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Abstract

Here we study the thermodynamic cost of computation and control using ’physically univer-
sal’ cellular automata or Hamiltonians. The latter were previously defined as systems that admit
the implementation of any desired transformation on a finite target region by first initializing
the state of the surrounding and then letting the system evolve according to its autonomous
dynamics. This way, one obtains a model of control where each region can play both roles
the controller or the system to be controlled. In physically universal systems every degree of
freedom is indirectly accessible by operating on the remaining degrees of freedom.

In a nutshell, the thermodynamic cost of an operation is then given by the size of the region
around the target region that needs to be initialized. In the meantime, physically universal CAs
have been constructed by Schaeffer (in two dimensions) and Salo & Törmä (in one dimension).
Here we show that in Schaeffer’s CA the cost for implementing n operations grows linearly
in n, while operating in a thermodynamic cycle requires sublinear growth to ensure zero cost
per operation in the limit n → ∞. Although this particular result need not hold for general
physically universal CAs, this strong notion of universality does imply a certain kind of instability
of information, which could result in lower bounds on the cost of protecting information from
its noisy environment.

The technical results of the paper are sparse and quite simple. The contribution of the paper
is mainly conceptual and consists in illustrating the type of thermodynamic questions raised by
models of control that rely on the concept of physical universality.
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1 Why thermodynamics of computation and control re-

quires new models

1.1 The debate on thermodynamics of computation since the 1960s

The question of whether there are fundamental lower bounds on the energy consumption of
computing devices has attracted the attention of researchers since the 1960s. Landauer [1]
realized that logically irreversible operations like erasure of memory space necessarily require to
transfer the energy ln 2kT per bit to the environment (with k denoting Boltzmann’s constant and
T the temperature of the environment) due to the second law of thermodynamics.1 Bennett
[6] clarified that computation can be performed without logically irreversible operations and
thus Landauer’s argument does not prove any fundamental lower bound for the energy needed
by computation tasks without further specification. Ref. [7] argues that physical models of
reversible computation should include the clocking mechanism (that control the implementation
of logical gates) because otherwise one neglects the question of how to implement clocking in
a thermodynamically reversible way (after all, if both gates and clocking device are described
as quantum systems then the influence of the latter on the former would, to some extent, also
imply an influence of the former on the latter [8]).

1.2 External clocking and control signals as loopholes

To motivate this work step by step we first discuss the thermodynamics of clocking and synchro-
nization briefly which is a sophisticated problem [9, 10, 11, 12]. Ref. [11], for instance, studies
some synchronization protocols that suggest that thermodynamically reversible synchronization
requires to exchange quantum information, which links the a priori different tasks of reversible
computation and quantum computing.2

Going beyond the question of whether implementing reversible logical operations is possible
in a thermodynamically reversible way, we ask whether implementing unitary operations on some
quantum system is possible in a thermodynamically reversible way. Regardless of how we call the
physical devices controlling the implementation (we called it ‘clock’ in the case of computation
processes), also the implementation of a unitary U requires to ‘change Hamiltonians’ – except
for the special case where U = e−iHt with H being the free Hamiltonian of the system of
consideration. However, do we really have appropriate models for discussing the thermodynamic
cost of ‘changing a system’s Hamiltonian’? After all, describing a control field in classical terms
is only a valid approximation if it can be considered macroscopic. For instance, a ‘macroscopic’
number of electrons, sufficiently distant from some probe particle under consideration, could
create such a ‘classical’ field. It is hard, however, to imagine a macroscopic controller whose
energy consumption does not exceed the energy content of the microscopic target system. This
suggests that discussing potential thermodynamic limitations requires microscopic models of
control.

For both tasks, computation and control, we are criticizing basically the same issue: as long
as the device controlling or triggering the operations (regardless of whether we call it ‘clock’
or ‘controller’) is not included in our microscopic description, we are skeptical about the claim
that the operation could ‘in principle’ be implemented in a thermodynamic cycle without any
energy cost.

1In [2] we have argued that the energy requirements for reliable erasure are even larger than Landauer’s bound
when the state of the energy source is noisy, for instance if it is given by two thermodynamic reservoirs of different
temperatures. For further different perspectives on Landauer’s principle see, e.g., [3, 4, 5].

2Here, the formal distinction between quantum and classical clock signals as well as the conversion of time infor-
mation between them is based on the rather general framework introduced in [13].
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These remarks raise the following two questions: (1) What are appropriate models for dis-
cussing resource requirements of computation and control? Given such a model, we need to ask
(2) how to define resource requirements within the model.

To discuss the cost of ‘changing Hamiltonians’ we first recall that changing ‘effective Hamil-
tonians’ is what is actually done: Let the target system, for instance, be a single particle.
Changing control fields actually means to change the quantum state of the physical systems
surrounding the particle. In a certain mean-field limit, this state change amounts to the change
of a classical field. Thus, the particles interact according to a fixed Hamiltonian. Taking this
perspective seriously, we are looking for a model where control operations are implemented by
a fixed interaction Hamiltonian if the states of the surrounding quantum systems are tuned
in an appropriate way. Ref. [14] also studies thermodynamic laws in a scenario where system,
controller, and baths are coupled by a fixed time-independent Hamiltonian, while [15] also con-
siders autonomuous dynamics of open systems. Although the goal of the present paper is also
to study thermodynamics in a scenario with autonomuous time evolution, we consider a model
that is nevertheless general enough to enable controlling controllers by ‘meta’-controllers and so
on. This, in turn, requires to couple the target system considered in the first place to an infinite
system that is not just a ‘heat bath’ as it is often assumed but something that can be controlled
and, further, act as a controller at the same time.

1.3 Spin lattice Hamiltonians as autonomous models of computation

As models for reversible computing, Hamiltonians on spin lattices have been constructed that
are able to perform computation [16] by their autonomous evolution. This addresses the above
criticism in the sense that these models do not require any external clocking. Instead, syn-
chronization is achieved by the fixed and spatially homogeneous interaction Hamiltonian itself.
Refs. [17, 18] go one step further and describe Hamiltonians on spin lattices for which the result
of the computation need not be read out within a certain time interval because the time aver-
age state encodes the result. This solves the more subtle problem that otherwise the readout
required an external clock.

There are several properties that make spin lattices attractive as physical toy models of the
world (and not only as model for a computing device): the discrete lattice symmetry represents
spatial homogeneity of the physical laws and the constant Hamiltonian the homogeneity in time.
By looking at lattices as discrete approximations of a field theoretical description of the physical
world, even the presence and absence of matter can be seen as just being different states of the
lattice. Accordingly, one can argue that spin lattices allow for a quite principled way of studying
thermodynamics of computation and control because they model not only the computing device
itself but also its interaction with the environment: to this end, just consider some region in the
lattice as the computing device and the complement of that region as the environment.

1.4 Why we propose to add physical universality

For the purpose of developing our ‘toy thermodynamics of computing and control’ we propose
to consider spin lattices or cellular automata (as their discrete analog) that satisfy the addi-
tional condition of physical universality introduced in [19]. This property will be explained and
motivated on an informal level in the following section. Roughly speaking, physical universality
means that the autonomous time evolution of the system is able to implement any mathemati-
cally possible process on an arbitrarily large finite region after the complement of the region is
prepared to an appropriate initial state. In the case of quantum systems, we mean by ‘mathe-
matically possible’ the set of completely positive trace preserving maps. In the classical case, we
refer to the set of stochastic maps. Given that one believes in the hypothesis that real physical
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systems admit in principle the implementation of any mathematically possible process3, it is
natural to demand that the interaction at hand itself is able to implement the transformation.
Otherwise, the interaction does not fully describe the interface between system and its envi-
ronment. For the purpose of our thermodynamic considerations, however, we want to study
systems whose interface is completely described by the interaction under consideration rather
than relying on control operations that come as additional, external, ingredients.

The paper is structured as follows. Section 2 briefly motivates the notion of physical uni-
versality introduced in [19] for both Hamiltonians and cellular automata4, although we focus
on the latter for sake of simplicity. Section 3 introduces the condition of physical universality
formally and describes and discusses the notion of resource requirements introduced in [19],
which is also the basis of this paper. Further, we raise the question of whether the resource
requirements of repeating a certain operation can grow sublinear in the number of repetitions
(which we argue to be necessary to justify the term ’thermodynamic cycle’). Section 4 explains
why CAs that are not physically universal may admit thermodynamic cycles in our sense. This
is because they admit initializations of a finite region that ensure the implementation of endless
repetitions of the same control operation. Section 5 explains why this simple construction is
impossible in physically universal CAs and shows that Schaeffer’s CA does not admit sublinear
growth. Whether no physically universal CA admits sublinear growth has to be left to the
future.

2 Physical universality: informal description and possible

consequences

2.1 Physically universal systems as consistent models of control

Ref. [19] introduces the notion of physical universality for three types of systems:

(1) translationally invariant finite-range interaction Hamiltonians on infinite spin
lattices,

(2) quantum cellular automata, and
(3) classical cellular automata.

While (1) is the model that is closest to physics, (2) and (3) describe increasing abstractions
that are useful for our purpose. Essentially, (2) is just the discrete time version of (1). We will
restrict the attention to (3) because it turns out that the problem is already difficult enough for
this case.

On an abstract level, the definition of physical universality coincides for all three cases:
a system is called physically universal if every desired transformation on any desired target
region (of arbitrary but finite size) can be implemented by first initializing the (infinite) com-
plement of that region to an appropriate state and then letting the system evolve according
to its autonomous dynamics for a certain ‘waiting time’ t. For the cases (2) and (3), t is a

3For critical remarks on this postulate see [20], Chapter 7: here doubts are raised that every self-adjoint operator
in a multi-particle system can be measured in practice. However, there exists always a unitary transformation that
reduces the observable to an observable that is diagonal in the tensor product basis, i.e., measurements of every
single particle. Given that one believes that these individual measurements are always possible even for multi-partite
systems, the doubts thus question the implementation of arbitrary unitaries. Further, Ref. [21] discusses the concept
of physical universality for an understanding of life and also proposes to weaken physical universality – just to mention
a second critical point of view.

4Note that this paper contains several ideas that already appear in the preprint [19], but often less explicit than
here. Since [19] will not be published because its main purpose had been to state a question that has been solved in
the meantime, we do not care about this overlap.
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positive integer while it is a positive real number for the case (1). Since cases (1) and (2) refer
to quantum systems the set of possible transformations (completely positive trace preserving
maps) is uncountably infinite, we should only demand that one can get arbitrarily close to the
desired transformation via appropriate initializations and waiting times instead of being able to
implement the desired transformation exactly.

Shifting the boundary between target and controller Physically universal systems
are intriguing because they provide a model class where every physical degree of freedom is
indirectly accessible by operating on the remaining degrees of freedom in the ‘world’ and then
letting the joint system evolve. In other words, the complement of the target region acts as the
controller of the target region so that any part of the world can become the controller or the
system to be controlled. This is in contrast to some physical models of computation, e.g., [17],
for which data and program registers are represented by different types of physical degrees of
freedom. These systems are able to perform any desired transformation on the data register by
appropriate initialization of the program register. The question of how to act on the program
register cannot be addressed within the model. In physically universal systems, on the other
hand, the preparation of any region can be achieved by operating on its complement. This
reduces the question of how to act on some target region to the question of how to act on some
‘controller’ region around it. In turn, this controller region can be prepared by acting on some
‘meta-controller’ region around it. Although this does not solve the problem it shows at least
that the boundary between controller and target region can be arbitrarily shifted.

Analogy to the quantum measurement problem This is similar to the quantum
measurement problem where the boundary between the measurement apparatus and the quan-
tum system to be measured (the famous ‘Heisenberg cut’) can be arbitrarily shifted as long as
the quantum description is considered appropriate: the transition from a pure superposition to
the corresponding mixture can be explained by entanglement between the target system and its
measurement aparatus [22] (for simplicity, one may define ‘measurement apparatus’ as all parts
of the environment that carry information about the result). The resulting joint superposition
of measurement apparatus and target system can be transferred to a mixture by entanglement
with a ‘meta’ measurement apparatus and so on.

2.2 Potential thermodynamic implications

Physical universality can have important thermodynamic consequences because it excludes the
ability to completely protect information. Physically universality means that any system can be
controlled by its surrounding. Therefore, the unknown state of the surrounding will eventually
cause the state of the system to change. In contrast, in systems such as [17] the state of the
program register never changes during the autonomous because of the strict separation between
data and program registers. Here, we don’t want to accept the latter class of models as physical
models of computation because in the real world also program registers are physical systems
that can be somehow accessed by actions on their environment. In other words, the information
of the ‘program’ register is only safe because the model fails to describe how to act on that part
of the system using the given interactions (these actions are external to the theory).

Trade-off between stability and controllability Physical universality thus gives rise
to a thermodynamics in which the inability to protect information is a result of the ability to
control every degree of freedom. On the one hand, the target system needs to interact with
its environment otherwise we were not able to control it. On the other hand, this interaction
makes entropy leaking from the surrounding into the target system. Ref. [19] defines the model
class of physically universal systems for the purpose of studying this conflict on an abstract
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level. Here, we restrict the attention to discrete time dynamics on classical cellular automata.
In the long run, one should certainly address our thermodynamic questions using continuous
time dynamics on quantum systems. As a first approach, however, it is convenient to simplify
the problem by restricting oneself to classical CAs. Another reason for considering classical CAs
is also to make this problem more accessible to the computer science community.5 After all,
it is one of the lessons learned from quantum information theory [24] that translating physics
into computer scientific language can provide a new perspective and new paradigms. Indeed,
the past two decades have shown that understanding thermodynamics via computer scientific
models is also promising.6 On the microscopic level one can hardly tell apart computing devices
from thermodynamic machines in the conventional sense.7 As part of this oversimplification,
we will define the thermodynamic cost of an operation simply by the size of the region in the
surrounding of the target system that needs to be initialized. This will be partly justified in
Section 3.2.

3 The formal setting

3.1 Notation and terminology

For the basic notation we mainly follow [29]. The cells of our CA in d dimensions are located
at lattice points in Ω := Z

d. The state of each cell is given by an element of the alphabet Σ.
For any subset X ⊂ Ω, a configuration γX of X is a map X → Σ. Let ΣX denote the set of
all configurations of X . The dynamics of the CA is given by a map α : ΣΩ → ΣΩ that is local
(i.e. the state of each cell is only influenced by the state of cells in a fixed neighborhood) and
spatially homogeneous (i.e., it commutes with all lattice translations).

Later, we will often consider a class of CAs in dimension d = 2 where the state of a cell one
time step later only depends on the state of the cell itself and its 8 surrounding neighbors, the
so-called Moore neighborhood, and refer to this class as ‘Moore CAs’.

If γ′ := α(γ) for any γ ∈ ΣΩ, we also write γ → γ′ to indicate that the configuration γ

evolves to γ′ in one time step and γ
n
→ γ′ = αn(γ) means that γ evolves to γ′ in n time steps.

Definition 1 (implementing a function). Let X,Y ⊂ Ω be finite sets and f : ΣX → ΣY be an
arbitrary function. Then we say a configuration φ ∈ ΣX̄ implements f in time t if for every
x ∈ ΣX

φ⊕ x
t
7→ ψx ⊕ f(x),

holds for some ψx ∈ ΣȲ . Here, the sign ⊕ denotes merging configurations of disjoint regions to
a configuration of the union.

For physical universality, we follow Schaeffer’s modified definition [29], which is equivalent
to our original one, and also his definition of efficiently physically universal:

Definition 2 (physical universality). We say a cellular automaton is physically universal if for
all finite regions X,Y and all transformations f : ΣX → ΣY , there exists a configuration φ of
the complement of X and a natural number t ∈ N such that φ implements f in time t.

We say the CA is efficiently physically universal if the implementation runs in time t0, where
t0 is polynomial in

5Note, further, that already von Neumann’s self-reproducing automata [23] follows the principle to study physical
or biological universality properties using CAs.

6For instance, the principle of cooling devices [25, 26] and heat engines [27] can be illustrated using an n-bit register
represented by n two-level systems or other simple discrete systems. For this model class, the relation between physics
and information is most obvious.

7See also the adaptive heat engine in Ref. [28].
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• the diameter of X (i.e., the width of the smallest hypercube containing the set) and diameter
of Y ,
• the distance between X and Y , and
• the computational complexity of f under some appropriate model of computation (e.g., the
number of logical gates in a circuit for f).

For simplicity, we will often consider only the case Y = X . Since every signal in our CA
propagates only one cite per time step, at most a margin of thickness t around X matters for
what happens after t time steps. Depending on the dynamical law and the desired operation on
the target region, the relevant part of the state can be significantly less. To explore the resource
requirements of an ’implementation’ we phrase the notion of an implementation formally in a
way that is explicit about which parts of the surrounding cells matter to achieve the desired
operation:

Definition 3 (device for implementing f). A device for implementing f : ΣX → ΣY is a triple
(Z, φZ , t) such that φZ ⊕ φ′ implements f in t time steps for all φ′ ∈ ΣZ̄∩X̄ . Here, X and Y
are called the ‘source region’ and ‘target region’, respectively, and Z ⊂ X̄ is called the ‘relevant
region’, φZ ∈ ΣZ the state of this region, and t ∈ N the ‘implementation time’. Then, the ‘size’
of the device is the size of W := Z ∪X ∪ Y . The ‘range’ of the device is the side length of the
smallest d-dimensional hypercube containing W .

Note that the relevant region may overlap with the target region while it needs to be disjoint
of the source region. Further, note that the definition of a device does not imply that the
relevant region has been chosen in a minimal way. Accordingly, future theorems on the resource
requirements of implementations may read ‘the relevant region consists of at least . . . cells.’ The
range can be seen as the size of the apparatus. Assume, for instance, that W consists of a small
number n of single cells spread over a hypercube of side length k ≫ n. Then we would still call
this a ‘large’ apparatus even if n is small.

So far, we have only considered the ability to implement one specific transformation once. We
also want to be able to study processes where one desired operation is performed after time t1, a
second one after time t2 + t1, and so on. Assume, for instance, that we want to achieve that the
information content of a certain cell c1 ∈ Ω is shifted to cell c2 after some time t1 and then shifted
to cell c3 at some later time t2 + t1. Then the entire process consisting should be performed by
one initialization rather than demanding re-preparing the system after each transformation. To
this end, we define devices for implementing concatenations of transformations as generalization
of Definition 3:

Definition 4 (device for implementing a sequence of transformations). Let X1, . . . , Xn+1 be
finite regions and f1, . . . , fn be functions with fj : ΣXj → ΣXj+1 for j = 1, . . . , n. In other
words, the target region of fj is the source region of fj+1. A device for implementing the
sequence f1, f2, . . . , fn is an n + 2-tuple (Z, φZ , t1, . . . , tn) with tj > 0, where Z ⊂ X̄1 is called
the ‘relevant region’ and φZ ∈ ΣZ is a configuration such that φZ⊕φ

′ implements fj◦fj−1◦· · ·◦f1
in

∑j

i=1
ti time steps for all φ′ ∈ ΣZ̄∩X̄1 . The size of the device is the size of W := Z∪(∪n+1

j=1Xj)
and its range is the side length of the smallest d-dimensional hypercube containing W .

The idea of Definition 4 is that the CA implements the transformation fj within tj time
steps, but this interpretation can be misleading because the Definition only specifies that the
initial state x is transformed into the final state

fn(fn−1(· · · f1(x) · · · ))

if the CA is not disturbed during the entire process. This does not require, for instance, that
an external intervention that changes the state of the region X1 from f1(x) to some y between
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step t1 and t1 + 1 yields the final state fn(fn−1(· · · f2(y) · · · )).
8

A priori it is not obvious that physical universality entails the ability of implementing se-
quences with n > 1. Th following result shows that this is the case:

Theorem 1 (ability to implement sequences). In every physically universal CA there is a device
for any sequence of transformations.

Proof. We provide a proof by induction on n. The base case n = 1 follows from physical
universality. For the induction hypothesis assume that sequences of n arbitrary functions can
be implemented.

For the induction step, let f1, . . . , fn, fn+1 be a sequence of n+ 1 arbitrary transformations
with

fj : Σ
Xj → ΣXj+1

for j = 1, . . . , n+ 1.
By physical universality there exists a device (Zn+1, φZn+1

, tn+1) with Zn+1 ⊂ X̄n+1 that
implements the last function fn+1 of the above sequence. Using this device we define the
following augmented version f̂n of the second last function fn of the above sequence by setting

f̂n :

{

ΣXn → ΣXn+1 ∪ ΣZn+1

x 7→ fn(y) ⊕ φZn+1

for all y ∈ ΣXn . In words, the output of the augmented function f̂n consists of the output of
original function fn on the region Xn and the constant output φZn+1

on the region Zn+1.
By induction hypothesis there exists a device (Z, φ, t1, . . . , tn−1, tn) that implements the

sequence f1, . . . , fn−1, f̂n. The special form of the output of the augmented function f̂n ensures
that the device (Z, φ, t1, . . . , tn−1, tn, tn+1) also implements the sequence f1, . . . , fn−1, fn, fn+1.
This is because after t1 + . . .+ tn times steps the output is

f̂n(y) = fn(y)⊕ φZn+1
∈ ΣXn+1

∪ ΣZn+1
where y = fn−1(. . . (f1(x)) . . .)

so that after tn+1 additional time steps the final output is

fn+1(fn(y)) ∈ ΣXn+2

as desired.

To mention a simple example of the kind of sequences we are interested in, consider a CA
with binary alphabet Σ = {0, 1}. Assume the task is to implement a NOT gate on the same
bit n times on some target bit. Then the desired functions read fj = NOT and the numbers tj
specify the time instants for which the autonomous dynamics has implemented another NOT
gate on our target bit, given that some region Z has been initialized to the state φZ .

3.2 Formalizing ‘thermodynamic cost’ of operations

Here we will consider the size of the relevant region as the thermodynamic cost of an imple-
mentation. This first approximation is justified by the following idea: a priori, the state of each
cell is unknown, i.e., we assume uniform distribution over Σ. According to Landauer’s principle

8Rephrased in causal language [30], if we denote the state of Xj at time
∑j

i=1
ti by xj , then the equation

xj = fj(xj−1), (1)

is not a ‘structural equation’, since the latter describes, by definition, also the impact of interventions on the input
variable on the right hand side.
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it then requires the energy kT ln |Σ| to initialize one cell to the desired state. This way, the
thermodynamic cost of the initialization process is simply proportional to the number of cells
to be initialized. This view will be further discussed at the end of this subsection.

Note that the size of the relevant region can only grow with O(td) if t is the running time
for an implementation since a signal can only proceed a constant number of cells per time step.
Therefore, the thermodynamic cost scales only polynomial in the computational complexity if
a CA is efficiently physically universal. This statement, however, is too weak for our purpose.
To phrase the main questions of this paper (which look for stronger statements) we need the
following terminology:

Definition 5 (zero cost per operation). Given a function f : ΣX → ΣX , a physically universal
CA is said to admit the implementation of f at zero cost per operation, if there are devices
(Zn, φZn

, t1, . . . , tn) for every n ∈ N, each implementing f , such that

lim
n→∞

|Zn|

n
= 0.

Note that this definition does not require that the implementation of f stops after the time
tn. Likewise, we define:

Definition 6 (zero cost of information storage per time). For some region X, a physically
universal CA is said to admit zero cost of information storage per time on X if there are devices
(Zn, φZn

, tn) for every n ∈ N with tn → ∞ that implement the identity on X after the time tn
such that

lim
n→∞

|Zn|

tn
= 0.

We are now able to phrase our main questions:

• Question 1: Does there exist a physically universal CA that admits zero cost per opera-
tion for any / for all functions f?

• Question 2: Does there exist a physically universal CA that admits zero cost for infor-
mation storage per time for any / for all finite regions X?

If we recall that the state of the CA may also encode the presence or absence of matter, our
definition of implementation cost also includes the aspect of hardware deterioration. Assume
one has built some microscopic control device that degrades after performing an operation some
large number n0 of times, a device for implementing the operation n > n0 times includes a
‘meta’ device repairing the original one. 9

On the one hand, we will show that the answers are negative for Schaeffer’s CA [29] to both
questions above. On the other hand, we will show that there exist physically non-universal CAs
for which both answers are positive. We leave it as an open question whether physically univer-
sality precludes the ability to achieve zero cost. However, we give some intuitive arguments that
suggest that physical universality makes it at least more difficult to achieve zero implementation
cost per operation or zero cost for information storage per time.

Discussion of the above formalization of thermodynamic cost It is certainly
an oversimplification to identify the size of the region that needs to be initialized with the
thermodynamic cost of an implementation. Consider, for instance, a physical many particle
system where each cell is a physical system that is weakly interacting with its neighbors. This
ensures that the total energy of the composed system is approximately given by the sum of the
energy of the individual systems. Assume, furthermore, that the state 0 ∈ Σ corresponds to the

9Thermodynamic considerations that account also for reproduction processes are certainly related to thermody-
namics of life [31].
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ground state, that is, the state of lowest energy. In the limit of low temperatures, this state has
probability close to 1, which implies that initializing the lattice to the all-zero state does not
require significant free energy resources. In this case, however, it requires significant free energy
resources to set a cell to any state other than 0 and the resource requirement then depends on
the number of cells that need to be in a non-zero state (which may correspond to the number
of particles in physics).

On the other hand, identifying the number of cells to be initialized with the thermodynamic
cost, can also be justified from the following point of view: assume we are not interested in
the amount of free energy that is required for one specific transformation. Instead, we only
ask whether the amount increases sublinearly or not. Assuming, in the above physical picture,
non-zero temperature (although it may still be low, which favors the state 0), initializing n
states to 0 with certainty yet requires an amount of free energy of the order n. This way,
the asymptotic behavior of resource requirements is unaffected by the details of the physical
hardware assumptions.

4 Cost of operations in Turing complete CAs

As a simple toy example, we consider the control task of repeatedly turning on and off a target
bit without ever stopping. Intuitively, this process already reminds us of a program with an
infinite loop:

Example 1 (infinite bit switching).
a := 0
while ( 1 ) do

a := 1⊕ a // bit XOR
end while

Every Turing-complete CA is capable of implementing the above program. We now explain
briefly the notion of Turing-complete CAs. A CA is called Turing-complete if there exists
a finite configuration that allows the CA to simulate any universal Turing machine, where the
concepts of ‘finite configuration’ and ‘halting’ are defined as follows. ‘Finite configuration’ means
that only finitely many cells are in a non-zero state, where a single element of the alphabet Σ is
chosen to be zero, denoted by 0. ‘Halting’ is defined as the event of a single previously selected
cell becoming non-zero.

It is important to observe that finite configuration does not imply finite resources in our
sense. ‘Finite configuration’ means that all but a finite number of cells are in the zero state,
whereas ‘finite resources’ means that all but a finite number of cells are in an unknown state.

Consider the following situtation: the simulation of a universal Turing machine by a CA could
require that all but a finite number of cells be zero because otherwise the non-zero cells would
eventually perturb the simulation. This would mean infinite resources in our sense. However,
as long as we do not demand physical universality, we can easily modify Turing complete CAs
such that they are able to implement an infinite loop with finite resources, as will be discussed
in the following two subsections.

4.1 Conway’s Game of Life

We first consider the implementation of our target operation ‘infinite bit switch’ in a well-known
cellular automaton, namely Conway’s Game of Life. It is a CA in two dimensions, each cell
being ‘alive’ or ’dead’, i.e., formally each cell is just one bit. The rules are [32]:
(1) Any live cell with fewer than two live neighbours dies, as if caused by under-population.
(2) Any live cell with two or three live neighbours lives on to the next generation.
(3) Any live cell with more than three live neighbours dies, as if by over-population.

10
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Figure 1: A simple configuration in Conway’s Game of Life that yields a dynamical behavior with
period 2. The system changes between the two configurations on the left and the right hand side,
respectively. ‘Alive’ and ‘dead’ cells are indicated by gray and white, respectively.

(4) Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.
To implement the bit flip, as desired, we find simple oscillating patterns in [32]: The ‘Blinker’

has period 2, as shown in Figure 1. We now focus on the space requirements of this 2-cycle
and recall that space requirements in our sense refer to the amount of space that needs to be
initialized to a specific value. For the Blinker to work, it is essential that there are no ‘particles’
in the direct neighborhood that disturb the patterns. Whenever there is a region outside which
the state is not known at all, this complementary region contains with some probability a pattern
that moves towards the blinker and disturbs its cycle. It is therefore possible, that, without
having some control about the entire space, we cannot guarantee that the blinker works forever.

4.2 Modified Game of Life with impenetrable walls

There is, however, a simple modification of the Game of Life for which we can ensure that
the blinker works forever although we only control the state of a finite region. To this end, we
augment each cell by an additional third state ‘brick’ �, indicated by black color, that blocks the
diffusion from the surrounding. The transition rule of the new CA now consist of the following
rules:
(0) a cell being in the state � remains there forever. (1)-(4) as before, with the convention that
the brick � counts as � for its neighbors.

The idea of bricks is that they can form a ‘wall’ around our blinker that protects it from the
influence of its surrounding (which can be in an unknown state). In physical terms, the wall
protects the blinker from the heat of the environment, as shown in Figure 2.

4.3 Reversible CA: Margolus’ billard ball model

To get one step closer to physics and account for the bijectivity of microscopic dynamics in the
physical world, we now consider reversible CAs, i.e., CAs in which every state has a unique
predecessor, which is not the case for Game of Life. We now show that even reversible CAs
exist that admit perfect protection of an implementation of an infinite loop, which results in
zero cost per operation.

Margolus’ billard ball model CA [33] is a CA in 2 dimensions whose update rules are defined
on Margolus neighborhoods, i.e., there are two partitions of the grid into blocks of 2 × 2 cells
describing the updates at even and odd time instants: At even time instances, the update is
done on the blocks {(2i, 2j), (2i, 2j + 1), (2i + 1, 2j), (2i + 1, 2j + 1)}, at odd times it is done
on the blocks {(2i − 1, 2j − 1), (2i− 1, 2j), (2i, 2j − 1), (2i, 2j)}, as visualized by the black and
the red grid in Figure 3, right. For each such block, the update rules are shown in Figure 3,
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Figure 2: The blinker surrounded by a wall of ‘bricks’, which protect it from uncontrolled pertur-
bations from its environment.

(1)

(2)

(3)

(4)

(5)

(6)

Figure 3: Left: Transition rules of Margolus’ billiard ball model CA. Right: the two different
partitions are indicated by the black and the red grid.

left. To interpret such a CA with Margolus neighborhood as a so-called Moore CA where the
update rules do not change between even and odd time steps (see Subsection 3.1), we consider
two time steps in the Margolus CA as one time step of a Moore CA. To ensure that the update
of a cell of the Moore CA only depends on its surrounding neighbors (which is convenient for
some purposes) one may consider each 2× 2 block of the Margolus CA as one cell of the Moore
CA.

As noted in [29], the billiard ball CA is not physically universal since it allows for impenetra-
ble walls [33]. We will use such walls to implement a bit switching process that continues forever
although only a finite region has been initialized. A simple example is shown in Figure 4. In the
sense of the present paper, this CA implements the NOT operation in a thermodynamic cycle
since there are no resource requirements per operation because there is no need to initialize the
cells outside the wall.

12



Figure 4: Configuration of Margolus billiard ball CA that implements bit switching forever: apply-
ing Rule (3) to the black partitioning takes the configuration on the left hand side to the one on
the right hand side. Then, an update according to the red partitioning leaves the state unchanged
due to Rule (5). Applying Rule (3) to the black partitioning takes the configuration on the right
hand side back to the one on the left hand side. Again, updating according to the red partitioning
has no effect.

5 Cost of operations in physically universal CAs

5.1 Schaeffer’s physically universal CA

Schaeffer [29], see also [34], constructed an efficiently physically universal CA that is close
to Margolus’ billiard ball model CA. The update rules are shown in Figure 5. Here, physical
universality refers to the Moore CA whose update rule consists of two time steps of the Margolus
CA (following the remarks in Subsection 4.3). We now discuss a rather primitive solution of
implementing our bit switching task in Schaeffer’s CA. Its resource requirements grow at least
linearly in n, which at first appears to be suboptimal. Yet, we will later show that linear growth
is optimal. We first observe that the CA admits free particle propagation in diagonal direction,
a fact that is heavily used in the proof for physical universality [29]. Figure 6 visualizes this
motion. We now use a ‘beam of particles’ in diagonal direction in which a particle and a hole

(1)

(2)

(3)

(4)

(5)

(6)

Figure 5: Transition rules of Schaeffer’s physically universal CA. Further rules are given by rotation
invariance.

13



Figure 6: Free particle propagation in Schaeffer’s physically universal CA: the configuration on the
left turns into the one in the middle by applying Rule (2) to the red partitioning. The middle
configuration turns into the right one by applying the same rule to the black partitioning.

Figure 7: Beam of 3 propagating particles which implement the turning on and off of the blue
target cell 3 times.

alternate, as shown in Figure 7. Then choose a target bit along the diagonal, as indicated by the
blue square in Figure 7. Just by waiting, this bit is turned on and off when particles and holes
appear, respectively. The resource requirements of this implementation are large: not only does
it require to correctly locate particles and holes, it also requires to keep the space around the
beam empty to protect the beam from collisions.

Remark 1 (complexity aspect of preparation). Apart from being costly from the thermody-
namic point of view, the implementation is also ‘not nice’ in other respects: compared to the
simplicity of our control problem, the initialization is rather complex. Assume, for comparison,
the following general control task: given some arbitrary binary string b of length 2n, the tar-
get bit is supposed to attain the value bj at ime j. Then, the above beam solves this task for
the special case where b = 101010 · · ·10. The general task can be obviously solved by the same
procedure as above: just locate particles and holes according to b. The fact that the solution of
the simple special case is based on the same principle suggests that it is a ‘bad’ solution; it is
inappropriately complex compared to the simplicity of the task. In a way, it reduces a simple
control operation to one that seems more complex. This raises the question of what one wants
to call a ‘solution’ of a control task.

To return to the thermodynamic question, one may wonder if there exist smarter implemen-
tations of the bit switch process where the resource requirements do not grow linearly in n. We
can easily show that the range of the implementation of the n-fold bit switch grows linearly in
n. To this end, we first need the Diffusion Theorem of [29]:
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Theorem 2 (Diffusion Theorem). Let S ⊂ Z
2 be an arbitrary square of side length s in the

Moore CA and φ an arbitrary configuration that is empty on S̄. Then αt(φ) is empty on S for
all t ≥ s.

We then have:

Theorem 3 (range of device restoring a region after t time steps). Let f : ΣX → ΣX denote an
arbitrary bijection for some region X ⊂ Z

2. Assume that (Z, φZ , t) is a device for implementing
f . Then its range is at least t.

Proof. Let S be the smallest square containingW = Z ∪X and s its side length. We must have
s ≥ t. Assume to the contrary that s ≤ t− 1. Then by the diffusion theorem any configuration
φ that is empty on S̄ evolves in t times steps to a configuration that is empty on S. This
contradicts the assumption there there is a configuration φZ that implements a bijection on site
X .

An important special case of the above theorem is when f is the identity function ID. Moreover,
we have:

Theorem 4 (range of device implementing n powers of a transformation). Let f : ΣX → ΣX

be an arbitrary bijection for some region X ⊂ Z
2. Assume that (Z, φZ , t1, t2, . . . , tn) be a device

for implementing of the sequence f, f, . . . , f . Then its range is at least n.

Proof. The proof is very similar to the proof of Theorem 3. If W = Z ∪X were contained in a
square of side length s ≤ tn − 1 the configuration after tn would be empty on X . Thus s ≥ tn.
The result follows since we must have tn ≥ n.

Remark 2 (resources requirements for 1D physically universal CA). We make some comments
on resource requirements of the one-dimensional physically universal CA in [35]. This CA uses
interacting particles particles that propagate with different speeds, namely ±1 or ±2 sites per
time step. Similar results to Theorem 3 and Theorem 4 hold for this CA as well.

[35, Lemma 2] is also a kind of diffusion theorem similar to Theorem 2. We reformulate its
statements slightly. Let S be an interval of length s and φ a configuration that is empty on S̄.
Then, after t(s) ∈ O(s) time steps all configurations φ′ that arise from φ under the autonomous
time evolution are empty on S. It is convenient to rephrase t(s) ∈ O(s) as follows: there exist
two contants s0 and κ such that t(s) ≤ κs for all s ≥ s0.

Using the same arguments but now with the one-dimensional diffusion theorem, we may
conclude that for the one-dimensional CA the ranges must be at least t/κ and n/κ in Theorem 3
and Theorem 4, respectively, provided that X is sufficiently large. The latter condition on X is
necessary because the diffusion theorem only applies for intervals of length at least s0.

The range is a rather crude measure of the resource requirements. A finer measure is the
size, that is, the number of cells of the relevant region. We focus the elementary control task of
restoring a bit n times and derive a lower bound on the size of the corresponding device.

Theorem 5 (size of device restoring a bit n times). Let ID denote the identity on some cell of Z2

in the Moore CA corresponding to Schaeffer’s construction. Assume that (Z, φZ , t1, t2, . . . , tn)
is a device for implementing ID, ID, . . . , ID. Then Z contains at least n/4−1 cells (also counted
in the Moore CA).

Proof. Below, the term ’cell’ refers to a cell in the Margolus CA (containing just one bit), not
the 2×2 block defining the cell of the corresponding Moore CA. Let X denote the source/target
2×2 block. Since Z consists, by definition, of cells of the Moore CA, it consists only of complete
2× 2 blocks in the Margolus CA.
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We now rely on the techniques developed in the proof of Theorem 4 in [29]. We also consider
an ‘abstract’ CA that consists of three states {0, 1,⊤}, where ⊤ denotes a ‘wild card’ that stands
for an uncertain state. The purpose of the abstract CA is merely to keep track of how uncertain
states propagate in the concrete CA. Ref. [29] describes a rather simple set of update rules for
the abstract CA, whose details are not needed. The essential observation that we adopt is that
⊤ particles exhibit free particle propagation as long as the following ‘forbidden’ patterns

and their rotated versions do not occur. Here a grey box indicates the ⊤ state, which stands for
either the 0 state (white) or the 1 state (black). It is important that these forbidden patterns
will never occur during the dynamical evolution of the abstract CA if the initial configuration
does not contain any forbidden patterns [29].

First, we assign ⊤ to all cells in W := Z + X representing the fact that their states are
unknown or could be arbitrary (because we do not know what the correct φZ looks like and the
source block X could also be in any state). Second, we assign 0 to all cells in the complement
of W . This is possible because cells outside W do not matter for the correct implementation.

This way, the forbidden patterns do not occur in the initial configuration and the dynamics
of the abstract CA can be described by free propagation of ⊤-particles: each ⊤-particle moves
to the diagonally opposite cell, that is, in either NE, NW, SE, SW direction. Consequently, any
cell can attain ⊤ and, in particular 1, at most 4|W | times.

Assume one of the cells in the source region X is in the state 1 at t = 0. Consequently,
it must be in the state 1 at least n times during the interval 1, 2, . . . , tn to ensure the correct
implementation of the n-fold repetition of ID. By combining these two arguments together we
conclude that W consists of at least n cells of the Margolus CA. Hence, it consists of at least
n/4 cells of the Moore CA. Since Z differs from W by only one cell we finally obtain the lower
bound |Z| ≥ n/4− 1.

Theorem 5 can easily be applied to our task of n-fold NOT since the latter amounts to imple-
menting the identity for all tj with even j.

It is unclear whether some of these insights apply to a general physically universal CA. The
question whether there exist physically universal CAs that do not satisfy the Diffusion Theorem
has already been raised by Schaeffer [29], which seems related to our thermodynamic questions
since diffusion is what makes information so extremely unstable.

It is, however, clear that in any physically universal CA a configuration of a finite region is
unstable in the following sense:

Theorem 6 (instability of patterns). For some physically universal CA, let Z ⊂ Z
d be a finite

region that is initialized to the state φZ . Assume that the states of all cells of Z̄ are unknow and
described by some probability distribution P that assigns a non-zero probability to every possible
state in ΣZ̄ . Then, for any configuration φ′Z of Z there is a time t such that φZ evolves to φ′Z
with non-zero probability.

Proof. Choose a function f : ΣZ → ΣZ with f(φZ) = φ′Z . By physical universality, there is
a configuration of the complement of Z implementing f for some t. Since only the restriction
of the configuration to a finite region matters (cells that are further away than t sites do not
matter) the set of all configurations implementing f has a non-zero probability.

The absence of impenetrable walls in physically universal automata is only the most intuitive
consequence of this obervation. Less obvious consequences remain to be discovered in the future.
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6 Conclusions

Common discussions on thermodynamic irreversibility of operations often focus on entropy
generation while they substantially differ with respect to the underlying notion of entropy (e.g.
Boltzmann entropy, Shannon respective von Neumann entropy, or Kolmogorov complexity [36,
37, 38]). Given these different notion of entropy, entropy generation is explained by coarse
graining [39], because complexity also contributes to physical entropy by definition [36, 37], or
because entropy leaks into the system from its environment.

Irreversibility in physically universal CAs or Hamiltonian systems is not due to entropy
production – at least not in any obvious sense. Instead, every evolution is to some extent
irreversible simply because one has no access to the evolution, the autonomous time evolution
of the system just continues forever. Therefore, simulating the inverse evolution on some target
system involves sophisticated initialization of a large number of cells in the surrounding (acting
as the controller). Since this initialization is typically destroyed by the autonomous evolution
of the system, restoring the state of the joint system of target and its controller involves a
sophisticated initialization of a ‘meta-controller’, which, in turn, will then be destroyed by the
evolution. The question of how to reverse the dynamics of one system without disturbing the
state of its surrounding thus raises the same question for an even larger system.

The idea that control operations, even when they are unitary, imply heat generation in the
controlling device, is certainly not new. However, physically universal CAs and Hamiltonians
may allow us to look at the idea from a new perspective because they admit to describe target,
controller, meta-controller and so on, in a unified way since all of them are just regions of cells.
Moreover, physically universal CAs formalize the conflict between controllability and isolability
of a system in a principled way. This is because physical universality, which formalizes the
ability to control subsystems, implies instability of information, although quantitative results
have to be left to the future. Here we have shown that in the existing constructions of physically
universal cellular automata information is extremely unstable – for instance, in the sense that
the resource required for protecting information grows linearly in time.

The intention of this article is to inspire other researchers to explore implications of physical
universality rather than exploring properties of specific constructions of CAs. Here we have
discussed properties of Schaeffer’s construction only to illustrate how to work with our notion
of resource requirements in the context of a physically universal CA.

Acknowledgements: We would like to thank Scott Aaronson and Luke Schaeffer for in-
teresting discussions on related questions and Armen Allahverdyan for comments on an earlier
version of this manuscript.
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