
4d2 − 380+

500

d2 + 1
− 1584

d2 + 2
+

2016

d2 + 3

)
, (7.99)

α5 = Nd

(
2d − 100d

d2 + 1
+

396d
d2 + 2

− 336d
d2 + 3

)
. (7.100)

Moreover

Tr (E3(Λ) [{A, B} ⊗ A ⊗ B]) =
1

6
(∆

(3)
3 + 4∆

(2,1)
3 + ∆

(1,1,1)
3 ) [Tr (AB)Tr (A)Tr (B)]

+
1

6
(∆

(3)
3 − ∆

(1,1,1)
3 )

[
Tr
(

A2B
)

Tr (B) + Tr
(

AB2
)

Tr (A) + (Tr (AB))2
]

+
1

6
(∆

(3)
3 − 2∆

(2,1)
3 + ∆

(1,1,1)
3 )

[
Tr (ABAB) + Tr

(
A2B2

)]
. (7.101)

Therefore
∫

D(Hd)
dµHS(ρ)〈{A, B}〉ρ〈A〉ρ〈B〉ρ =

∫
dν(Λ) Tr (E3(Λ) [{A, B} ⊗ A ⊗ B])

= Ld

(
d2 − 8 − 10

d2 + 1
+

36

d2 + 2

)
Ω3(A, B)

+Ld

(
1 +

10

d2 + 1
− 18

d2 + 2

)
[Ω5(A, B) + Ω6(A, B)]

+Ld

(
1

2
d4 − 2d2 + 1 +

10

d2 + 1
− 18

d2 + 2

)
[Ω7(A, B) + Ω8(A, B)] (7.102)

where Ld = d(d2 − 1)(d2 − 4).

Since
∫

D(Hd)
dµHS(ρ)

(
〈{A, B}〉ρ − 〈A〉ρ〈B〉ρ

)2

=
∫

D(Hd)
dµHS(ρ)

(
〈{A, B}〉2

ρ − 2〈{A, B}〉ρ〈A〉ρ〈B〉ρ + 〈A〉2
ρ〈B〉2

ρ

)
, (7.103)
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and by (7.94), (7.95) and (7.102), we obtain the equality (4.73).

Moreover,

∫

D(Hd)
dµHS(ρ)〈[A, B]〉2

ρ =
∫

dν(Λ) Tr
(
E2(Λ)[A, B]⊗2

)

=
1

2d(d2 + 1)

[
Tr
(

A2B2
)
− Tr (ABAB)

]
,

=
1

2d(d2 + 1)
[Ω7(A, B)− Ω8(A, B)] . (7.104)

so we get (4.82).

7.8 Two examples in lower dimensions

In this section, we will present two examples in lower dimensions. Note that the results obtained previ-

ously are live in the space of the dimension being larger than three, as examples, we will deal with the

same problem in the 2-dimensional and 3-dimensional spaces, respectively.

Theorem 7.7. For two observables A and B on C
2, the average of uncertainty-product taken over the whole set of

all density matrices D
(
C2
)

is given by

∫
∆A(ρ)2 · ∆B(ρ)2dµHS(ρ)

=
2

105
Ω1 −

2

35
Ω2 +

4

105
Ω3 +

29

210
Ω4 +

1

105
Ω5 −

1

21
Ω6 +

3

70
Ω7 +

1

210
Ω8. (7.105)

Moreover, we have
∫

dµHS(ρ)
[(
〈{A, B}〉ρ − 〈A〉ρ〈B〉ρ

)2
+ 〈[A, B]〉2

ρ

]

=
2

105
Ω1 +

1

105
Ω2 −

2

21
Ω3 +

1

210
Ω4 +

1

7
Ω5 −

1

21
Ω6 +

8

105
Ω7 −

1

35
Ω8. (7.106)

Proof. For d = 2, we have

〈t2〉2 =
4

5
, 〈t3〉2 =

7

10
, 〈t4〉2 =

22

35
, 〈t2

2〉2 =
23

35
. (7.107)

Hence,

〈∆(2)
2 〉2 =

3

10
, 〈∆(1,1)

2 〉2 =
1

10
, (7.108)

〈∆(3)
3 〉2 =

1

5
, 〈∆(2,1)

3 〉2 =
1

20
, (7.109)

〈∆(4)
4 〉2 =

1

7
, 〈∆(3,1)

4 〉2 =
1

35
, 〈∆(2,2)

4 〉2 =
1

70
. (7.110)

Since

∫

D(H2)
Tr
([

A2 ⊗ B2
]
E2(Λ)

)
dν(Λ) =

3

20
(Ω4 + Ω7) +

1

20
(Ω4 − Ω7)

=
1

5
Ω4 +

1

10
Ω7, (7.111)
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it follows that
∫

D(H2)
Tr
([

A⊗2 ⊗ B⊗2
]
E4(Λ)

)
dν(Λ)

=
1

7
× 1

24
(Ω1 + Ω2 + 4Ω3 + Ω4 + 2Ω5 + 4Ω6 + 4Ω7 + 2Ω8)

+
1

35
× 1

8
(3Ω1 + Ω2 + 4Ω3 − Ω4 − 2Ω5 − 4Ω7 − 2Ω8)

+
1

70
× 1

12
(2Ω1 + 2Ω4 + 4Ω5 − 4Ω6)

=
2

105
Ω1 +

1

105
Ω2 +

4

105
Ω3 +

1

210
Ω4 +

1

105
Ω5 +

2

105
Ω6 +

1

105
Ω7 +

1

210
Ω8, (7.112)

and
∫

D(H2)
Tr
([

A2 ⊗ B⊗2 + B2 ⊗ A⊗2
]
E3(Λ)

)
dν(Λ)

=
1

5
× 1

6
(Ω2 + 2Ω4 + 2Ω6 + 4Ω7) +

1

20
× 2

3
(Ω2 − 2Ω7)

=
1

15
Ω2 +

1

15
Ω4 +

1

15
Ω6 +

1

15
Ω7, (7.113)

then by (4.5), we get
∫

D(H2)
∆A(ρ)2 · ∆B(ρ)2dµHS(ρ)

=
2

105
Ω1 −

2

35
Ω2 +

4

105
Ω3 +

29

210
Ω4 +

1

105
Ω5 −

1

21
Ω6 +

3

70
Ω7 +

1

210
Ω8. (7.114)

Since
∫

D(H2)
Tr
(
{A, B}⊗2

E2(Λ)
)

dν(Λ) =
1

5
Ω5 +

1

20
(Ω7 + Ω8) , (7.115)

∫

D(H2)
Tr ([{A, B} ⊗ A ⊗ B] E3(Λ))dν(Λ) =

1

15
Ω3 +

1

30
(Ω5 + Ω6) +

1

60
(Ω7 + Ω8) (7.116)

and
∫

D(H2)
Tr
(
[A, B]⊗2

E2(Λ)
)

dν(Λ) =
1

20
(Ω7 − Ω8) , (7.117)

then by (7.93), we get
∫

D(H2)
dµHS(ρ)

[(
〈{A, B}〉ρ − 〈A〉ρ〈B〉ρ

)2
+ 〈[A, B]〉2

ρ

]

=
2

105
Ω1 +

1

105
Ω2 −

2

21
Ω3 +

1

210
Ω4 +

1

7
Ω5 −

1

21
Ω6 +

8

105
Ω7 −

1

35
Ω8. (7.118)

We are done.

Theorem 7.8. For two observables A and B on C3, the average of uncertainty-product taken over the whole set of

all density matrices D
(
C3
)

is given by
∫

∆A(ρ)2 · ∆B(ρ)2dµHS(ρ)

=
3

440
Ω1 −

1

40
Ω2 +

1

110
Ω3 +

109

1032
Ω4 +

1

660
Ω5 −

1

66
Ω6 +

1

45
Ω7 +

1

1980
Ω8. (7.119)
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Moreover, we have
∫

dµHS(ρ)
[(
〈{A, B}〉ρ − 〈A〉ρ〈B〉ρ

)2
+ 〈[A, B]〉2

ρ

]

=
3

440
Ω1 +

1

440
Ω2 −

1

22
Ω3 +

1

1320
Ω4 +

1

12
Ω5 −

1

66
Ω6 +

14

495
Ω7 −

1

180
Ω8. (7.120)

Proof. For d = 3, we have

〈t2〉3 =
3

5
, 〈t3〉3 =

23

55
, 〈t4〉3 =

17

55
, 〈t2

2〉3 =
61

165
. (7.121)

Hence,

〈∆(2)
2 〉3 =

2

15
, 〈∆(1,1)

2 〉3 =
1

15
, (7.122)

〈∆(3)
3 〉3 =

2

33
, 〈∆(2,1)

3 〉3 =
4

165
, 〈∆(1,1,1)

3 〉3 =
1

165
(7.123)

〈∆(4)
4 〉3 =

1

33
, 〈∆(3,1)

4 〉3 =
1

99
, 〈∆(2,2)

4 〉3 =
1

165
〈∆(2,1,1)

4 〉3 =
1

495
. (7.124)

Since
∫

D(H3)
Tr
([

A2 ⊗ B2
]
E2(Λ)

)
dν(Λ) =

1

15
(Ω4 + Ω7) +

1

30
(Ω4 − Ω7) (7.125)

=
1

10
Ω4 +

1

30
Ω7, (7.126)

∫

D(H3)
Tr
([

A⊗2 ⊗ B⊗2
]
E4(Λ)

)
dν(Λ)

=
1

33
× 1

24
(Ω1 + Ω2 + 4Ω3 + Ω4 + 2Ω5 + 4Ω6 + 4Ω7 + 2Ω8)

+
1

99
× 1

8
(3Ω1 + Ω2 + 4Ω3 − Ω4 − 2Ω5 − 4Ω7 − 2Ω8)

+
1

165
× 1

12
(2Ω1 + 2Ω4 + 4Ω5 − 4Ω6)

+
1

495
× 1

8
(3Ω1 − Ω2 − 4Ω3 − Ω4 − 2Ω5 + 4Ω7 + 2Ω8)

=
3

440
Ω1 +

1

440
Ω2 +

1

110
Ω3 +

1

1320
Ω4 +

1

660
Ω5 +

1

330
Ω6 +

1

990
Ω7 +

1

1980
Ω8 (7.127)

and
∫

D(H3)
Tr
([

A2 ⊗ B⊗2 + B2 ⊗ A⊗2
]
E3(Λ)

)
dν(Λ)

=
2

33
× 1

6
(Ω2 + 2Ω4 + 2Ω6 + 4Ω7) +

4

165
× 2

3
(Ω2 − 2Ω7)

+
1

165
× 1

6
(Ω2 − 2Ω4 − 2Ω6 + 4Ω7)

=
3

110
Ω2 +

1

55
Ω4 +

1

55
Ω6 +

2

165
Ω7, (7.128)

then by (4.5), we get
∫

D(H3)
∆A(ρ)2 · ∆B(ρ)2dµHS(ρ)

=
3

440
Ω1 −

1

40
Ω2 +

1

110
Ω3 +

109

1032
Ω4 +

1

660
Ω5 −

1

66
Ω6 +

1

45
Ω7 +

1

1980
Ω8. (7.129)
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Since

∫

D(H3)
Tr
(
{A, B}⊗2

E2(Λ)
)

dν(Λ) =
1

10
Ω5 +

1

60
(Ω7 + Ω8) , (7.130)

∫

D(H3)
Tr ([{A, B} ⊗ A ⊗ B] E3(Λ))dν(Λ) =

3

110
Ω3 +

1

110
(Ω5 + Ω6) +

1

330
(Ω7 + Ω8) (7.131)

and

∫

D(H3)
Tr
(
[A, B]⊗2

E2(Λ)
)

dν(Λ) =
1

60
(Ω7 − Ω8) , (7.132)

then by (7.93), we get

∫

D(H3)
dµHS(ρ)

[(
〈{A, B}〉ρ − 〈A〉ρ〈B〉ρ

)2
+ 〈[A, B]〉2

ρ

]

=
3

440
Ω1 +

1

440
Ω2 −

1

22
Ω3 +

1

1320
Ω4 +

1

12
Ω5 −

1

66
Ω6 +

14

495
Ω7 −

1

180
Ω8. (7.133)

This completes the proof.
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